Re: Updatable views

From: FrankHamersley <FrankHamersleyZat_at_hotmail.com>
Date: Thu, 08 Dec 2005 12:05:11 GMT
Message-ID: <XjVlf.14565$ea6.10525_at_news-server.bigpond.net.au>


-CELKO- wrote:
[..]
> The classic scenario calls for a root class with all the common
> attributes and then specialized sub-classes under it. As an example,
> let's take the class of Vehicles and find an industry standard
> identifier (VIN), and add two mutually exclusive sub-classes, Sport
> utility vehicles and sedans ('SUV', 'SED').
>
> CREATE TABLE Vehicles
> (vin CHAR(17) NOT NULL PRIMARY KEY,
> vehicle_type CHAR(3) NOT NULL
> CHECK(vehicle_type IN ('SUV', 'SED')),
> UNIQUE (vin, vehicle_type),
> ..);
>
> Notice the overlapping candidate keys. I then use a compound candidate
> key (vin, vehicle_type) and a constraint in each sub-class table to
> assure that the vehicle_type is locked and agrees with the Vehicles
> table. Add some DRI actions and you are done:
>
> CREATE TABLE SUV
> (vin CHAR(17) NOT NULL PRIMARY KEY,
> vehicle_type CHAR(3) DEFAULT 'SUV' NOT NULL
> CHECK(vehicle_type = 'SUV'),
> UNIQUE (vin, vehicle_type),
> FOREIGN KEY (vin, vehicle_type)
> REFERENCES Vehicles(vin, vehicle_type)
> ON UPDATE CASCADE
> ON DELETE CASCADE,
> ..);
>
> CREATE TABLE Sedans
> (vin CHAR(17) NOT NULL PRIMARY KEY,
> vehicle_type CHAR(3) DEFAULT 'SED' NOT NULL
> CHECK(vehicle_type = 'SED'),
> UNIQUE (vin, vehicle_type),
> FOREIGN KEY (vin, vehicle_type)
> REFERENCES Vehicles(vin, vehicle_type)
> ON UPDATE CASCADE
> ON DELETE CASCADE,
> ..);
>
> I can continue to build a hierarchy like this. For example, if I had a
> Sedans table that broke down into two-door and four-door sedans, I
> could a schema like this:
>
> CREATE TABLE Sedans
> (vin CHAR(17) NOT NULL PRIMARY KEY,
> vehicle_type CHAR(3) DEFAULT 'SED' NOT NULL
> CHECK(vehicle_type IN ('2DR', '4DR', 'SED')),
> UNIQUE (vin, vehicle_type),
> FOREIGN KEY (vin, vehicle_type)
> REFERENCES Vehicles(vin, vehicle_type)
> ON UPDATE CASCADE
> ON DELETE CASCADE,
> ..);
>
> CREATE TABLE TwoDoor
> (vin CHAR(17) NOT NULL PRIMARY KEY,
> vehicle_type CHAR(3) DEFAULT '2DR' NOT NULL
> CHECK(vehicle_type = '2DR'),
> UNIQUE (vin, vehicle_type),
> FOREIGN KEY (vin, vehicle_type)
> REFERENCES Sedans(vin, vehicle_type)
> ON UPDATE CASCADE
> ON DELETE CASCADE,
> ..);
>
> CREATE TABLE FourDoor
> (vin CHAR(17) NOT NULL PRIMARY KEY,
> vehicle_type CHAR(3) DEFAULT '4DR' NOT NULL
> CHECK(vehicle_type = '4DR'),
> UNIQUE (vin, vehicle_type),
> FOREIGN KEY (vin, vehicle_type)
> REFERENCES Sedans (vin, vehicle_type)
> ON UPDATE CASCADE
> ON DELETE CASCADE,
> ..);
>
> The idea is to build a chain of identifiers and types in a UNIQUE()
> constraint that go up the tree when you use a REFERENCES constraint.
> Obviously, you can do variants of this trick to get different class
> structures.

Where do you go with a TwoDoor SUV - surely not another relation? Then how do I report the number of two door vehicles in stock?

Frank. Received on Thu Dec 08 2005 - 13:05:11 CET

Original text of this message