# Re: Programming is the Engineering Discipline of the Science that is Mathematics

Date: 12 Jun 2006 08:10:40 -0700

Message-ID: <1150125040.168754.81970_at_f6g2000cwb.googlegroups.com>

Bob Badour wrote:

[...]

> >>Keith already specified the argument applies to a limit.

*> >
**> > And this is an incorrect answer because the question was not what the
**> > limit of P(A and B) is but what exact value of P(A and B) given P(A) =
**> > 0 (or P(B)=0). There is an easy way to derive P(false) from Cox's
**> > axioms directly or from the sum/product rules.
**>
**> The exact value of the sum of 1/2^i for i in [0..infinity] is 2. The
**> exact value of the sum of 3 times 10^(-k) for k in [1..infinity] is 1/3.
**> The exact value of P(A and B) is 0 give P(A) = 0 or P(B) = 0.
**>
**> One uses limits to ascertain the truth of all three of the above statements.
*

I've replied to the limit attempt elsewhere.

*>
**>
**> >>>>P(A) = 1
*

> >>>>P(A or B) = P(~(~A and ~B))

*> >>>>P(A or B) = 1 - P(~A and ~B)
**> >>>>P(A or B) = 1 - P(~B|~A)P(~A)
**> >>>
**> >>>
**> >>>Since P(~A) equals zero, the above statement does not make sense.
**> >>
**> >>But Keith stated "in the limit of". Thus, one could read the first line
**> >>of what he wrote as
**> >>
**> >>lim P(A) as P(A) -> 1
**> >
**> > 'Limit' is not just a magical word, "hey, presto". One has to show
**> > that such limit indeed exists, in what sense it exists, and even then
**> > it would be a useless exercise because there is a simple and direct
**> > answer (see above).
**>
**> The only simple and direct answer I see above is the one Keith already
**> gave that you refuse to accept no matter how valid it is.
*

It's not valid in finite models. Received on Mon Jun 12 2006 - 17:10:40 CEST