

Implementing
Oracle
Approvals
Management

RELEASE 11i

May 2004

Introduction to Oracle Approvals Management 2

Oracle Approvals Management Release R11i
Copyright © 2001, 2002, 2003, 2004 Oracle Corporation. All
rights reserved.
Contributors: Geoff Nelson, Todd Morley, Alison Chambers, Bill Kerr
The Programs (which include both the software and documentation)
contain proprietary information of Oracle Corporation; they are
provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other
intellectual property law. Reverse engineering, disassembly or
decompilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as
specified by law, is prohibited.
Program Documentation is licensed for use solely to support the
deployment of the Programs and not for any other purpose.

The information contained in this document is subject to change without
notice. If you find any problems in the documentation, please report
them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your
license agreement for these Programs, no part of these Programs may be
reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of
Oracle Corporation.

If the Programs are delivered to the US Government or anyone licensing
or using the Programs on behalf of the US Government, the following
notice is applicable:
RESTRICTED RIGHTS NOTICE
Programs delivered subject to the DOD FAR Supplement are
”commercial computer software” and use, duplication and disclosure of
the Programs, including documentation, shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition
Regulations are ”restricted computer software” and use, duplication,
and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June,
1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass
transit, medical, or other inherently dangerous applications. It shall be
licensee’s responsibility to take all appropriate fail-safe, back up,
redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and Oracle
disclaims liability for any damages caused by such use of the Programs.
The Programs may provide links to Web sites and access to content,
products, and services from third parties. Oracle is not responsible for
the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose
to purchase any products or services from a third party, the relationship
is directly between you and the third party. Oracle is not responsible
for: (a) the quality of third-party products or services; or (b) fulfilling
any of the terms of the agreement with the third party, including
delivery of products or services and warranty obligation related to
purchased products or services. Oracle is not responsible for any loss or
damage of any sort that you may incur from dealing with any third
party.

Oracle is a registered trademark and ConText, Enabling the Information
Age, Oracle7, Oracle8, Oracle8i, Oracle Access, Oracle Application
Object Library, Oracle HRMS, Oracle Discoverer, Oracle Web
Customers, Oracle Web Employees, Oracle Workflow, Oracle Work in

Introduction to Oracle Approvals Management 3

Progress, PL/SQL, Pro*C, SmartClient, SQL*, SQL*Forms, SQL*Loader,
SQL*Menu, SQL*Net, SQL*Plus, and SQL*Reports are trademarks or
registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

Introduction to Oracle Approvals Management 4

Table of Contents
1 Introduction to Oracle Approvals Management ...7

Oracle Approvals Management..8

Overview of Oracle Approvals Management ..10
Approval Rules ..10
What Happens at Run Time...10

2 Implementing Oracle Approvals Management...13

Implementing Oracle Approvals Management...14

3 Attributes ..19

Attributes ..20
Attribute Types ..20
Attribute Usages...20
Attribute Classifications...24
Attribute Levels ...27
How does AME use Attributes? ..28
Maintaining Attributes ...29

4 Conditions...33

Conditions...34
Condition Types...34
Maintaining Conditions ...36

5 Approvals..39

Approvals..40
Approval Parameters..40
Approval Descriptions ...40
Approval Types..40
Required Attributes ..41
Approval Types for List-Creation and Exception Rules......................................41
Approval Types for List-Modification Rules ..46
Approval Types for Substitution Rules..47
Approval Types for Approval-Group Rules ..48
Maintaining Approvals ..50

6 Approval Groups ..53

Approval Groups ...54
Dynamic Approval Group..55
Maintaining Approval Groups ...57

7 Rules ...61

Approval Rules...62
Rule Types ...62
Rule Priorities ..62
Rule Usages ...63
How AME Handles Multiple Requirements for an Approver67
How AME Sorts Rules at Run Time..68
Example Rule...68

Introduction to Oracle Approvals Management 5

Maintaining Rules ..70

8 Testing ..73

Testing Rules and Transactions..74
How do I Test new Rules? ...74
Fetching a Transaction’s Attribute Values ..75
Viewing a Transaction’s Approvals...76
Creating a Test Transaction ...77

9 Administration..79

Administration ...80
Configuration Variables...80
Transaction Types..87
Runtime Exceptions ...88
Updating Configuration-Variable Values ..91
Maintaining Transaction Types ...91

Appendix A How AME Processes its Rules at Run Time97

How AME Processes Rules at Run Time...98

Appendix B How To Create A Custom Approval Type101

How to Create a Custom Approval Type ..102
What do I Need to Know Before I Start?...102
How do I Code an Authority Handler? ..108
How do I Code a List-Modification Handler? ...111
How do I Code an Approval-Group Handler? ...112
How do I Maintain Handler State? ..113

Creating an Approval Type ..118

Appendix C The AME API...119

The AME API...120
Types of Approvers..120
Data Types ...121
AME API Routines ..126
How Should a Workflow use the AME API to Manage Approvals?136
How Should an Application use AME’s API to Insert an Approver Dynamically?
..138
Frequently Asked Questions ..139

Introduction to Oracle Approvals Management 7

1
Introduction to
Oracle Approvals
Management

Introduction to Oracle Approvals Management 8

Oracle Approvals Management

Oracle Approvals Management (AME) is a self-service Web
application that enables users to define business rules governing
the process for approving transactions in Oracle Applications
where AME has been integrated.

What are the advantages of using Oracle Approvals Management?

Oracle Approvals Management enables business users to specify
the approval rules for an application without having to write
code or customize the application. Once you define the rules for
an application, that application communicates directly with AME
to manage the approvals for the application’s transactions.

What kind of approval hierarchies are supported?

You can define approvals by job or supervisor hierarchy, or by
lists of individuals created either at the time you set up the
approval rule or generated dynamically when the rule is
invoked. You can link different approval methods together,
resulting in an extremely flexible approval process.

Can you use the same rules for different applications?

Yes. You can define rules to be specific to one application or
shared between different applications.

How can you ensure that the rules you create are valid?

AME has built-in testing features that enable you to confirm the
behavior of new or edited business rules before live execution.

How is a transaction in progress affected by changes in your organization?

Because AME recalculates the chain of approvals after each
approval, a transaction is assured to be approved under the latest
conditions, regardless of organizational changes, changes to
transaction values, rule changes, or currency conversions.

My customer does not have Oracle HR, but has licensed the financials suite and
wants to use AME. Can they?

First, customers using any of the financials products but not
Oracle HR also install "Shared HR," which is a "lite" version of
the HR product that includes the common entities that are
needed by all applications. These include organizations,

Introduction to Oracle Approvals Management 9

locations, jobs, positions, and people. AME will work with
Shared HR. Customers do not need to apply the HR Family Pack
if they do not install any of the HRMS applications. They will
need to set up the people, jobs, or positions that they want to
include in their approval rules.

Second, customers can use AME without either the full HR
product or the Shared HR module, by using only FND users as
approvers. Such customers would typically create AME approval
groups, populate them with FND users, and reference the
approval groups in rule using one of the approval-group
approval types.

Introduction to Oracle Approvals Management 10

Overview of Oracle Approvals Management

The purpose of Oracle Approvals Management (AME) is to
define approval rules that determine the approval processes for
Oracle applications. Rules are constructed from conditions and
approvals.

Approval Rules

An approval rule associates one or more conditions with an
approval in an if-then statement. Each condition tests the value
of a variable (known as an attribute). The approval defines the list
of approvers to which the transaction is routed if the conditions
are met:

If

 condition C1 is true and

 condition C2 is true and . . .

then

 do approval A1.

For example, to create the following approval process:

”For requisitions up to $10,000, require approval from each
manager above the requestor up to senior director level.”

the rule might be:

If

 TRANSACTION_AMOUNT < 10000 USD

then

 require approvals up to at least job level

5

You associate a rule with a transaction type, which belongs to an
application. You can associate the same rule with several
transaction types and therefore several applications.

What Happens at Run Time

Once you have defined a set of rules for a transaction type, and
the application associated with the transaction type is configured
to use AME, the application communicates directly with AME to
manage the transaction type’s approval processes. Typically the
application communicates with AME when a transaction is
initiated in the application, and then each time an approver
responds to the application’s request for approval of the
transaction, until all approvers have approved the transaction.

Introduction to Oracle Approvals Management 11

AME records each approval, and recalculates the approver list
for a transaction each time an approver responds to a request for
approval of the transaction. See How AME Processes Rules at
Run Time: page for further details.

The reason why AME recalculates the approver list each time an
approver responds is to account for several possible
circumstances that can affect a transaction’s approver list:

• An attribute value changes, thereby affecting which
conditions are true and so which rules apply to the
transaction.

• A condition or rule is added, changed, or deleted, again
affecting which rules apply to the transaction.

• A change occurs in the organizational hierarchy used by
the transaction type’s set of rules, thereby changing the
membership of the applicable chain of authority.

• Currency exchange rates change, thereby affecting which
conditions on currency attributes are true and so which
rules apply to the transaction.

By accounting for such changes, AME guarantees that
transactions are always approved according to the most current
business data possible.

13
Implementing Oracle Approvals Management

2
Implementing Oracle
Approvals
Management

14
Implementing Oracle Approvals Management

Implementing Oracle Approvals Management

To implement AME, you need to carry out the following steps:

Install the Application

AME’s installation routines and administration features
determine which applications can use AME. Installation and
administration are typically jobs for a technical specialist.
Installation is generally done only once, and administrative tasks
(using AME’s Admin tab) are usually only necessary to enable a
new application to use AME, or to access or clear a transaction’s
error log.

Note: Installing AME includes creating a scheduled job that
executes the ame_util.purgeOldTempData procedure daily.
Failure to perform this task will eventually result in
performance degradation and unlimited growth of the size
of certain AME database tables.

Assign Users AME ICX Responsibilities and Secured
Attributes

AME defines three ICX responsibilities:
• AME Application Administrator
• AME General Business User
• AME Limited Business User

It also defines one secured attribute:
• ame_internal_trans_type_id

(”AME” is the Oracle Applications prefix for Oracle Approvals
Management.) The Application Administrator responsibility has
full access to AME’s Web interface. The General Business and
Limited Business responsibilities can access the Web interface’s
Conditions, Groups, Rules, and Test tabs; but not the Attributes,
Approvals, or Admin tabs, because these require technical
expertise with SQL or Oracle Application internals.

The difference between the General and Limited Business
responsibilities is that, while a user with the former
responsibility can access any transaction type, a user with the
latter responsibility can only access a transaction type if they
have been assigned the appropriate ame_internal_trans_type_id
secured-attribute value. The value is the transaction type’s AME-
internal ID. A user with the Application Administrator
responsibility can view a transaction type’s AME-internal ID by
choosing the Admin tab, selecting the Maintain transaction types
radio button, and then selecting the transaction type on the list of
transaction types. The AME-internal ID can be a negative or
positive integer.

15
Implementing Oracle Approvals Management

Unless otherwise stated, users with General Business and
Limited Business responsibilities can access all of the
functionality.

Some of the remaining setup steps require the Application
Administrator responsibility. If your job is to install, configure,
or otherwise administer AME, make sure you have the
Application Administrator responsibility before continuing to set
up AME.

(Optional) Create Transaction Attributes

In AME, an attribute is a named business variable such as
TRANSACTION_AMOUNT, whose value AME fetches at run
time, when it constructs transactions’ approver lists. Only a user
with the Application Administrator responsibility can create or
alter attributes (using the Attributes tab), because doing so
generally requires entering or changing an SQL query.

AME includes the attributes commonly required for the
transaction type(s) of each application that can use AME. If your
organization has customized an application, or has defined
flexfields in it, and wants to use these in the application’s
approval processes, a user with the AME Application
Administrator responsibility must create new attribute names
representing the customizations or flexfields, and must define
SQL queries that fetch their values at run time. Business users
can only select from existing attributes, when they create
conditions for AME rules.

Create Conditions

In AME, a condition specifies a list or range of attribute values
required to make a rule apply to a transaction. For example:

USD1000 < TRANSACTION_AMOUNT < USD5000

You create and maintain conditions using the Conditions tab.

(Optional) Create Approval Groups

An AME approval group is an ordered list of persons and/or user
IDs. You can create AME rules to include one or more approval
groups in a transaction’s approver list. You create and maintain
approval groups using the Groups tab. You must create an
approval group before using it in an approval-group rule.

Prepare to use the Approval Types

Seeded Approvals Types and Approvals

AME includes a set of seeded approval types and approvals. An
approval determines which approvers are included in a
transaction’s approver list. Typically an approval type represents a
way to ascend a certain organizational hierarchy, including in a
transaction’s approver list an appropriate chain of authority from

16
Implementing Oracle Approvals Management

the hierarchy; and an approval specifies where the chain starts
and ends. If your organization wishes to require approvals from
an organizational hierarchy that none of AME’s seeded approval
types ascend, you need to use a custom approval type. The
procedure to create a custom approval type is detailed elsewhere
in this guide.

Creating Approval Types

Only a user with System Administrator responsibility can create
an approval type, because doing so involves coding, compiling,
and testing an approval-type handler (a PL/SQL procedure or
package) in the APPS schema, and then registering that handler
with AME (using the Approvals tab). Like custom attribute and
approval-group definitions, custom approval types need only be
created once.

Adding Approvals to Existing Approval Types

Even if your organization plans to use AME’s seeded approval
types, you may need to add to their sets of approvals. For
example, the supervisory-level approval type comes with
approvals for a supervisory hierarchy having at most 10 levels. If
your organization has 15 levels, you need to create supervisory-
level approvals for levels 11-15. Once your organization decides
which approval types to use, you should compare the seeded
approvals with your organization’s requirements.

Preparing to use the Job-Level Approval Types

If your organization plans to use one of the job-level approval
types, it must first assign a job level to each job defined in HRMS
(that is, it must first populate the approval_authority column of
the HRMS table per_jobs). Your organization should also have a
business process for maintaining job levels. See ”Defining a Job”
in Using Oracle HRMS - The Fundamentals for details.

Define Approval Rules

In AME, an approval rule associates one or more conditions with
an approval action. The rule applies to a transaction if and only if
all of the rule’s conditions are true for the transaction.

Each application that can use AME defines one or more
transaction types. Each transaction type has its own set of
approval rules. Several transaction types can share attribute
names, while defining separate usages for those attribute names.
This makes it possible for several transaction types to share
conditions and rules. See Attribute Usages: page - 75.

Test Approval Rules

Once a transaction type has a set of rules, it is critical to test the
rules, to make sure they apply to the proper cases and do not
contain logical gaps or inconsistencies. You can test a set of rules

17
Implementing Oracle Approvals Management

using the Test tab to view the approver list for real transactions,
and to create test transactions having combinations of attribute
values that represent diverse business cases.

Configure Oracle Applications to use AME

An Oracle Application should be configured to use AME only
after thoroughly testing the set(s) of rules defined for that
application’s transaction type(s) in AME. Consult the
application’s user or technical documentation to learn how to
configure the application to use AME.

19
Attributes

3
Attributes

20
Attributes

Attributes

An attribute is a business variable that has exactly one value for a
given transaction. Common attributes are things like a
transaction’s total amount, a percent discount, an item’s
category, a person’s salary, and so on. In AME, attribute names
always appear uppercased, for example
TRANSACTION_AMOUNT.

Attribute Types

AME distinguishes five attribute types:
• Number
• Date
• String
• Boolean
• Currency

Boolean attributes are either true or false.

Currency attributes differ from the others in having three
components to their values: amount, denomination, and
conversion method. AME defines a currency attribute type,
rather than treating currency values as number attributes, to
enable currency conversion when evaluating conditions defined
on currency values. You must use the currency attribute type to
represent currency variables to take advantage of this
functionality.

For example, suppose TRANSACTION_AMOUNT is a currency
attribute. At run time, AME might need to evaluate the
condition:

TRANSACTION_AMOUNT < 500 USD

On fetching the attribute’s value, AME finds that the amount is
in British pounds (not U.S. dollars), and that the attribute
requires the Daily conversion method. AME would then use
General Ledger’s currency-conversion functionality to convert
the attribute’s value into U.S. dollars, using the Daily conversion
method. Having done so, it would evaluate the condition.

Note: To use this functionality, you must enable Oracle
General Ledger’s currency conversion.

Attribute Usages

All transaction types in AME can share an attribute name, while
defining their own method of determining the attribute’s value

21
Attributes

at run time (an attribute usage). This makes it possible for several
transaction types to share conditions and rules, so that an
organization can define a single set of rules that applies to
several transaction types (a uniform approvals policy). It also
means that an attribute name can be defined in AME, while a
given transaction type may not have yet defined a usage for the
attribute. A transaction type only has access to conditions
defined on attributes for which the transaction type has defined
usages. Only users with the System Administrator responsibility
can create and edit attribute usages (using the Attributes tab).

There are two kinds of attribute usages: static and dynamic.

Static Attribute Usages

A static attribute usage assigns a constant value to an attribute, for
a given transaction type. Static usages are common (but not
required) for certain mandatory boolean attributes that affect
how AME treats all transactions, for example, the
AT_LEAST_ONE_RULE_MUST_APPLY attribute (see
Mandatory Attributes: page 79). They are similarly used for
certain required boolean attributes, for example
INCLUDE_ALL_JOB_LEVEL_APPROVERS (see the description
of the absolute-job-level approval type under Approval Types
for List-Creation and Exception Rules: page - 95 for details).

Syntax Rules for Static Usages
1. Static usages must not use single or double quote marks to

demarcate strings.
2. Static usages for boolean attributes must be one of the strings

’true’ and ’false’.
3. Static usages for number attributes must be either an integer

or a decimal number in decimal (not scientific) notation. For
example, ’1’ and ’-2’ are acceptable integer values, and ’-
3.1415’ is an acceptable decimal value.

4. Static usages for date attributes must use the format model
ame_util.versionDateFormatModel, whose value is:
 YYYY:MON:DD:HH24:MI:SS

For example, ’2001:JAN:01:06:00:00’ is an acceptable date
value.
Note: This format model differs slightly from the
”canonical” format model, which contains a space character.
Space characters are problematic for variable values passed
to a Web server via the HTTP GET method.

5. Static usages for string attributes can be any text value that
fits in a varchar2 of length ame_util.
attributeValueTypeLength, which is currently 100. (You may
wish to check your AME installation’s source code to verify
that this constant still has the same value.). The text value
may include spaces and ordinary punctuation. It is case-
sensitive.

6. Static usages for currency attributes must have the form:

22
Attributes

 amount,code,type

where code is a valid currency code and type is a valid
currency-conversion type. There should be no space
characters other than those in the code and type values. The
amount should use a period, not a comma, as a decimal
point (if any). For example:
 5000.00,USD,Corporate

is a valid currency value.
7. Static usages may be null. To create a null static usage, leave

the usage field empty on the Create an Attribute, Edit an
Attribute, or Mandatory Attribute Query Entry page.

Dynamic Attribute Usages

A dynamic attribute usage assigns an SQL query to an attribute, for
a given transaction type. The query must follow certain syntax
rules. AME executes the query at run time to determine the
attribute’s value. Dynamic usages are common for all attributes
other than the two classes of boolean attributes described above.

The execution of dynamic attribute usages’ queries represents
the majority of AME’s runtime overhead. Therefore, optimizing
your dynamic-usage queries can have a big impact on AME’s
performance. Make sure you optimize these queries thoroughly,
especially if the transaction type that owns them processes a high
volume of transactions.

Syntax Rules for Dynamic-usage Queries
1. The query must fit in the column

ame_attribute_usages.query_string, which is a
varchar2(2000). If your query is long, you may wish to
compare its length with the current table definition in your
applications instance. (You can avoid the length constraint
by encapsulating your query in a function that you compile
on the database, and then selecting the function’s value from
dual in your query.)

2. The queries for all data types other than currency must select
one column; queries for the currency data type must select
three columns.

3. Each selected column must convert to a value that fits in a
varchar2 of length ame_util. attributeValueTypeLength,
which is currently 100. (You may wish to check your AME
installation’s source code to verify that this constant still has
the same value.)

4. Queries for boolean attributes must select one of two
possible values, ame_util.booleanAttributeTrue and
ame_util.booleanAttributeFalse.

5. Queries for date attributes must convert a date value into a
varchar2 using the ame_util.versionDateToString function, to
guarantee that AME stores the date value using the
ame_util.versionDateFormatModel. AME can only evaluate
conditions defined on a date attribute correctly when that

23
Attributes

attribute’s dynamic usage converts the attribute’s date value
using this format model, because AME stores the date as a
varchar2, and attempts to convert the stored value back to a
date using the same format model. For example:
 Select

ame_util.versionDateToString(sysdate) from

dual

is a correct dynamic usage for a date attribute.
6. Queries for number and currency attributes must select the

number or currency amount converted to a varchar2 by:
 fnd_number.number_to_canonical.

7. Queries for header-level attributes may (but are not required
to) contain the transaction-ID placeholder
ame_util.transactionIdPlaceholder, which is ’:transactionId’.
The transaction-ID placeholder is a true dynamic PL/SQL
bind variable. That is, at run time, AME binds a transaction-
ID value to this variable before dynamically executing the
query. A condition of a where clause referencing this bind
variable must have the form:
 transaction ID = :transactionId

where transaction ID is a column that contains the transaction
ID passed to AME at run time by the application whose
transaction type uses the query. Queries for line-item-level
attributes may also (but are not required to) contain the line-
item-ID placeholder ame_util. lineItemIdPlaceholder, which
is ’:lineItemIdList’. The line-item-ID placeholder is not a true
bind variable; it is merely a placeholder for which AME
substitutes a line-item-ID list such as ”(‘1’, ‘2’, ‘3’)”, before
parsing the query. A condition of a where clause referencing
this placeholder must have the form:
 line-item ID in :lineItemIdList

where line-item ID is a column that contains the transaction
type’s line-item IDs. If a query includes the line-item-ID
placeholder, it must also include an order-by clause of the
form:
 order by line-item ID

(That is, the query must order the attribute values in
ascending order of the associated line-item IDs.) AME will
not let you save a query referencing the line-item-ID
placeholder that does not contain an order-by clause. If your
order-by clause does not reference the same (line-item-ID)
column as the where-clause condition that references the
line-item-ID placeholder, AME will raise an exception at run
time.

This sample query satisfies the above rules, for a line-item
currency attribute:

select

 fnd_number.number_to_canonical(amount),

 currency_code,

 currency_conversion_type

24
Attributes

from some_app_line_items

where

 header_id = :transactionId and

 line_item_id in :lineItemIdList

order by line_item_id

Attribute Classifications

AME classifies attributes not only according to their data type,
but also according to whether they are mandatory, required, and
active.

Mandatory Attributes

An attribute is mandatory if every transaction type must define a
usage for it. AME uses mandatory attributes in its internal logic,
and so fetches their values for all transactions. A transaction type
does not need to define usages for non-mandatory attributes. All
attributes that an end-user defines are non-mandatory. AME also
includes some non-mandatory attributes that are commonly used
by various transaction types.

AME’s mandatory attributes are:

ALLOW_DELETING_RULE_GENERATED_APPROVERS

This is a boolean attribute that determines whether AME allows
an application to delete from a transaction’s approver list (at run
time) approvers required by the appropriate transaction type’s
rules.

ALLOW_REQUESTOR_APPROVAL

This is a boolean attribute whose value determines whether
AME lets a requestor approve their own transaction, if they have
sufficient signing authority.

AT_LEAST_ONE_RULE_MUST_APPLY

This is a boolean attribute determining whether AME raises an
exception when no rules apply to a transaction at run time.

EFFECTIVE_RULE_DATE

This is the date that determines which rules are active for a given
transaction, in the following sense. When AME begins to process
a transaction, it first determines which rules have start dates that
precede the effective date; and that have end dates which are
either null or which follow the effective date. These rules are
active for the transaction. AME then evaluates each active rule’s

25
Attributes

conditions to see whether the rule actually applies to the
transaction.

For most transaction types, sysdate is the appropriate
EFFECTIVE_RULE_DATE value. To use this value, give
EFFECTIVE_RULE_DATE a static null (empty) usage. (This will
be more efficient at run time than giving it a dynamic usage that
selects sysdate from dual.)

EVALUATE_PRIORITIES_PER_LINE_ITEM

Relative rule priorities can be evaluated per transaction or line
item. This attribute determines the time of evaluation that the
engine performs. This attribute is only significant if the
USE_RESTRICTIVE_LINE_ITEM_EVALUATION is set to true.
If it is set to not true (i.e. false or null), priority evaluation is
always per transaction, regardless of the value of
EVALUATE_PRIORITIES_PER_LINE_ITEM. (For this reason the
attributes tab prevents one from setting
EVALUATE_PRIORITIES_PER_LINE_ITEM to a static-true
value if USE_STRICT_LINE_ITEM_EVALUATION is static and
not true.) . For further information on rule priorities please
review the rules and administration sections. This attribute will
only appear in the list (of mandatory attributes) if the transaction
type contains a line-item-ID query string.

TRANSACTION_DATE

This is the date a transaction was first submitted. Note that AME
always fetches a transaction’s current attribute values, and then
applies the appropriate transaction type’s rules active as of
EFFECTIVE_RULE_DATE, to (re)generate the transaction’s
approver list. It does not use the attribute values or rules existing
at the transaction date. You may however wish to sort your
transactions according to, for example, the financial-reporting
period in which they originate, in your rules. This attribute gives
you a convenient way to do so.

TRANSACTION_GROUP_ID

This is the ID of the business group in which a transaction
originates. (Throughout AME, a business-group ID is a value
from the business_group_id column of the HRMS table
per_business_groups.) This attribute may have a null value at
run time. AME uses this attribute to evaluate rule constraints at
run time (see Constraints: page - 133).

TRANSACTION_ORG_ID

This is the ID of the organization in which a transaction
originates. (Throughout AME, an organization ID is a value from
the organization_id column of the HRMS table
hr_all_organization_units.) This attribute may have a null value

26
Attributes

at run time. AME uses this attribute to evaluate rule constraints
at run time (see Constraints: page - 133).

TRANSACTION_REQUESTOR_PERSON_ID

This is the person ID of the individual submitting a transaction.
(Throughout AME, a person ID is a value from the person_id
column of the HRMS view per_all_people_f.) This attribute may
have a null value at run time (when, for example, a generic user
account is used to submit a transaction). When a given
transaction type has the possibility of a null-valued requestor
person ID, you should avoid using the job-level approval types
(see Approval Types: page - 94).

TRANSACTION_REQUESTOR_USER_ID

This is the user ID of the user submitting a transaction. This
attribute may have a null value at run time.

TRANSACTION_SET_OF_BOOKS_ID

This is the ID of the set of books that owns a transaction.
(Throughout AME, a set-of-books ID is a value from the
set_of_books_id column of the General Ledger table
gl_sets_of_books.) This attribute may have a null value at run
time. AME uses this attribute to evaluate rule constraints at run
time (see Constraints: page - 133).

USE_RESTRICTIVE_LINE_ITEM_EVALUATION

This is a boolean attribute indicating whether at runtime AME
requires that a single line item satisfy all line-item conditions in a
given rule, for the rule to apply to the transaction being
processed. If the attribute is true, a rule containing line-item
conditions applies to a transaction only if one of the transaction’s
line items satisfies all of the rule’s line-item conditions. If the
attribute is false, different line items may satisfy different line-
item conditions. This attribute will only appear in the list (of
mandatory attributes) if the transaction type contains a line-item-
ID query string.

WORKFLOW_ITEM_KEY

This is the item key (typically the transaction ID) of the
transaction, when the transaction gets processed at run time by a
workflow in the application that owns the transaction type. (If
the application does not use Workflow, this attribute’s value will
be null.) AME only uses this attribute to communicate exception-
related information to Workflow at run time. You should not use
this attribute in your conditions.

27
Attributes

WORKFLOW_ITEM_TYPE

This is the item type of the workflow that calls AME’s
application-programming interface (API) at run time to process a
given transaction type’s transactions. (If the application that
owns the transaction type does not use Workflow, this attribute’s
value will be null.) AME only uses this attribute to communicate
exception-related information to Workflow at run time. You
should not use this attribute in your conditions.

Required Attributes

An attribute may be required by an approval type, for the
approval type to operate at run time. In this case, AME does not
let you create a rule using the approval type when your
transaction type has not yet defined a usage for the approval
type’s required attributes.

Active Attributes

An attribute is active for a rule if one or more of the rule’s
conditions is defined on the attribute, or if the approval type of
the rule’s approval requires the attribute. An attribute is active for
a transaction type if the attribute is mandatory, or if it is active for
at least one of the transaction type’s rules. AME only fetches the
values of active attributes at run time, and it only lists a
transaction’s active attributes when you create a test transaction
on the Test tab.

Attribute Levels

Attributes divide further according to their level. Header-level
attributes relate to an entire transaction. This is the common case.
Mandatory attributes, for instance, are always header-level
attributes. Line-item-level attributes have distinct values for each of
a transaction’s line items. For example, an expense report might
have line items, each representing a distinct expenditure being
reported; and the Web Expenses transaction type might define a
LINE_ITEM_AMOUNT currency attribute to represent the cost
of each expenditure.

A transaction type might not have line items. Even if the
application that owns a transaction type does have line items, the
transaction type might not enable line-item-attribute
functionality in AME. (To enable the line-item functionality for a
given transaction type, someone with Application Administrator
responsibility must enter a line-item-ID query for the transaction
type on the Admin tab. See Administration: page - 112 for
details.)

28
Attributes

How does AME use Attributes?

When AME starts to calculate a transaction’s approver list at run
time, the first thing it does is fetch the values of each attribute
that is active for the transaction type. (To do this, AME either
fetches the constant value assigned to the attribute, or fetches the
attribute’s query and then executes it.) If an attribute having a
dynamic usage is a header-level attribute, AME executes the
query once for the entire transaction. If the attribute is a line-
item-level attribute, AME executes the query once for each of the
transaction’s line items.

After fetching all of the active attributes’ values, AME checks
whether each of a transaction type’s rules applies to the
transaction. It does this by determining whether each of the
rule’s conditions is true. For conditions defined on header-level
attributes, the condition is true if the attribute’s value lies within
the list or range of values that the condition defines. For
conditions defined on line-item-level attributes, the condition is
true if the value of the attribute for any one line item lies within
the list or range of values that the condition defines.

29
Attributes

Maintaining Attributes

You can view, create, edit and delete attributes using the
Attributes tab. This tab is available only to users with the
Application Administrator responsibility.

If you have the General or Limited Business responsibility, AME
presents you with an appropriate attribute list whenever you
need to select an attribute in the process of creating a condition
or rule. If you need to have a custom attribute created or edited,
you must ask a user with the Application Administrator
responsibility to perform that task.

” To display the list of attributes for a transaction type:
1. Choose the Attributes tab.
2. Select the transaction type whose attributes you want to

view, then choose the Continue button.

The attributes list appears. The list is subdivided into mandatory
attributes, non-mandatory header attributes, and non-mandatory
line-item attributes.

Note: If the transaction type does not have a line item ID query
string defined, references to attribute level in the following text
should be ignored.

” To create an attribute:
1. Display the list of attributes.
2. Choose the Add Attribute button. This starts the Create an

Attribute wizard.
3. Select the attribute’s level (header or line-item) if the

transaction type has enabled line-item attributes.
4. Select a pre-existing attribute name, or enter a new attribute

name. If you plan to create one or more rules referencing the
attribute, and to share the rule(s) across several transaction
types, you just need to create the attribute’s name for the first
transaction type, and then select it from the list of shareable
attribute names for all remaining transaction types. (You
must enter a distinct usage for the attribute name, for each
transaction type.)
All attribute names, including those you create, are
shareable; so make sure that your attribute name’s degree of
generality reflects your intentions. For example, if you want
to create an attribute specific to the Web Expenses
transaction type, you might begin your attribute name with
the prefix ’WEB_EXPENSES_’.
Note: If you enter an attribute name in lower or mixed case,
AME changes it to all upper case when it saves your work.
The names of attributes whose values will be person IDs or
user IDs should end in ’PERSON_ID’ or ’USER_ID’,

30
Attributes

respectively; for example, ’HR_MANAGER_PERSON_ID’
and ’EMPLOYEE_STOCK_ANALYST_USER_ID’. This
convention signals the Test tab’s test-transaction
functionality to let the end user query for persons and users
by name, and then to display a user-friendly description of
the person or account selected by the end user.

5. Select an attribute type. Remember to use the currency type
for attributes reflecting monetary values.

6. Select the radio button indicating the type of attribute usage
you want to use.

7. Enter the attribute usage. (See Attribute Usages: page 75 for
details of the syntax rules for attribute usages.)

8. Choose the Create Attribute button.

Your new attribute appears in the appropriate section of the
attributes list.

” To edit an attribute:
1. Display the list of attributes.
2. Select the name of the attribute that you want to edit.
3. Make your changes on the Edit an Attribute page.
4. Choose the Submit Changes button to save your changes.

When you are satisfied with your changes, you can choose the
Quit button to return to the attribute list.

When you change an attribute’s name, type, or description, your
changes apply for all transaction types. Changes to attribute
usages only apply to the transaction type for which you make the
change.

You cannot change the name, type, or description of seeded
attributes. You must instead create a new attribute with the
name, type, and description that you want. In some cases, you
can create or edit a seeded attribute’s usage. (If the usage is
editable, it will appear that way on the Edit an Attribute page.)

If you change an attribute’s type, make sure you also change its
usage (for every transaction type that uses the attribute name) to
provide data of the appropriate type. If you change a usage’s
type from static to dynamic, make sure you change the usage
accordingly.

31
Attributes

” To delete an attribute:
1. Display the list of attributes.
2. Select the check box next to the attribute name, in the Delete

column.
3. Choose the Delete Checked Attributes button.
4. Confirm the deletion when prompted.

You can delete several attributes at once.
Note: You cannot delete seeded attributes.

Can a dynamic attribute usage reference the value of another attribute?

For example:

Attribute1: select column1 from table1 where column2 =
:transactionId
Attribute2: select column3 from table2 where column4 =
:Attribute1

Dynamic attribute usages cannot reference other attributes'
values. To implement the above example, the second attribute's
dynamic usage would be:

select column3 from table2 where column4 =
(select column1 from table1 where column2 = :transactionId)

AME does not allow references to attribute values within
dynamic usages for two reasons:

1. It is not practical for AME to guarantee that a transaction
type's active attributes (those attributes whose values the
engine and/or rules require to determine which rules
apply to a transaction of that type) will always be
fetched in a fixed order. As a result, AME may not have
fetched the value of Attribute1 before it tries to fetch the
value of attribute2. Even if AME were to guarantee an
attribute-fetching order, that would not solve the general
problem. It would only solve the problem for attributes
that come after the ones they depend on, in the order.

2. Were AME to allow this sort of dependency among
attributes, cycles could occur. Attribute1 could depend
on Attribute2, and Attribute2 could depend on
Attribute3, which in turn could depend on Attribute1.
There would be no way in logic to resolve these
attributes' values.

33
Conditions

4
Conditions

34
Conditions

Conditions

An approval rule’s “if” part consists of one or more conditions,
each of which is either true or false. For the rule to apply to a
transaction, all of its conditions must be true for the transaction.

Condition Types

There are three types of conditions:
• Ordinary
• Exception
• List-modification

Ordinary and exception conditions associate an attribute with a list
or range of possible attribute values. If at run time the attribute
has one of these values, the condition is true; otherwise it is false.
All six rule types can have one or more ordinary conditions, and
most rules have at least one.

The differences between ordinary and exception conditions lie in
how the two condition types are used. Ordinary conditions can
occur in all rule types, but exception conditions can only occur in
exception rules. Also, AME does not compare the attributes in an
exception’s exception conditions with those in a list-creation
rule’s ordinary conditions, to determine whether the exception
suppresses the list-creation rule. (See List-Creation Exceptions:
page - 130 for details.)

Ordinary and exception conditions have one of three forms.
Conditions on date, number, and currency attributes have the
form:

lower limit <{=} attribute name <{=} upper

limit

Conditions on boolean attributes have the form:

attribute name is {true, false}

Conditions on string attributes have the form:

attribute name in {value 1, value 2, . . . }

When you create or edit a condition of the first form, you decide
whether to include each equals sign in the condition by selecting
the appropriate values for the Include Lower Limit and Include
Upper Limit radio buttons. If you create a set of conditions of
this form on the same attribute, and the conditions have
successive ranges of values, you generally should only include
the value between each successive pair in one of the pair. For
example, the conditions:

35
Conditions

1,000 <= TRANSACTION_AMOUNT < 2,000

2,000 <= TRANSACTION_AMOUNT < 3,000

have successive ranges of values that avoid overlapping at 2,000.
In this way, at most one of the conditions will ever be true for
any given transaction, which is typically the desired behavior.

A list-modification condition identifies an approver that might
appear in a transaction’s chain of authority. When a list-
modification or substitution rule containing the list-modification
condition applies to a transaction, the rule’s action is applied to
the approver that the condition identifies.

36
Conditions

Maintaining Conditions

You can view, create, edit and delete conditions using the
Conditions tab.

” To display the list of conditions:
1. Choose the Conditions tab.
2. Select the transaction type, then choose the Continue button.

The conditions list appears, displaying the conditions in three
sections according to condition type.

Conditions are shared

The conditions list contains all conditions defined on attributes
for which the selected transaction type has defined usages.
Transaction types always share conditions, regardless of the
transaction type you select before creating a condition. This
sharing makes it possible for several transaction types to share
rules. It also means that when you edit or delete a condition, the
change applies to all transaction types. To help you avoid
unintentionally changing or deleting a condition used by several
transaction types, the conditions list flags conditions used by
several transaction types with an asterisk.

” To create a condition:
1. Display the list of conditions.
2. Choose the Add a Condition button. This starts the Create a

Condition wizard. This wizard guides you through the
following steps, for ordinary and exception conditions:

3. Select a condition type. If the transaction type has enabled
line-item attributes, you must select whether to create an
ordinary or exception condition on a header-level or line-
item-level attribute. Most of the time, you will create an
ordinary condition (or an ordinary condition on a header-
level attribute). Make sure you understand how the rule
types (see Rule Types: page - 129) use different condition
types, before deciding which type of condition to create.

4. Select the condition’s attribute.

The rest of the wizard depends on the attribute’s type. For
conditions on boolean attributes:
5. Select the attribute value (’true’ or ’false’) that makes the

condition true. Make sure not to confuse the boolean values of
the attribute and condition. A condition on a boolean
attribute can be defined so that the condition is true when the
attribute is false.

For conditions on date, number, and currency attributes:
6. Enter or select the condition’s lower and upper limits.

37
Conditions

7. Select whether to include each limit in the range of values
making the condition true. (Including a limit is equivalent to
including an equals sign, as discussed above.)

8. For conditions on currency attributes, select the currency
code representing the denomination of the lower and upper
limits. (See How does the Euro Affect Conditions on
Currency Attributes?: page 89 to make sure you avoid using
certain pre-euro currency codes.)

For conditions on string attributes:
9. Enter a text value that makes the condition true.

Note: Text values are case-sensitive.
10. (Optional) Choose the Create Text Value button to add

another text value. On the resulting Add a Text Value page,
enter the value and choose the Add Text Value button.
Repeat this process as long as you want to add more text
values.

You can now choose the Quit button to return to the conditions
list. Your new condition will appear in the appropriate sub list of
the conditions list.

” To edit a condition:
1. Display the list of conditions.
2. Select the condition you want to edit. The condition-editing

wizards closely parallel the condition-creation wizards
described above.

” To delete a condition:
1. Display the list of conditions, ensuring that you select a

transaction type that has defined a usage for the attribute
used by the condition you want to delete.

2. Select the check box next to the condition, in the Delete
column.

3. Choose the Delete Checked Conditions button.
4. Confirm the deletion when prompted.

You can delete several conditions at once.

39
Approvals

5
Approvals

40
Approvals

Approvals

An approval is an instruction to AME to include a given set of
approvers in a transaction’s approver list. Approvals constitute
the “then” part of approval rules. When a rule applies to a
transaction, AME processes the rule’s approval to add the
appropriate set of approvers to the transaction’s approver list.
Approvals have parameters and descriptions, and are of a given
approval type.

Approval Parameters

An approval’s parameter represents formally the approval’s
instruction, for a PL/SQL package or procedure known as the
handler for the approval’s type (see Approval Types). Each
approval type has its own approval-parameter syntax rules (see
the appropriate approval type for the approval type’s parameter-
syntax and -semantics rules). You must adhere carefully to the
syntax rules when you create a new approval for a seeded
approval type. (You can check your understanding of an
approval type’s syntax requirements by reviewing the
parameters of some of the approval type’s approvals, using the
Approvals tab.)

Approval Descriptions

An approval’s description should be a complete imperative
sentence expressing the approval’s requirements. When you
create an approval for a seeded approval type, the new
approval’s description should resemble as much as possible
those of existing approvals of the same type. For example, a
supervisory-level approval that requires the default chain of
authority to ascend the supervisory hierarchy 15 approvers
should have the description:

Require approvals up to the first 15

superiors.

Approval Types

An approval is always of a given approval type. An approval type
represents a way to calculate which approvers to add to a
transaction’s approver list. For example, the absolute-job-level
approval type ascends a managerial chain of authority (usually
starting from the supervisor of a transaction’s requestor), adding
each manager in the chain to the transaction’s default chain of
authority, until it reaches a manager having at least, or at most, a
certain job level (depending on the action).

41
Approvals

AME includes a set of seeded approval types, many of which
enable you to ascend commonly used organizational hierarchies.
If none of the seeded approval types meets your organization’s
requirements, you need a custom approval type. (The most
common reason to create a custom approval type is to represent
a particular organizational hierarchy.) An AME user with the
Application Administrator responsibility must use the
Approvals tab to define a new approval type. (See How to Create
a Custom Approval Type: page - 140 for the technical details.)

Every approval type specifies a way to identify an approver’s
surrogate. (Typically the surrogate is just the approver’s
supervisor.) AME substitutes the surrogate for the approver in a
transaction’s approver list if the application in which the
transaction originates flags the approver as unresponsive.
(Whether or when an application does this varies with the
application. Consult the application’s user documentation for
details.)

Required Attributes

Certain approval types require that a transaction type define
usages for one or more attributes, to use approvals of that type in
its rules. This occurs when the approval type uses the attributes’
values to calculate which approvers to include in a transaction’s
approver list. The Approvals tab lists each approval type’s
required attributes.

Note: If a seeded attribute is already a mandatory attribute,
AME does not include it among an approval type’s required
attributes, even if the approval type uses the attribute’s value
at run time.

Approval Types for List-Creation and Exception Rules

Use the following seeded approval types in list-creation and
exception rules:

Absolute job level

The absolute-job-level approval type generates a default chain of
authority by ascending the supervisory hierarchy and including
in a transaction’s approver list each person found in the ascent.
(The supervisory hierarchy is defined by the HRMS
per_all_assignments_f, per_jobs, and per_all_people_f tables and
views. To see exactly how AME ascends the hierarchy, please
review the source code for the ame_absolute_job_level_handler
PL/SQL package.) Where the ascent starts depends on the value
of a required attribute. How high in the hierarchy the ascent goes
depends on the particular approval, and on the value of another
required attribute.

42
Approvals

By default, the ascent starts with the supervisor of the
transaction’s requestor, whom the mandatory attribute:

TRANSACTION_REQUESTOR_PERSON_ID

identifies. If the required attribute:

JOB_LEVEL_NON_DEFAULT_STARTING_POINT_

PERSON_ID

has a non-null value at run time, the ascent starts instead with
the person whom this attribute identifies. You can instead cause
the ascent sometimes to start with someone besides the
transaction requestor. To do this, compile a function that returns
a non-null person ID only for the desired set of transactions, and
null otherwise. Then have the above attribute’s (dynamic) usage
select the function from dual.

The absolute-job-level approval type’s ascent up the supervisory
hierarchy stops when it reaches one or more approvers having a
sufficient job level. (A job level is a value in the authority_level
column of the HRMS table per_jobs.) The particular job level
required varies with the approval (AME seeds job levels one
through 10).

Absolute job-level approvals can also require up to at least a
given job level or at most a given job level. For example, if the
rules require approvals up to at least job level seven, and the
hierarchy above the requestor skips from job level six to job level
eight, the default chain of approval will include the approver at
job level eight. If the rules required approvals up to at most job
level seven in these circumstances, the default chain will only
include the approver with job level six.

Two job-level approvals may combine in an interesting way.
Suppose, for example, that one rule requires approvals up to at
least level five, and another requires approvals up to at most
level six. If the hierarchy skips from job level four to job level
seven, AME can only satisfy both rules by including in the chain
of authority the approver with job level seven. In this case, the at-
least approval is more stringent than the at-most approval, even
though the at-most approval nominally requires a higher job
level. Remember that AME always satisfies the most stringent
rule among those applicable; and be aware that for the job-level
approval types, which rule is most stringent can vary as the
foregoing example illustrates.

It sometimes happens that several consecutive approvers in an
ascent up the supervisory hierarchy have the same job level. If
this is the highest job level required by the rules, whether AME
includes all of the approvers or only the first depends on the
value of the required boolean attribute:

INCLUDE_ALL_JOB_LEVEL_APPROVERS

The parameters of absolute-job-level actions have the syntax:

43
Approvals

n{+,-}

where n is a positive integer. The parameter is interpreted to
require ascending the supervisory hierarchy to at least n job
levels if a plus sign is present, or to at most n job levels if a minus
sign is present. For example, the approval described as, ”Require
approvals up to at least level 1.” has the parameter ’1+’.

Required attributes: INCLUDE_ALL_JOB_LEVEL_APPROVERS,
JOB_LEVEL_NON_DEFAULT_STARTING_POINT_PERSON_I
D

Manager then Final Approver

The manager-then-final-approver approval type is an absolute-
job-level variant. Instead of requiring approval from every
person in an ascent up the hierarchy, this approval type only
includes the first and last approvers in the ascent. Note that this
and other variants on the absolute-job-level approval type all
require the same attributes as the absolute-job-level type
requires, and treat them the same way. The syntax rules for
manager-then-final-approver approvals are the same as those for
absolute-job-level approvals.

Required attributes: INCLUDE_ALL_JOB_LEVEL_APPROVERS,
JOB_LEVEL_NON_DEFAULT_STARTING_POINT_PERSON_I
D

Final Approver Only

The final-approver-only approval type is another absolute-job-
level variant. It only includes the last approver in the ascent up
the supervisory hierarchy. The syntax rules for final-approver-
only approvals are the same as those for absolute-job-level
approvals.

Required attributes:
JOB_LEVEL_NON_DEFAULT_STARTING_POINT_PERSON_I
D

Relative Job Level

The relative-job-level approval type is a third absolute-job-level
variant. However, its actions specify an ascent up the
supervisory hierarchy some number of job levels beyond that of
the requestor. The syntax rules for relative-job-level approvals
are the same as those for absolute-job-level approvals. Note
however that the integer n is here interpreted relative to the
requestor’s job level.

44
Approvals

Required attributes: INCLUDE_ALL_JOB_LEVEL_APPROVERS,
JOB_LEVEL_NON_DEFAULT_STARTING_POINT_PERSON_I
D

Line-Item Job-Level Chains of Authority

Generates a sub chain of authority for each line item of a
transaction having line items. Ascends the HR supervisor
hierarchy in the same way as absolute job level approval type.

Required attributes:
INCLUDE_ALL_JOB_LEVEL_APPROVALS,
LINE_ITEM_STARTING_POINT_PERSON_ID

Supervisory Level

The supervisory-level approval type ascends the same
supervisory hierarchy as the job-level approval types. However,
its actions specify the number of supervisors, rather than job
levels, to ascend. (There is no precise correlation between the
number of supervisors ascended and the job level. As the
discussion above of the absolute-job-level approval type
explains, a job level can be skipped, or can occur several times in
a row.) The parameters of supervisory-level approvals are
positive integers indicating the number of supervisors to ascend.

There are two required attributes.
SUPERVISORY_NON_DEFAULT_STARTING_POINT_PERSON
_ID This attribute's value can be null. If the value is null for a
given transaction, the transaction's chain of authority will start
with the supervisor of the person identified by
TRANSACTION_REQUESTOR_PERSON_ID. If the value is non-
null, it must identify by person ID the person who should be the
first approver in the transaction's chain of authority.

TOP_SUPERVISOR_PERSON_ID. This attribute's value can be
null. When it is null, AME raises an exception if it does not find a
supervisor while ascending the supervisory hierarchy. When the
value is non-null, if AME does not find a supervisor while
ascending the hierarchy, it checks whether the last supervisor is
the person identified by the attribute value. If so, AME ends the
chain of authority with this person, without raising an exception.
If not, AME raises an exception.

Required attributes:
SUPERVISORY_NON_DEFAULT_STARTING_POINT_PERSON
_ID, TOP_SUPERVISOR_PERSON_ID

45
Approvals

Dual Chains of Authority

A class of transactions may require approval from two chains of
authority, each starting at a different point in the supervisory
hierarchy. (For example, an employee transfer may require
approval from chains of authority starting at the employee’s old
and new supervisors.) In such cases, use the dual-chains-of-
authority approval type. This approval type puts one chain of
authority after the other, in a transaction’s approver list.

The dual-chains-of-authority approval type requires two
attributes:

FIRST_STARTING_POINT_PERSON_ID

SECOND_STARTING_POINT_PERSON_ID

These attributes’ values identify the first approver in each chain
of authority generated by the dual-chains-of-authority approval
type, so they must always have non-null values.

The dual-chains-of-authority approval type differs from the
other seeded approval types. In this case, at least two rules using
the approval type must apply to each transaction to which any
such rule applies—at least one such rule per subchain. This is
necessary because dual-chains-of-authority approvals can
represent (absolute- or relative-job-level) requirements for only
one of the subchains. The safest way to make sure at least two
dual-chains rules always apply to any transaction to which one
applies is to define pairs of rules with identical conditions and
different approvals, one for each subchain. For example, you
might define the following pair of rules for the Human Resource
Self-Service transaction type:

Rule G
If

 TRANSACTION_CATEGORY in {TRANSFER}

then

 Require approvals at most 3 levels up in

the first chain

Rule H
If

 TRANSACTION_CATEGORY in {TRANSFER}

then

 Require approvals at least 2 levels up in

the second chain.

You may include several rules for each subchain. When you do,
AME determines which has the most stringent requirement for
that subchain, and enforces that requirement.

The parameters of dual-chains-of-authority approvals have the
syntax:

46
Approvals

{1,2}{A,R}n{+,-}

The first integer (a one or a two) indicates the (first or second)
subchain. The letter (an ’A’ or an ’R’) indicates whether n (which
must be a positive integer) should be interpreted as an absolute
or a relative job level. The plus or minus sign is interpreted as for
the job-level approval types. For example, the approval
described as, ”Require approvals at most 8 levels up in the
second chain.” has the parameter ’2R8-’.

Required attributes: INCLUDE_ALL_JOB_LEVEL_APPROVERS,
FIRST_STARTING_POINT_PERSON_ID,
SECOND_STARTING_POINT_PERSON_ID

Approval Types for List-Modification Rules

Use the following approval types in list-modification rules:

Non-Final Authority

The non-final-authority approval type extends a chain of
authority beyond the approver identified in a list-modification’s
list-modification condition, up to some absolute or relative job
level, depending on the particular approval’s requirement. Note
that the list-modification condition must identify an approver as
a person (by person ID), and not as a user account (user ID), so that
this approval type can make the necessary job-level calculations.
(User accounts are not assigned job levels.)

Non-final authority approvals’ parameters have the syntax:

{A,R}n{+,-}

The ’A’ or ’R’ indicates whether n (a positive integer) represents
an absolute- or relative-job-level requirement. The plus or minus
sign is interpreted as for the job-level approval types. For
example, the approval described as, ”Require approvals at most
2 levels up.” has the parameter ’R2-’.

Final Authority

The final-authority approval type is unique in that it has only
one approval (and that approval has a null parameter). A rule
using this approval truncates the default chain of authority after
the approver identified by the rule’s list-modification condition,
thereby granting that approver signing authority, regardless of
their position in any organizational hierarchy. (If the target
approver forwards without approving, this approval type
truncates the chain of authority after the last forwardee following
the target approver.)

47
Approvals

You can use the final-authority approval to grant signing
authority to both persons and user accounts, as long as the
application that owns the transaction type that in turn owns the
rules can include user accounts in its approver lists. (All
applications support person approvers, but not all applications
support user-account approvers. Web Expenses, for example,
currently does not.)

Approval Types for Substitution Rules

There is only one seeded approval type for substitution rules:

Substitution

The substitution approval type replaces the approver identified
by a substitution rule’s list-modification condition with another
approver. You can use this approval type to substitute persons
and user accounts interchangeably, as long as the application
that owns the transaction type that in turn owns the rules can
include user accounts in its approver lists. (All applications
support person approvers, but not all applications support user-
account approvers. Web Expenses, for example, currently does
not.)

The parameters for substitution approvals have the following
syntax:

{’user_id’, ’person_id’}:id

For example:

’user_id:123’ and ’person_id:123’

are both valid substitution parameters. However, the AME user
interface enables you to select an approver type and then query
for an approver, to create or edit a substitution approval. Once
you do, AME generates the approval description automatically.
You do not edit the parameter or description directly.

48
Approvals

Approval Types for Approval-Group Rules

Use the following approval types for pre- and post-approval
rules:

Pre-Chain-of-Authority Approvals

The pre-chain-of-authority-approvals approvals type adds an
approval group to a transaction’s approver list before all
approvers in the transaction’s chain(s) of authority. The members
of the approval group appear in the approver list in the order
defined by the approval group. Pre-chain-of-authority-approvals
approvals’ parameters are the
ame_approval_groups.approval_group_id value corresponding
to the approval group of interest. The AME Web interface lets
you select the approval group from a user-friendly list when you
create a pre-chain-of-authority-approvals approval, so you do
not have to query for the group’s ID. The approval group can
either contain a static list of members or can contain an SQL
query that dynamically fetches the approvers. If the possibility
arises where the approval group can contain no members the
required attribute, ALLOW_EMPTY_APPROVAL_GROUPS
should be set to true. If this is set to false, AME will raise an
exception if the group is empty.

Required attributes: ALLOW_EMPTY_APPROVAL_GROUPS

Post-Chain-of-Authority Approvals

The post-chain-of-authority-approvals approvals type mimics
the pre-chain-of-authority-approvals type, but it inserts
approvers after all authority approvers.

Required attributes: ALLOW_EMPTY_APPROVAL_GROUPS

Approval-Group Chain of Authority

Sometimes it is required to include an approval group into the
chain of authority that is generated when the rules are evaluated.
The chain may be included within the line item chain or the
header chain.

Required attributes: ALLOW_EMPTY_APPROVAL_GROUPS

Dynamic Pre-Approver (DEPRECIATED – Use Dynamic Groups)

The dynamic-pre-approver approval type inserts a single pre-
approver (not an approval group) identified by an attribute at

49
Approvals

run time. This approval type has no seeded approvals; you must
create them before using the approval type.

A dynamic-pre-approver approval’s parameter must be a string
attribute’s name. At run time, the attribute’s value must be a
string having the syntax:

{first,last}:pre:{person_id,user_id}:n

The ’first’ or ’last’ determines whether AME inserts the pre-
approver before or after all other pre-approvers. The ’person_id’
or ’user_id’ indicates whether n (which must be a positive
integer) is interpreted as a person or user ID. For example, the
approval described as, ”Make the approver with person ID 123
the first pre-approver.” would correspond to the attribute value
’first:pre:person_id:123’.

Dynamic pre-approvals are useful when, for example, you need
one functional analyst from a large group of analysts to pre-
approve a certain class of transactions; but the particular analyst
required varies from transaction to transaction, or when there are
frequent changes in the identity of an analyst tasked with
reviewing certain kinds of transactions. In such cases, it can be
more convenient to compile a PL/SQL function that identifies
the appropriate analyst, and have a dynamic pre-approver
approval and its attribute select the attribute’s value at run time,
than to maintain an AME approval group for each analyst.

Dynamic Post-Approver (DEPRECIATED – Use Dynamic Groups)

The dynamic-post-approver approval type mimics the dynamic-
pre-approver approval type, but for post-approvers. Replace
’pre’ with ’post’ in the syntax of the attribute value:

{first,last}:post:{person_id,user_id}:n

50
Approvals

Maintaining Approvals

You maintain approvals and approval types using the Approvals
tab.

You must have the Application Administrator responsibility to
use the Approvals tab. If you are a business user, you view an
appropriate list of approval types or approvals when you create
or edit a rule. You cannot use the Approvals tab.

” To view approval types and approvals:
• Choose the Approvals tab. The approval-types list appears,

listing every available approval type.

” To create an approval type:

See Appendix B for further details of how to create an approval
type. Briefly, you:
1. Compile a PL/SQL handler (package or procedure) and make

it executable by the APPS account.
2. Use the Approvals tab to create the approval type, which

includes registering the handler.
3. Use the Approvals tab to create approvals for the new

approval type.

Do not attempt to customize a seeded approval type’s handler.
Instead, copy the code, alter it as required, and register the result
as a new approval type. This way you will avoid overwriting
your handler customizations when you patch or upgrade your
AME installation.

” To add approvals to an approval type:
1. Review the parameter syntax and semantics requirements

given above for the appropriate approval type.
2. Choose the Approvals tab.
3. Select the name of the approval type to which you want to

add approvals.
4. Choose the Add an Approval button.
5. Enter a parameter and description for the new approval on

the Create an Approval page, and then choose the Create
Approval button.

6. Repeat steps 3-4 until you have added all your approvals.

You can now choose the Quit button to return to the list of
approval types.

Note: You never need to add approvals to the pre- and post-
chain-of-authority approval types. When you create an
approval group, the corresponding pre- and post-chain-of-
authority approvals are automatically created.

51
Approvals

” To edit an approval type:
1. Choose the Approvals tab.
2. Select the name of the approval type you want to edit.
3. Make your changes.
4. Choose the Submit Changes button.

You can now choose the Quit button to return to the list of
approval types.

Note: You cannot edit seeded approval types.

” To edit an approval:
1. Choose the Approvals tab.
2. Select the name of the approval type whose approval you

want to edit.
3. Select the description of the approval you want to edit.
4. Make your changes.
5. Choose the Update Approval button.

You can now choose the Quit button to return to the edit-an-
approval-type page.

Note: You cannot edit seeded approvals, or pre- and post-
chain-of-authority approvals. Pre- and post-chain-of-
authority approvals are automatically updated when the
corresponding approval group is updated.

” To delete an approval type:
1. Choose the Approvals tab.
2. Select the check box next to the approval type you want to

delete, in the Delete column.
3. Choose the Delete Checked Approval Types button.
4. Confirm the deletion when prompted.

You can delete several approval types at once.
Note: You cannot delete seeded approval types.

” To delete approvals from an approval type:
1. Choose the Approvals tab.
2. Select the name of the approval type whose approval you

want to delete.
3. Select the check box next to the approval you want to delete,

in the Delete column.
4. Choose the Submit Changes button.
5. Confirm the deletion when prompted.

You can delete several approvals at once.
Note: You cannot delete a seeded approval, though you can
delete an approval that has been added to a seeded approval
type. Also, you cannot delete pre- and post-chain-of-
authority approvals. Pre- and post-chain-of-authority

52
Approvals

approvals are automatically deleted when the corresponding
approval group is deleted.

53
Approval Groups

6
Approval Groups

54
Approval Groups

Approval Groups

An approval group can either be an ordered set of one or more
approvers (persons and/or user accounts) or it can be a list,
which is dynamically generated at rule evaluation time. A typical
pre- or post-approval rule adds an approval group’s members (in
order) to a transaction’s approver list. Typically approval groups
represent functional approvers outside a transaction’s chain of
authority, such as human-resource management and internal
legal counsel, that must approve a transaction before or after
management has done so. However, it is possible to insert an
approval group into a chain of authority if required.

When you create an approval group, AME creates for you the
corresponding approvals of the pre- and post-approval approval
types automatically. These approvals are available to all
transaction types.

Approval groups can now be nested or in other works it is
possible to make one approval group a member of another
approval group. For example, a purchasing department might
define the following groups to handle post-approvals of
computer-hardware purchases:

COMP_APP_1 = {Jim Small}
COMP_APP_2 = {COM_APP_1, Jane Smith}
COMP_APP_3 = {COMP_APP_2, Liz Large}

AME would evaluate the membership of COMP_APP_3 to be
(Jim Small, Jane Smith, Liz Large}, in that order.

You nest one approval group in another by going to the edit-
group form on the groups tab and clicking the Add Nested
Group button. The select list that appears on the Choose a
Nested Group form only includes a group under three
conditions:

� It is not the target group itself.

� It does not contain the target group (either explicitly or
implicitly).

� It is not contained in the target group already.

The first two of these requirements prevent an infinite loop in the
resolution of nested groups. The third prevents redundant group
members only in the narrow sense that if group A already
contains group B as a member, you cannot add group B to A
again. However, if group A contains B, and group C also
contains group B, you can add C to A. In this case, the ordering
of A's members would place B's members before C's members
other than those in B, in A's membership list. Thus:

B = {1, 2}

55
Approval Groups

C = {3, 4, B}
A = {B, C} = {{1, 2}, {3, 4, B}} = {{1, 2}, {3, 4, {1, 2}}} = {1, 2, 3, 4}

Nested approval groups let you build an approvals matrix using
AME approval groups. For example, the purchasing department
defining the computer-hardware approval groups above might
define three corresponding post-approval rules:

If ITEM_CATEGORY in {COMPUTER_HARDWARE}
and ITEM_AMOUNT <= 1,000 USD
then require post-approval from the COMP_APP_1 group.

If ITEM_CATEGORY in {COMPUTER_HARDWARE}
and 1,000 USD < ITEM_AMOUNT <= 10,000 USD
then require post-approval from the COMP _APP_2 group.

If ITEM_CATEGORY in {COMPUTER_HARDWARE}
and 10,000 USD < ITEM_AMOUNT
then require post-approval from the COMP_APP_3 group.

These rules effectively define a hierarchy of per-item dollar-
amount signing authorities for three subject-matter approvers.
You can seed a hierarchy of nested approval groups containing
no members other than nested groups, along with a set of
approval rules like those above; and your customers can easily
populate the groups with person or user approvers upon
installation.

It is possible to nest a dynamic group in a static group, but it is
not possible to nest either a dynamic or static group in a dynamic
group. Dynamic groups can only include persons and users.

AME maintains a non-recursive approver list for each approval
group, so that the engine does not need to evaluate group
nestings at run time. Rather, the engine fetches all static members
and all dynamic members' queries in a single query, and then
executes the dynamic members' queries in turn, substituting the
results into the membership list. This means you can nest groups
to arbitrary depth without impacting AME performance
adversely, but you should take care to limit the number of
dynamic groups nested in a single group.

Dynamic Approval Group

There are two new fields on the create-approval-group and edit-
approval-group forms on the groups tab. One is a radio button
labeled Active List; the other is a textarea labeled Query. The
active-list radio button has two possible values: static and
dynamic. When the radio button is set to static, AME uses the
member list at the bottom of the (create or edit) form to
determine the approval group's membership. When the radio
button is set to dynamic, AME executes the query and uses the
rows returned by the query to determine the approval group's
membership.

56
Approval Groups

The rules for the syntax and semantics of the query's results are
simple. If the query is null, the group has no members when the
radio button selects the value dynamic. (This lets you "switch
off" a group without deleting its static members.) Otherwise, the
query must select rows of the form approver_type:id, where
approver_type is one of the strings 'person_id' and 'user_id', and id
is a valid ID of the type specified by approver_type. For example,
person_id:502 and user_id:205 are syntactically correct values.
The query can reference the transaction-ID placeholder
:transactionId. The query should select approvers in the order
that you want them to appear in a transaction's approver list.

You can toggle the Active List button's values without deleting
either the static list or the query string. The radio button's value
merely determines which list the engine uses at run time.

There is a new required boolean attribute for the pre- and post-
chain-of-authority approval types,
ALLOW_EMPTY_APPROVAL_GROUPS. When this attribute
has the value 'true', AME allows an approval group not to have
any members. When the attribute has the value 'false', AME
raises an exception if an approval group does not have any
members.

Approval types other than the seeded pre- and post-chain-of-
authority approval types can use approval groups. To fetch a
group's membership, an approval type should always call
ame_engine.getRuntimeGroupMembers. This procedure
implements the functionality described in this FAQ. It returns
approver-type values in the output parameter
parameterNamesOut, and ID values in the output parameter
parametersOut.

Dynamic approval groups supersedes the dynamic pre- and
post-approver approval types which are now deprecated.

57
Approval Groups

Maintaining Approval Groups

You view, create, edit and delete approval groups using the
Groups tab.

” To view approval groups:
• Choose the Groups tab.

” To create an approval group:
1. Choose the Groups tab.
2. Choose the Add Group button.
3. On the Create an Approval Group page, enter a name and

description that uniquely identify the new approval group.
4. For the Active List choose static if you are added members to

the group or dynamic if you will be entering a selection
using SQL.

5. Choose the Create Group button.
6. Options will be provided to add an approver, or add a

nested group.
7. The approver-query wizard prompts you to search a group

member which can be a person or fnd_user. The Nested
Group will allow the addition of an approval group into the
list. It is possible to add a mixture of groups and
person/user to the list subject to the conditions mentioned
above.

8. An order number is provided in both cases to enable the
determination of the ordering of approvers in the group.

9. It is possible to change the ordering by selecting a group
member and changing the order number on the update page.

You can now choose the Quit button to return to the list of
approval groups.

Editing an approval group

There are several kinds of changes you can make to an approval
group.

Note: You can edit the name and/or description of an
approval group and delete group members in a single click
of the Submit Changes button on the Edit an Approval
Group page.

” To change an approval group’s name or description:
1. Choose the Groups tab.
2. Select the name of the approval group that you want to edit.
3. Change the name and/or description.
4. Choose the Submit Changes button.

58
Approval Groups

You can now choose the Quit button to return to the list of
approval groups.

59
Approval Groups

” To add members to an approval group:
1. Choose the Groups tab.
2. Select the name of the approval group to which you want to

add a member.
3. Choose the Add Member button or Add Nested Group.
4. Either use the approver-query wizard to find the person or

user account you want to add or select the required approval
group.

5. Select the order number to insert the member/group at.
5. Repeat steps 3-5 until you have added all of the

members/groups that you require.

You can now choose the Quit button to return to the list of
approval groups.

” To change the order of an approval group’s members:
1. Choose the Groups tab.
2. Select the name of an approval group.
3. Select the approver / group whose order you want to

change.
4. Enter a new order number. The order number must be

between 1 and the number of approvers /groups in the
approval group.

5. Choose the Submit Changes button.

The group members now appear in the new order. You can now
choose the Quit button to return to the list of approval groups.

” To delete approval-group members:

To delete one or more approval-group members:
1. Choose the Groups tab.
2. Select the name of an approval group.
3. Select the check box next to the approval group member’s

name, in the Delete column.
4. Choose the Submit Changes button.
5. Confirm the deletion when prompted.

You can now choose the Quit button to return to the list of
approval groups.

” To delete an approval group:

To delete an approval group:
1. Choose the Groups tab.
2. Select the check box next to the name of the approval group

you want to delete, in the Delete column.
3. Choose the Delete Checked Groups button.
4. Confirm the deletion when prompted.

60
Approval Groups

You can delete several approval groups at once.

61
Approval Rules

7
Rules

62
Approval Rules

Approval Rules

Rule associate one or more conditions with an approval in an if-
then statement. Before you can create rules, you must create
conditions for the rules to use. You may need to create (or have a
system administrator create) some custom attributes and/or
approvals. You may also need to create some approval groups.
Thus, while creating rules is your ultimate goal, it is also the last
thing you do when you set up AME.

Rule Types

There are six rule types in AME:
• List-creation rules
• List-creation exceptions
• List-modification rules
• Substitutions
• Pre-list approval-group rules
• Post-list approval-group rules

Different rule types use different condition and approval types,
and have different effects on a transaction’s approver list.

Rule Priorities

The purpose of rule priorities is to prioritize a transaction type's
rules and, at run time, remove from the set of rules that would
otherwise apply to a transaction, those rules of insufficient
priority. A rule priority is a positive integer associated with a rule
within a transaction type. (Each transaction type that uses a rule
can assign the rule a different priority.) Note that priority
increases as the priority value (number) decreases: two has
priority over three, etc. When rule priorities are enabled for a
given rule type (within a given transaction type), the rules tab
and the pop-up rules-details windows display rules' priorities;
and one can edit a rule's priorities as one would edit any other
rule property. When priorities are disabled, they are neither
displayed nor editable.

The admin tab has a special form for editing the
rulePriorityModes configuration variable's value. The value
contains a priority mode and threshold for each rule type. There
are three possible priority modes: absolute, relative, and disabled.
A threshold is a positive integer, and it only has meaning for the
first two priority-mode values. Full details of each of these
modes is given in the chapter on AME Administration.

63
Approval Rules

Rule Usages

The deployment of a rule depends upon its usage. It is possible
to have multiple usages for a rule, each one spanning a specific
data range which allows rules can be switched on/off as
required.

Rule usage can also span transaction types, effectively sharing
rules between them.

In both cases, any such usage is marked on the UI to indicate
either future dated rules or rules shared across transaction type
usages.

List-Creation Rules

AME uses list-creation rules to generate the default chain of
authority for a given transaction. List-creation rules only use
ordinary conditions (see Conditions: page 88 for an explanation
of condition types). List-creation rules can use any of the
following approval types:

• Absolute job level

• Relative Job Level
• Dual chains of authority
• Final approver only
• Manager then final approver, relative job level
• Supervisory level
• Approval group chain of authority

• Line-Item Job-Level chains of authority

See Approvals: chapter 5 for descriptions of each approval type.

This is an example of a list-creation rule:

64
Approval Rules

Rule A
If

 TRANSACTION_AMOUNT < 1000 USD

then

 require approvals up to at least job level

2.

Rule A has one condition, on the attribute
TRANSACTION_AMOUNT. The approval is of the absolute-job-
level type. So if the condition is true for a given transaction, AME
will extend the transaction’s chain of authority from the
transaction requestor’s supervisor up to the first approver in the
supervisory hierarchy who has a job level of at least 2.

If several list-creation rules of the same approval type apply to a
transaction, AME enforces the most stringent approval required
by those rules. For example, if two absolute-job-level rules apply
to a transaction, the first requiring approvals up to at least job
level 2 and the second requiring approvals up to at least job level
3, AME will extend the chain of authority up to the first approver
with a job level of at least 3. So, when you want to create an
exception to a list-creation rule, and the exception should require
extra approval authority of the same type as the list-creation rule,
the exception should itself be another list-creation rule.

List-Creation Exceptions

Sometimes you want to create an exception to a list-creation rule
that decreases the level of, or changes the type of, the approval
authority that the list-creation rule would otherwise require. In
this case, you need a list-creation exception (or simply an
exception). An exception contains at least one ordinary condition
and at least one exception condition (see Conditions: page 88 for
an explanation of condition types), as well as an approval. An
exception can use any of the approval types available for list-
creation rules.

The circumstances under which an exception overrides a list-
creation rule are somewhat subtle. The two rules do not have to
have the same ordinary conditions. Instead, both rules’ ordinary
conditions have to be defined on the same attributes, and both
rules’ conditions must all be true (including the exception’s
exception conditions). In this case, AME ignores the list-creation
rule, and the exception has suppressed the list-creation rule.

There are several reasons AME does not require that an
exception have the same ordinary conditions as a list-creation
rule that it suppresses. First, one exception may be designed to
suppress several list-creation rules. In this case, the scope of the
exception’s ordinary conditions must be broad enough to
encompass that of each list-creation rule it suppresses. Second,
an exception may be designed to apply to a more narrow set of

65
Approval Rules

cases than a list-creation rule. Third, it is sometimes desirable to
adjust the scope of either the exception or the list-creation rule(s)
that it suppresses, without simultaneously adjusting the scope of
the other(s).

This is an example of an exception that suppresses Rule A:

Rule B
If

 TRANSACTION_AMOUNT < 500 USD and

 Exception: COST_CENTER is in {0743}

Then

 require approvals up to at least job level

1.

(In Rule B, the first condition is an ordinary condition, and the
second condition is an exception condition.) Note that the
ordinary condition is defined on the same attribute
(TRANSACTION_AMOUNT) as the condition in Rule A, but the
two conditions are different. Rule B carves out a exception to
Rule A for transactions with totals under $500 U.S. for a certain
cost center. In this narrow case, the exception requires less
approval authority (of the absolute-job-level type) than what
Rule A would otherwise require, which is why the rule must be
an exception, rather than a list-creation rule.

List-Modification Rules

Sometimes you want to make exceptions regarding the approval
authority granted to specific approvers, rather than the approval
authority required for specific kinds of transactions. To do this,
you need a list-modification rule. AME applies list-modification
rules to modify the default chain of authority generated by all
applicable list-creation and exception rules. A list-modification
rule can have (but need not have) ordinary conditions. However,
it must have exactly one list-modification condition (see
Conditions: page 88 for an explanation of condition types).

There are two common uses for list-modification rules: reducing
an approver’s signing authority, and extending an approver’s
signing authority. In the former case, the list-creation rules might
effectively grant a certain level of signing authority to managers
having a given job level, and you might want not to grant that
authority to a certain manager, in spite of their having the
requisite job level. To do this, you tell AME to extend the chain
of authority past the manager by using the nonfinal-authority
approval type. In the latter case, just the opposite is true: the list-
creation rules require approvals beyond a given job level, but
you nevertheless want to grant a certain manager at that job level
signing authority. To do this, you tell AME to truncate the chain
of authority after the manager by using the final-authority
approval type. In both cases, you can limit the scope of the list
modification to a broad or narrow set of ordinary conditions.

66
Approval Rules

Here are some examples of list-modification rules that illustrate
the possibilities:

Rule C

If

 PURCHASE_TYPE is in {OFFICE FURNISHINGS,

OFFICE

 SUPPLIES} and

 Any approver is: Kathy Mawson

then

 Grant the approver final authority.

(In Rule C, the third condition is a list-modification condition.)
Rule C grants Kathy Mawson final authority for a narrow scope
of purchase types.

Rule D
If

 TRANSACTION_AMOUNT > 1000 USD and

 The final approver is: Kathy Mawson

then

 Require approvals at least one level up.

(In Rule D, the second condition is a list-modification condition.)
Rule D revokes Kathy Mawson’s signing authority for a broad
set of transaction amounts.

Substitutions

Sometimes you want to delegate one approver’s authority to
another approver. To do this, you need a substitution rule. AME
applies substitution rules to the chain of authority after
modifying it by applying any applicable list-modification rules.
Like a list-modification rule, a substitution rule can have (but need
not have) ordinary conditions. However, it must have exactly
one list-modification condition (see Conditions: page 88 for an
explanation of condition types). So a substitution rule differs
from a list-modification rule only in its use of the substitution
approval type.

This is a sample substitution rule:

Rule E
If

 TRANSACTION_AMOUNT < 500 USD and

 CATEGORY in {MISCELLANEOUS OFFICE EXENSES}

and

 Any approver is: John Doe

67
Approval Rules

then

 Substitute Jane Smith for the approver.

(In Rule E, the third condition is a list-modification condition.)
Rule E delegates John Doe’s authority to Jane Smith, for the class
of transactions defined by the rule’s ordinary conditions.

Pre- and Post-List Approval-Group Rules

The four rule types described above generate a transaction’s
chain of authority. You may want to have one or more groups of
functional specialists approve a transaction before or after the
chain of authority does. In such cases, you need a pre- or post-list
approval-group rule. An approval-group rule must have at least
one ordinary condition, and must use either the pre- or post-
chain-of-authority-approvals approvals type. For example:

Rule F
If

 TRANSACTION_AMOUNT < 1000 USD and

 CATEGORY_NAME in {Marketing Event}

then

 Require pre-approval from Marketing

Approvals Group.

How AME Handles Multiple Requirements for an Approver

Sometimes an approval consisting of several rules of different
types may require that a given approver appear in different
places in a transaction’s approver list. AME assumes that an
approver should only approve a transaction once, so it has to
decide which rule(s) requirements prevail. There are two
common cases of this problem. Here are brief descriptions of
each case, and explanations of how AME handles them:
1. A list-creation, exception, list-modification, or substitution

rule includes the approver in the chain of authority; and a
pre- or post-approval rule requires the approver’s pre- or
post-approval. In this case, AME only includes the approver
in the chain of authority. The reason is that omitting the
approver from the chain of authority might change the
identity of the approvers that follow the approver, in the
chain of authority; and AME assumes that preserving the
chain of authority is more important than preserving the
default approver order.

2. Two approval-group rules include the approver in different
(pre or post) approval groups. In this case, AME includes the
approver in the first approval group in the approver list.

68
Approval Rules

AME here assumes that the approver should approve at the
earliest opportunity.

How AME Sorts Rules at Run Time

At run time, AME decides the order in which to apply to a
transaction all applicable approval rules according to the
following algorithm:
1. Apply all exception rules first, to suppress any appropriate

list-creation rules.
2. Apply all remaining list-creation and exception rules.
3. Apply any applicable list-modification rules.
4. Apply any applicable substitution rules.
5. Apply any applicable pre-approval rules.
6. Apply any applicable post-approval rules.

Within each step of the algorithm, AME sorts the rules by
approval type, and processes all rules of a given approval type
before processing any rules of another approval type.

Note: AME does not guarantee any particular ordering
among the approval types, or among rules of a given type.
For example, if several list-creation rules of different
approval types apply to a single transaction, AME may
process all of the rules of either approval type first. And if
two substitution rules apply to a transaction, AME may
process either rule first. Oracle encourages you to avoid
relying on how your particular AME instance happens to
handle an indeterminacy. Instead, try to craft your rules to
avoid indeterminate outcomes.

You may nevertheless find it necessary to force AME to apply
one rule before another. To do this, test the rules using the Test
tab. If the orders are the reverse of what you want, edit the rules,
swapping their contents without deleting the rules. If you follow
this procedure, you should verify that AME has preserved the
order of rule application each time you change your rules in any
way, and each time you patch or upgrade AME.

Example Rule

Suppose you already have a rule requiring managerial approvals
up to a manager with a job level of at least six for purchase
requisitions totaling less than 5000 USD. You want to create an
exception to this rule that requires approvals only up to a job
level of at least four, when the requisition is for computer
equipment. The rule you want would be of the exception type
(not the list-creation type), because it decreases the level of
approval authority required. So you would follow these steps to
create the rule:

69
Approval Rules

1. The pre-existing list-creation rule for the normal case would
already have required a TRANSACTION_AMOUNT
currency attribute, and a condition defined on that attribute.
However, the Purchase Requisition transaction type might
not include a suitable seeded attribute for a transaction’s
category. Supposing it does not, create a string attribute
named (say) ’CATEGORY’. (If the attribute name already
exists, share the attribute name. If not, create it with a
sufficiently generic description for other transaction types to
share the name, because the attribute name itself is
sufficiently generic for several transaction types to want to
use it.) Enter for the attribute a (dynamic) usage that selects a
Purchase Requisition’s category from the appropriate tables
or views.

2. Create an exception condition on the CATEGORY attribute
having only one allowed value, (say) ’COMPUTER
EQUIPMENT’.
You can now create the rule itself:

3. Enter the description ’computer equipment up to 5000 USD’.
4. Select the list-creation exception rule type.
5. Let the start date default to today.
6. Leave the end date blank, so the rule is in force indefinitely.
7. Select the absolute-job-level approval type.
8. Select the approval, ’Require approvals up to at least job

level 4.’.
9. Select the ordinary-condition attribute

TRANSACTION_AMOUNT.
10. Select the ordinary condition, ’0 <=

TRANSACTION_AMOUNT < 5000’.
11. Select the exception-condition attribute CATEGORY.
12. Select the exception condition, ’COMPUTER EQUIPMENT’.

70
Approval Rules

Maintaining Rules

You can view, create, edit and delete rules using the Rules tab.

” To display the list of rules for a transaction type:
1. Choose the Rules tab.
2. Select the transaction type.

The transaction type’s rules list appears. You add, edit, and
delete rules from the rules list.

There are two versions of the rules list: short and long. The short
list displays only the descriptions of the rules. The long list also
displays the conditions, actions, and active attributes for each
rule. The short list is displayed by default. To view the long list,
choose the Display Long List button. (To return to the short list,
choose the Display Short List button).

” To create a rule:
1. Display the list of rules.
2. Choose the Add a Rule button.
3. Enter a description for the rule. Make sure the description

uniquely identifies the rule, and that it communicates the
business case to which the rule applies.

4. Select a rule type. See Rule Types: page 129 for explanations
of the rule types.

5. (Optional) Enter a start date. The start date defaults to today,
but you can enter a future start date. You cannot enter a start
date before today. Note that start dates always start at
midnight; that is, a rule starts being in force at the beginning
of its start date.

6. (Optional) Enter an end date. The end-date field is blank by
default. If you leave the end date blank, the rule is in force
indefinitely, once its start date arrives. End dates, like start
dates, start at midnight; that is, a rule stops being in force at
the beginning of its start date.

7. Select an approval type.
8. Select a specific approval of the type you selected in the

previous step. For example, if you selected the absolute-job-
level approval type, you must now select the absolute-job-
level approval that reflects the job level you want the rule to
require, and whether the rule should require at most or at
least this job level.

9. If priority handling has been set, enter the priority for this
rule. Please review the Administration chapter for further
information.

10. Select the attributes used by the ordinary conditions that you
want to include in the rule.

71
Approval Rules

11. Select the ordinary conditions that you want to include in the
rule.

12. If the rule is an exception, select the attributes used by the
exception conditions that you want to include in the rule.

13. If the rule is an exception, select the exception conditions that
you want to include in the rule.

14. If the rule is a list-modification or substitution rule, select the
rule’s list-modification condition.

You choose a Continue button at the bottom of each page in the
wizard outlined above, to proceed to the next page. When you
choose the Continue button at the end of the final step, AME
saves the new rule and displays it on the rules list.

” To edit a rule:
1. Display the list of rules.
2. Select the description of the rule you want to edit.
3. Select the item you want to edit.
4. Edit the item, or select a replacement for it (depending on

which item you selected in the previous step).

” To delete a rule:
1. Display the list of rules.
2. Select the check box next to the description of the rule you

want to delete, in the Delete column.
3. Choose the Delete Checked Rules button.
4. Confirm the deletion when prompted.

You can delete several rules at once.

73
Testing

8
Testing

74
Testing

Testing Rules and Transactions

The Test tab has three features:
1. Fetch a transaction’s attribute values.
2. View a transaction’s approvals.
3. Create a test transaction.

These features enable you to view how AME processes real and
fictitious transactions, without producing any notifications or
otherwise interacting with another application.

How do I Test new Rules?

Here is the procedure Oracle recommends for adding one or
more rules to your production AME instance:
1. Write a test plan that lists each business case your new rules

should cover (and, ideally, which cases the new rules should
not cover).

2. Create the new rules in a test environment, setting their start
dates to today.

3. Use the Test tab to test the rules in the test environment.
Refine the rules as needed, until they produce the outcomes
you expect for all cases in your test plan.

4. Create the new rules in the production environment, setting
their start dates temporarily to some future date.

5. Repeat the test in the production environment, using an
effective date after the rule’s temporary start date.

6. Change the rule’s start dates to their actual start dates.

If you intend to add several rules to the production environment,
always test them as a set in the test environment.

Warning: ?It is possible to use the Test tab to test new or
proposed rules in a production environment, without
first testing the rules in a test environment. Oracle
discourages this practice. If you do not have a separate
test environment, or if for some other reason you must
create a rule initially in your production environment,
you should nevertheless follow the above procedure,
skipping only steps 2 and 3. If you create a rule with a
start date of today before testing the rule, and the rule
is for a transaction type whose application currently
uses AME, the rule will apply to real transactions right
away.

75
Testing

Fetching a Transaction’s Attribute Values

You can display the attribute values for a selected transaction.
The transaction’s header-level attribute values appear on one
page, and the values of a given line-item-level attribute (for each
line item) appear on a second page. This is useful for testing
attribute usages you create or edit, and for troubleshooting at
run time transactions whose workflows have stopped during
their approval processes. It can also help explain the rule lists
produced by the second Test-tab feature.

” To view a transaction’s attribute values:
1. Choose the Test tab.
2. Select a transaction type.
3. Select the Fetch a transaction’s attribute values radio button,

then choose the Continue button.
4. Enter the ID of the transaction whose attribute values you

want to view.
5. If you want to view a line-item attribute’s values, select the

attribute’s name in the list of line-item attributes below the
list of header-level attributes and their values.

6. Choose the Fetch Attribute Values button.

76
Testing

Viewing a Transaction’s Approvals

You can display the approvals for a selected transaction. The
rules that apply to a given transaction appear on one page, and
the approver list generated by those rules appears on a second
page. This is useful for testing rules by checking how they apply
to real transactions, and for troubleshooting at run time
transactions whose workflows have stopped during their
approval processes.

” To view a transaction’s approvals:

To view the list of rules that apply to a real transaction, and the
resulting approver list:
1. Choose the Test tab.
2. Select a transaction type.
3. Select the View a transaction’s approvals radio button, then

choose the Continue button.
4. Enter the ID of the transaction whose approval process you

want to view, then choose the View Approval Process
button.

5. The list of applicable rules appears. To view the resulting
approver list, choose the View Approver List button at the
bottom of the rule list.

77
Testing

Creating a Test Transaction

You can create fictitious transactions and select the attribute
values for the transactions. You can change a test transaction’s
attribute values as often as you like, to see how each change
affects which rules apply to the transaction. In this way you can
create test transactions representing distinct business cases, to
make sure that each case invokes the rules you expect. It also lets
you verify that a set of rules produces the approver lists you
intend.

” To create a test transaction:
1. Choose the Test tab.
2. Select a transaction type.
3. Select the Create a test transaction radio button, then choose

the Continue button.
4. A requestor-query wizard begins. Use it to search for the

person or user who should be the transaction’s requestor.
(This query wizard gives you a user-friendly way to select a
value for the mandatory attribute
TRANSACTION_REQUESTOR_PERSON_ID or
TRANSACTION_REQUESTOR_USER_ID.)

5. The Test Transaction page appears. Enter or select values for
each mandatory attribute, and for each attribute that is active
for the rules that you intend to apply to the test transaction.
If you want to select or change a value for an attribute
representing an ID (having a name ending with ’_ID’),
choose the Change an ID Attribute Value button at the
bottom of the page. If the rules you want to test have active
line-item attributes, choose the Edit Line Items button to
create, edit, or delete test line items and values for the active
line-item-attributes.

6. When you are satisfied with your test transaction’s attribute
values, choose the View Approval Process button at the
bottom of the Test Transaction page to view the list of rules
that apply to your test transaction, and the approver list they
generate.

7. To modify and resubmit the test transaction, choose the
Change Attribute Values button at the bottom of the Test-
Transaction Results page. This returns you to step 5.

79
Administration

9
Administration

80
Administration

Administration

The Admin tab is available only to users with the Application
Administrator responsibility. You can use the Admin tab’s
features to maintain AME’s configuration variables and
transaction types, and to analyze AME’s runtime exceptions.

Configuration Variables

AME defines a number of configuration variables. In all cases,
the configuration variables have default values that are created
when AME is installed. In some cases, each transaction type can
override the default value with its own value as well.
Configuration-variable names and values are case-sensitive.
Here are brief explanations of the configuration variables,
indicating in each case whether a transaction type can override
the default value.

adminApprover

The adminApprover variable identifies the person or user
account that AME identifies as a transaction’s next required
approver to the application requesting the approver’s identity,
when AME encounters an exception while generating the
transaction’s approver list. A transaction type can override this
variable’s default value.

A widget is provided to select the person or the user who is the
adminApprover.

currencyConversionWindow

The currencyConversionWindow variable identifies how many
days AME should look back , at most, to find the a currency
conversion rate. The default value is set to 120 days. AME uses
the GL Daily Rates table and associated routines to perform
currency conversions. [complete]

81
Administration

distributedEnvironment

The distributedEnvironment variable indicates whether AME
has been installed in a distributed-database environment. It has
two possible values: ’yes’ and ’no’. A transaction type cannot
override this variable’s default value.

AME has its own exception log, and in most cases it logs runtime
transactions to that log. If the application that owns a given
transaction type calls AME from within a workflow, AME also
logs exceptions to Workflow (see Runtime Exceptions: page 116
for details); and it uses an autonomous transaction to commit
exception data to its own log, to avoid interfering with
Workflow’s transaction management.

If however AME is installed in a distributed-database
environment, and is called from within a workflow, it cannot
initiate an autonomous transaction, because such transactions are
not yet possible in a distributed environment. In this case it must
query Workflow directly (where possible) for a record of AME
exceptions. This log is less robust than AME’s own log, and so
AME avoids using it where possible.

In short, the distributedEnvironment variable is necessary to
make sure AME logs exceptions internally whenever possible,
while avoiding autonomous transactions where they would
produce runtime errors.

forwardingBehaviors

The forwardingBehaviors screen defines a set of constants which
determines how AME handles forwarding in a number of special
cases.

The behavior for forwarding to someone not already in the list is
always the same: the forwardee is inserted as an approver of the
same type, immediately after the forwarder. When the forwarder
and forwardee are chain-of-authority approvers, and the
forwarder lacks final authority, AME extends the chain of
authority starting from the forwarder until it finds someone with
final authority. (This would normally be the typical case.).

AME will seeds default values that are expected to be the normal
usage for each forward type. Oracle Application teams seeding
transaction types can override these defaults to ones more
suitable for the particular business process.

82
Administration

There are a number of different types of forwarding scenario that
might occur during the approval process. For each of the listed
scenario below, the AME engine can be instructed to amend the
approver list in a pre-defined way. Not all possible outcomes are
applicable for each forwarding scenario, these all indicated
below.

The following list details the possible options, the outcome of
which define how the approver list is amended.

Remand
All approvers starting with the forwardee up to but not

including the forwarder are added to the approval list.

Forward to forwardee and forwarder
The forwardee and then the forwarder are inserted into

the approver list after the forwarder.

Forward to forwardee only
The forwardee is inserted into the approver list after the

forwarder.

Ignore forwarding
The forwarding is not executed. If the forwarder

forwards without approval the chain of authority will
be extended past the forwarder to the next person in
the hierarchy.

Repeat Forwarder
The forwarder is included again in the same chain of

authority.

Skip Forwarder
The forwarder is skipped when the chain of authority is

extended from the forwardee.

There are two specific types of forwarder handled. The
forwarder either exists in a chain of authority or is an ad hoc
approver. Each scenario is explained along with a list of
applicable forwarding actions.

Chain of Authority Forwarder

83
Administration

Previous approver, same chain of authority

The forwarder forwards approval to a previous approver
that exists in the same chain of authority. This may typically
be the case where the approver is questioning the approval.
The forwarding may have occurred in one of the two cases

The forwarder forwards without approval

The allowable outcomes are: Remand, Forward to
forwardee and forwarder (default), Forward to
forwardee only, Ignore forwarding

The forwarder forwards with approval

The allowable outcomes are: Remand, Forward to
forwardee and forwarder, Forward to forwardee only
(default), Ignore forwarding

Subordinate not in same chain but in same hierarchy

The subordinate does not exist in the chain of authority. This
situation may exist because the approval chain originally
started above the subordinate. In this circumstance it may be
necessary, depending upon the desired outcome, to ascend
the hierarchy starting at the subordinate and requiring
approvals up to but not including the forwarder. If the
desired outcome is Skip Forwarder, the supervisor of the
forwarder is added to the approver list. If the outcome is
Repeat Forwarder, the forwarder is required to approve
again.

The forwarder forwards without approval

The allowable outcomes are: Forward to forwardee and
forwarder, Forward to forwardee only, Repeat forwarder
(default), Skip forwarder, Ignore forwarding

The forwarder forwards with approval

The allowable outcomes are: Forward to forwardee and
forwarder, Forward to forwardee only (default), Repeat
forwarder, Skip forwarder, Ignore forwarding

Already in list but not in same hierarchy

The forwardee appears in the approver list but is not within the
same hierarchy as the forwarder. This may be the case if the
forwardee is a pre-approver or is included within a different
chain of authority or is included within a group that has been
inserted into the chain of authority.

84
Administration

The forwarder forwards without approval
The allowable outcomes are: Remand, Forward to
forwardee and forwarder, Forward to forwardee only
(default), Ignore forwarding

The forwarder forwards with approval

The allowable outcomes are: Remand, Forward to
forwardee and forwarder, Forward to forwardee only
(default), Ignore forwarding

Ad-Hoc Forwarder

In this instance the Forwarder is an Ad-hoc approver that
appears either in Pre, Post or is an ad-hoc authority approver. In
these cases the selectable outcomes are constrained because only
the forwarder and forwardee are the actors when the forwarding
takes place, i.e. there is no hierarchal chain to ascend within the
context of the two approvers.

The selectable outcomes are only valid when the forwardee is
already in the approver list.

The forwarder forwards without approval

The allowable outcomes are: Forward to forwardee and
forwarder, Forward to forwardee only (default), Ignore
forwarding

The forwarder forwards with approval

The allowable outcomes are: Forward to forwardee and
forwarder, Forward to forwardee only (default), Ignore
forwarding

helpPath

The helpPath variable identifies the absolute virtual path to
AME’s help files. It must conform to the syntax,

http://server[:port]/virtual_path/

(port numbers are only required for ports other than the default
port 80). For example:

http://myAppsServer/helpFiles/

85
Administration

is a syntactically valid helpPath value. A transaction type cannot
override this variable’s default value.

htmlPath

The htmlPath variable identifies the relative virtual path to
AME’s HTML files other than its help files. The value must start
and end with forward slashes. For example:

/OA_HTML/

is a syntactically valid htmlPath value. A transaction type cannot
override this variable’s default value.

imagePath

The imagePath variable identifies the relative virtual path to
AME’s image files. The value must start and end with forward
slashes. For example:

/OA_MEDIA/

is a syntactically valid imagePath value. A transaction type
cannot override this variable’s default value.

portalUrl

The portalUrl variable identifies the absolute URL to which
AME’s portal icon is hyperlinked. It must adhere to HTTP’s
syntactic requirements for absolute URLs. A transaction type
cannot override this variable’s default value.

purgeFrequency

The purgeFrequency variable indicates how many days AME
should preserve temporary data before purging it from AME’s
database tables. The value must be a positive integer.

When a transaction’s temporary data is purged, its approval
process starts over, as if no approver had approved the
transaction. Therefore, the purgeFrequency variable’s value
should be high enough so that no transaction will require this
many days to be approved by all of its approvers. At the same
time, the purge frequency should be sufficiently low to avoid
unnecessary growth in the size of AME’s temporary-data tables.

A transaction type can override this variable’s default value.
When a transaction type overrides purgeFrequency, AME
preserves that transaction type’s temporary data only for the
overriding value. This enables you to set the purge frequency
differently for each transaction type, adjusting its value for each
to a reasonable upper limit on the number of days required for a
transaction of that type to complete its approval process.

86
Administration

repeatedApprovers

Indicates how many times to require an approver’s approval in
the absence of forwarding. An approver may appear many times
within the overall approval list. This can be due to a number of
factors such as the approver exists as a pre/post approver as well
as appearing within a chain of authority. In these circumstances
it may be desirable to restrict so that the approver is only
required to approve once in the following circumstances.

One of the following three options should be selected.

� Once per transaction
� Once per sublist
� Once per group or chain

A sublist can be either pre approver, chain of authority, or post
approver.

rulePriorityModes

The rulePriorityModes defines for each rule type either the
threshold for absolute or priority processing or it disables
priority processing altogether for the specific rule type.

For each rule type select one of the following

Disabled

Priority processing is disabled for the rule type

Absolute
Used to exclude rules that have a rule priority value
numerically greater than that of the threshold. This
mode can be used to remove rules from temporary use.

Relative
Used to preserve the top ‘n’ rules where ‘n’ is the threshold
value. For example if AME were to determine that 5 rules
were satisfied by a transaction and the threshold was set to 3
then the first three rules, in order of priority, would be
include and the rest discarded.

Threshold

The threshold value for either Absolute or Relative
priority rule processing. The threshold value is a
positive integer and defines the point where rules are
included in rule processing. The effect of this threshold

87
Administration

is described above in the settings for Absolute and
Relative processing.

useWorkflow

The useWorkflow variable indicates whether the application that
owns a given transaction type calls AME from within a
workflow. It has two possible values: ’yes’ and ’no’. AME uses
this variable’s value in conjunction with that of the
distributedEnvironment variable (see distributedEnvironment:
page 112) to determine how to log runtime exceptions. Every
transaction type should override this variable’s default value.

Transaction Types

In AME, a transaction type represents a set of transactions
generated by a given application, for which AME maintains a
single set of approval rules. A single application can have several
transaction types. For example, the Web Expenses self-service
application represents one of several possible transaction types
for Accounts Payable.

How AME Identifies Transaction Types

Transaction-Type Descriptions

AME displays a user-friendly description for each transaction
type. This description appears throughout AME’s Web interface
in pop-down lists from which users select the transaction type
they want to work in on a given tab. You can edit this description
using the Admin tab’s Maintain transaction types radio button.

Application and Transaction-Type IDs

AME’s API (by which applications communicate with AME)
identifies a transaction type by the combination of the
fnd_application.application_id value of the application that owns
the transaction type, and a transaction-type identifier (a string up
to 50 characters long). If the application only has one transaction
type, the transaction-type identifier may be null. Otherwise, its
value is typically (though not necessarily) the appropriate
Workflow item type for the transaction type, and it must be
unique among the transaction-type IDs of the transaction types
owned by the application.

Internally, AME assigns a separate ID to each transaction type.
You use this ID as the value of the ame_internal_trans_type_id
secured attribute, in conjunction with the Limited Business
responsibility, to give a user business access to a transaction
type.

88
Administration

A custom application may use AME to manage its approval
process. Such an application would presumably not have an
fnd_application.application_id value, so it would have to pass an
unassigned integer (such as a negative integer) to AME’s API.
See The AME API: page - 160 for details.

Other Transaction-Type Data

Attribute Usages and Configuration-Variable Values

Transaction types also define attribute usages, and can override
certain configuration variables. See Attributes: page 75 and
Configuration Variables: page 112 for details.

Line-Item-ID Query

A transaction type may (but is not required to) define a line-item-
ID query. This is necessary for the transaction type to define
usages for line-item attributes (and so to define conditions and
rules that reference line-item attributes). The line-item-ID query
must select a single number column, and it must order the
results in ascending order. AME will raise an exception at run
time if a line-item-ID query fails to order the line-item IDs in
ascending order, and it will not let you enter a line-item-ID query
that does not include an order-by clause.

Runtime Exceptions

What Causes Runtime Exceptions in AME?

The most common reason AME raises an exception (which
typically results in the related application’s stopping a
transaction’s workflow) is that AME cannot ascend a hierarchy,
either because a slot in the hierarchy is vacant, or because an
approver’s level in the hierarchy is indeterminate. For example,
in the case of the HRMS supervisory hierarchy, an approver may
have a null supervisor or a null job level. In this case, the missing
data must be entered into the appropriate application before
restarting the offending transaction’s workflow.

What happens when AME raises an exception?

When AME cannot determine a transaction’s next required
approver (in response to a request from an application, or when
you use the Test tab), it:
1. raises an exception in the routine that has trouble generating

the approver list, and re-raises the exception up its call stack
until an AME API routine catches the exception. Note that
AME does not generally raise the exception to the routine
that called its API.

89
Administration

2. logs each exception to its internal exception log (where
possible), and to Workflow (when the AME API was called
from a workflow in another application).

3. (if AME was responding to a request from another
application) identifies as the next required approver the
person or user account identified by the appropriate value of
the adminApprover configuration variable, and sets the
approval status of this approver to ame_util.exceptionStatus.
(This is the only circumstance where AME uses this
approval-status value.)

The requesting application may or may not notice that AME has
identified an administrative approver as the next required
approver, or that AME has set the approver’s status to indicate
that an exception has occurred. If it does, it typically will respond
by stopping the transaction’s workflow and notifying a
Workflow system administrator. In this case, the person or user
identified by the adminApprover configuration variable will not
at this time receive a notification regarding this transaction
(unless that person happens to be the Workflow system
administrator as well). The application may elect instead merely
to send a notification to the administrative approver identified
by AME, indicating that an exception has occurred for the
transaction.

If the requesting application does not notice that the next
required approver is an administrative approver, it will treat the
administrative approver as it would any other approver: by
sending the approver a notification requesting their approval of
the transaction. The approver would then have to discern that
AME had encountered an exception while attempting to
calculate the transaction’s approver list.

Oracle recommends that you configure the adminApprover
configuration variable to identify the same individual as the
Workflow and AME administrator for a given transaction type.
This will have the effect of making sure the same individual is
always notified when that transaction type’s workflow errors,
regardless of whether the error arises within AME.

How Should an Administrator Respond to an AME Exception?

However a Workflow system administrator or AME
administrative approver becomes aware that AME is having
trouble processing a transaction, they should respond to the
problem as follows:
1. Check AME’s exception log for the transaction (see View a

Transaction’s Exception Log: page 120 for details).
2. Check Workflow’s context log for any other relevant details.
3. Correct the (usually data) problem that caused AME

difficulty.
4. Restart the transaction’s workflow.

90
Administration

5. Clear the transaction’s exception log in AME (see Clear a
Transaction’s Exception Log: page 122 for details).

91
Administration

Updating Configuration-Variable Values

The Admin tab is available only to users with the Application
Administrator responsibility.

” To update default configuration-variable values:

The Admin tab’s first radio button enables you to set default
values for AME’s configuration variables. To edit a configuration
variable’s default value:
1. Choose the Admin tab.
2. The Update default configuration-variable values radio

button is selected by default. Choose the Continue button.
3. Select the name or description of the variable whose value

you want to change.
4. Edit the value.
5. Choose the Submit Changes button.

” To update transaction-type configuration-variable values:

The Admin tab’s second radio button enables you to set values
for certain configuration variables, for a given transaction type.
The values you set here will override the default values, for the
transaction type. To edit a transaction type’s configuration-
variable values:
1. Choose the Admin tab.
2. Select the Update transaction-type configuration-variable

values radio button, and choose the Continue button.
3. Select a transaction type.
4. The Edit Transaction Type Configuration Variables page

appears. It asks you several questions whose answers
determine the values of the useWorkflow, purgeFrequency,
adminApprover, etc. configuration variables. Edit the
answers to those questions to your satisfaction, and choose
the Continue button. (AME saves the changes related to the
useWorkflow and purgeFrequency variables when you
submit this page.)

5. If you selected ”a new business owner” as your answer to
the final question, the business-owner-query wizard starts.
Use the wizard to search for the person or account that you
want to be the administrative approver for the transaction
type. (AME saves the new adminApprover value when you
complete this wizard.)

Maintaining Transaction Types

The Admin tab’s third radio button enables you to edit existing
transaction types and add new ones. All transaction types must

92
Administration

be registered with AME, before they will appear on AME’s pop-
down transaction-type lists. Generally you do not need to use
this radio button to register new transaction types; Oracle
Application patches and upgrades will generally do it for you.
You may want to register a transaction type for a custom or
third-party application. In this case, you will need to use this
radio button.

” To register a transaction type:
1. Choose the Admin tab.
2. Select the Maintain transaction types radio button, and

choose the Continue button.
3. Choose the Add Transaction Type button.
4. The Choose an Application page appears. Select an

application to own the transaction type.
5. The Enter Registration Details wizard begins. Enter a user-

friendly description for the transaction type. Enter a
transaction-type ID if required (see Application and
Transaction-Type IDs: page 115 for details). If you want to
enable line-item attributes for the transaction type, enter a
line-item-ID query (see Line-Item-ID Query: page 116 for
details).

6. The Mandatory Attribute Query Entry page appears. Select
usage types and enter usages for each mandatory attribute,
for the new transaction type.

7. The Transaction Type Configuration Variables page appears.
This is the same functionality that the Update transaction-
type configuration-variable values radio button uses. See
Update Transaction-Type Configuration-Variable Values:
page 118 for details about how to use this functionality.

” To edit a transaction type:

To edit a transaction type’s configuration-variable values, use the
Update transaction-type configuration-variable values radio
button. See Update Transaction-Type Configuration-Variable
Values: page 118 for details. To edit a transaction type’s
mandatory-attribute usages, use the Admin tab. See Maintaining
Attributes: page 84 for details.

To edit a transaction type’s description, transaction-type ID, or
line-item-ID query:
1. Choose the Admin tab.
2. Select the Maintain transaction types radio button, and

choose the Continue button.
3. Select the description of the transaction type you want to

edit.
4. Check an item(s).
5. Choose the Submit Changes button.

93
Administration

” To delete a transaction type:

To delete a transaction type (including all of its attribute usages
and rules):
1. Choose the Admin tab.
2. Select the Maintain transaction types radio button, and

choose the Continue button.
3. Select the check box next to the transaction type you want to

delete, in the Delete column.
4. Choose the Delete Checked Items button.
5. Confirm the deletion when prompted.

Note: When you delete a transaction type, any rules that it
shares with other transaction types are not deleted (for those
transaction types).

” To view all exceptions for a transaction type:

You can check whether a particular transaction type is regularly
encountering a certain exception, or sequence of exceptions, by
viewing the transaction type’s exception log. The log displays all
uncleared exceptions for the transaction type. To view the log:
1. Choose the Admin tab.
2. Select the View all exceptions for a transaction type radio

button, and choose the Continue button.
3. Select a transaction type.
4. The transaction type’s exception log appears, with the

exceptions sorted in descending log-ID order. (This order
indicates the order in which the exceptions were logged.) If
you want to sort the exceptions by the names of the PL/SQL
package and routine that raised the exceptions, choose the
Sort by Package, Routine button.

” To view a transaction’s exception log:

A transaction’s exception log can help you identify the data
problem(s) that led AME to raise an exception, which typically
stops the transaction’s workflow in the application originating
the transaction. (See Runtime Exceptions: page 116 for details.)
To view a transaction’s exception log:
1. Choose the Admin tab.
2. Select the View a transaction’s exception log radio button,

and choose the Continue button.
3. Select a transaction type.
4. Enter the transaction ID.
5. The transaction’s exception log appears, with the exceptions

sorted in descending log-ID order. (This order indicates the
order in which the exceptions were logged.) If you want to
sort the exceptions by the names of the PL/SQL package and
routine that raised the exceptions, choose the Sort by
Package, Routine button.

94
Administration

” To view the Web interface’s exception log:

The Web interface should not raise exceptions during normal
AME operation. You may find it necessary to view the exception
log for AME’s Web interface (most likely while working with
Oracle Support). To view the log:
1. Choose the Admin tab.
2. Select the View the Web interface’s exception log radio

button, and choose the Continue button.
3. The Web interface’s exception log appears, with the

exceptions sorted in descending log-ID order. (This order
indicates the order in which the exceptions were logged.) If
you want to sort the exceptions by the names of the PL/SQL
package and routine that raised the exceptions, choose the
Sort by Package, Routine button.

” To clear a transaction type’s exception log:

In the unlikely event that a transaction type develops a problem
not due to data errors, you may need to clear the transaction
type’s entire exception log. Make sure that before you do so, you
solve the underlying problem and restart the workflows of all
transactions that appear in the exception log. Clearing an
exception log is irreversible.

To clear a transaction type’s exception log:
1. Choose the Admin tab.
2. Select the Clear a transaction type’s exception log radio

button, and choose the Continue button.
3. Select a transaction type.
4. Confirm the action when prompted.

” To clear a transaction’s exception log:

You should clear a transaction’s exception log only after solving
the (typically data) problem that gave rise to the exception. (See
Runtime Exceptions: page 116 for details.)

To clear a transaction’s exception log:
1. Choose the Admin tab.
2. Select the Clear a transaction’s exception log radio button,

and choose the Continue button.
3. Select a transaction type.
4. Enter the transaction’s ID.
5. Confirm the action when prompted.

” To clear the Web interface’s exception log:

In the unlikely event that the Web interface raises one or more
exceptions, you should clear the Web interface’s exception log
only after solving the problem that occasioned the exceptions,
probably with the help of Oracle Support. To clear the log:

95
Administration

1. Choose the Admin tab.
2. Select the Clear the Web interface’s exception log radio

button, and choose the Continue button.
3. Confirm the action when prompted.

97
How to Create a Custom Approval Type

Appendix A
How AME Processes
its Rules at Run Time

98
How to Create a Custom Approval Type

How AME Processes Rules at Run Time

An application that uses AME to manage its transactions’
approval processes communicates with AME through an
extensive API (see The AME API: page 163 for details).
Typically , the application follows these steps, for a given
transaction:
1. Request the identity of the transaction’s next approver from

AME.
2. If there is no next approver, the transaction’s approver

process is complete.
3. Otherwise, request approval from the next approver.
4. When the approver responds to the request for approval,

pass the response to AME (which stores the response), and
go to step 1.

Each time an application takes step 1 in the algorithm above,
AME recalculates the transaction’s approver list, to make sure
the approver list represents the current transaction attribute
values, the current approval rules, and the current organization
structure. The recalculation also accounts for various kinds of
responses from the most recent approver; in particular,
forwardings (with or without approval). AME follows these
steps, to (re)calculate a transaction’s approver list:
1. Fetch the values of the relevant transaction type’s active

attributes.
2. Evaluate the conditions in each active rule in the transaction

type’s set of rules to see which rules apply to the transaction.
(Recall that a rule is active if its start date precedes the value
of the EFFECTIVE_RULE_DATE mandatory attribute; and if
either the rule’s end date is null, or the end date follows the
value of EFFECTIVE_RULE_DATE. Also, recall that a rule
applies to a transaction if all of the rule’s conditions are true,
and that a condition is true if the value of the attribute on
which the condition is defined lies in the condition’s set of
allowed values.)

3. Sort the rules by rule type.
4. Apply the rules one type at a time.
5. Insert into the approver list any approvers that the

application owning the transaction has submitted to AME
for insertion. (AME keeps a record of such dynamic
approver insertions between calls to its API, so the inserted
approvers appear in the approver list each time AME
calculates the list. For details about AME’s dynamic-
approver-insertion capabilities, see The AME API: page
163).

6. Delete from the approver list any approvers that the
application owning the transaction has submitted to AME
for deletion, if the mandatory boolean attribute:
 ALLOW_DELETING_RULE_GENERATED_APPROVERS

99
How to Create a Custom Approval Type

is true. (AME keeps a record of such dynamic approver
deletions between calls to its API, so the deleted approvers
are removed from the approver list each time AME
calculates the list. For details about AME’s dynamic-
approver-deletion capabilities, see The AME API: page 163.)

7. Compare the current approver list with AME’s approver-
status history to identify the first approver on the current list
that has not approved the transaction. If such an approver
exists, return this approver’s identity to the requesting
application. Otherwise, return null to the requesting
application to indicate that the transaction’s approval
process is complete.

The fourth step of the above algorithm itself represents another
algorithm. How AME Sorts Rules at Run Time: page 134
summarizes how AME sorts rules by type and applies them one
type at a time, in the following order:
1. exceptions and list-creation rules not suppressed by the

exceptions
2. list-modification rules
3. substitution rules
4. pre-approval rules
5. post-approval rules.

Again, the first step represents yet another algorithm:
1. Sort the (list-creation and exception) rules by their approval

types.
2. For each approval type:

A. If the value of the mandatory boolean attribute:
 ALLOW_REQUESTOR_APPROVAL

is true, have the approval type’s handler check whether the
requestor has signing authority for this transaction. If so,
continue to the next approval type.
B. Get the identity of the next approver from the approval
type’s handler, and add that approver to the end of the
approver list.
C. If the latest approver has already responded to a request
for approval of the current transaction by forwarding the
request to another approver, add the forwardee to the end of
the approver list.
D. Have the approval type’s handler check whether the
latest approver has signing authority for this transaction. If
so, continue to the next approval type. Otherwise, go to step
B.

Each time AME communicates with an approval type’s handler,
it passes the handler the set of approval parameters of the rules
of the current approval type that apply to the transaction being
processed. The handler uses the parameters to decide where to
start and end the chain of authority for the current approval
type.

100
How to Create a Custom Approval Type

AME processes list-modification, substitution, pre-approval, and
post-approval rules in much the same way that is processes list-
creation and exception rules. In each case, AME sorts the rules by
approval type, and processes all rules of a given approval type
together. The appropriate approval type’s handler performs each
of the approvals required by the rules using that type.

101
How to Create a Custom Approval Type

Appendix B
How To Create A
Custom Approval
Type

102
How to Create a Custom Approval Type

How to Create a Custom Approval Type

There are four steps involved in creating a custom approval type:
1. Code a handler PL/SQL package or procedure for the

approval type, and give the APPS account execute privileges
on it.

2. Create the approval type using the Approvals tab.
3. Create approvals for the new approval type.
4. Test the approval type.

This appendix contains detailed instructions for the first two
steps. See Adding Approvals to an Approval Type: page 103 for
instructions regarding step 3.

What do I Need to Know Before I Start?

Categories of Approval Types

There are three different kinds of approval-type handlers: list-
creation (authority) handlers, list-modification handlers, and
approval-group handlers. AME has six rule types. Each type can
only use a certain category of approval type:

Table 1: Categories of Approval Types
Rule Type Category of Approval Type
list creation (authority) list creation (authority)
Exception list creation (authority)
list modification list modification
Substitution list modification
pre-authority-list approval group approval group
post-authority-list approval group approval group

Every approval type is implemented as a PL/SQL procedure or
package handler (depending on the approval type’s category).
The rest of this section specifies the syntax and functionality
requirements that AME imposes on each category of approval-
type handler.

When to Write an Approval-Type Handler

You should create a custom list-creation handler if none of the
standard AME approval types (and their handlers) represents
the approval-authority hierarchy that your organization wants to
implement. (This is the most likely reason to write a custom
handler.) You should create a custom list-modification handler if
none of the standard AME list-modification handlers lets you
modify authority-based approval lists according to your

103
How to Create a Custom Approval Type

organization’s business rules. Finally, you should write a custom
approval-group handler if your organization wants to include
nonstandard approval-group functionality in its approval
processes—for example, selecting a random subset (of fixed size)
of an approval group to pre- or post-approve a transaction, or
implementing approval groups with hierarchical structure.

List-Creation-Handler Efficiency

AME’s engine makes a number of calls to a list-creation handler
for each transaction requiring the corresponding approval type.
If the number of such transactions processed by AME daily is at
all significant, you should be very careful to design and code
your handler with efficiency as your foremost concern. This
document describes transaction- and handler-state-maintenance
mechanisms that a handler can sometimes use to improve
efficiency by up to an order of magnitude. Make sure you
understand whether, why, and how to maintain state in your
handler code for the sake of efficiency.

Caution

AME’s fundamental architectural principle is to encode in
approval rules all decisions about the general structure of a
transaction’s approval process. When you write an AME
approval-type handler, you have the ability to violate that
principle by coding such decisions into the handler. You do your
organization a disservice when you “hard code” such decisions,
because they then become invisible to the business people whose
responsibility is to define the business rules that determine
transactions’ approval processes.

Attention: ?Please make sure your handlers only
translate AME rules’ general structural requirements
into specific person and/or user IDs.

Referencing Engine Package Variables

Handler code may have occasion to reference any of the
following ame_engine package (global) variables:

Table 2: Engine Package Variables

Variable Data Type Description
tempAmeApplicationId integer internal unique identifier for a transaction

type; stored in
ame_calling_apps.application_id

tempFndApplicationId integer fnd_application.application_id value of
application that owns the current
transaction; value of applicationIdIn input
argument in ame_api routines

tempTransactionId varchar2(50) unique identifier for a transaction; value
of transactionIdIn input argument in

104
How to Create a Custom Approval Type

ame_api routines
tempTransactionTypeId varchar2(50) possibly null transaction-type identifier;

value of transactionTypeIn input
argument in ame_api routines;
combination of an FND application ID
and a transaction-type ID corresponds to a
unique AME application ID in
ame_calling_apps

tempApproverList ame_util.approversTable approver list for current transaction;
modified directly by list-modification and
approval-group handlers, but not by
authority handlers; kept compact

The global variables are public (declared in the ame_engine
package header) to allow handlers and other runtime code to
access the variables directly, which avoids the overhead that
would otherwise be associated with accessing the variables via
wrapper routines. This means you must exercise caution in
referencing the global variables.

The values of the first four variables in Table 2 are set before the
engine calls a handler. A handler should only read them, and
never modify them.

Warning: ?Modifying these values will result in engine
exceptions at run time.

The engine builds a transaction’s approver list in
tempApproverList. Authority handlers must not modify the
variable directly (the engine does that for them), though they
may read it to determine who is currently in the list. List-
modification and approval-group handlers must modify the
variable directly. It is critical that tempApproverList be kept
compact, meaning that its indexes start at one and ascend the
positive integers without skipping any. So, if a handler needs to
delete an approver in the list, it must call
ame_engine.compactApproverList immediately after the
deletion, to compact the list.

Warning: ?Failure to compact tempApproverList after
deleting an approver will result in engine exceptions at
run time.

Fetching Required Attributes’ Values at Run Time

A handler procedure may need to know the values of certain
transaction-specific decision variables, to make the decisions that
this document requires of them. For example, the hypothetical
ame_military_rank_handler.getFirstApprover procedure
discussed under Authority Handlers: page 147 might need to
use the person ID of a transaction’s requestor to fetch the user ID
of the requestor’s commanding officer, in order to return the
commanding officer’s user ID.

105
How to Create a Custom Approval Type

Whenever practical, such decision variables should be
represented within AME as attributes. Then, when you create the
approval type, AME will prompt you to select the attributes that
your new approval type requires. Thereafter AME will require
all applications using your approval type to first provide AME
with usages for these attributes, before the applications can use
your approval type in their rules. This approach makes it
possible for several transaction types to share your handler
safely.

To fetch an attribute’s value, a handler must call either the
ame_engine function getAttributeValueByName (for single-
valued attribute types) or the ame_engine procedure
getAttributeValuesByName (for currency attributes). Attribute
names (in the attributeNameIn argument) are always in upper
case.

Identifying Approvers

There are two ways to identify an approver in AME: as a user
account (an fnd_user.user_id value) or as a person (a
per_all_people_f.person_id value). Every input or output
argument to a handler procedure that identifies an approver is of
the (possibly serialized) type ame_util.approverRecord, which
has user_id and person_id fields. Your handler procedures must
make sure that at least one of these fields is non-null in all of the
output arguments.

If your handler can only process one type of ID, and it receives
an input argument containing only the other type of ID, your
handler should call one of the ame_engine conversion routines
getPersonId and getUserId (as appropriate) to convert the ID to
the other type. The getPersonId function returns the (possibly
null) fnd_user.employee_id value corresponding to the user_id
userIdIn, or null if it finds no rows with user_id value userIdIn.
The getUserIds procedure fetches the fnd_user.user_id values of
all rows having employee_id value personIdIn, and returns the
user_id values in userIdsOut. If getUserIds finds no matching
rows, it returns ame_util.emptyIdList (which is just an empty
PL/SQL table). If your code calls getUserIds, it should use the
user_id in the first row of userIdsOut, unless your code includes
logic to sort through the user_ids in userIdsOut and determine
which of them to use, according to rules specific to your
approval type.

If your handler requires one type of ID, it receives only the other
type of ID as an input argument, and the appropriate
ame_engine conversion routine fails to convert the ID to the
other type, your code should raise an exception according to the
instructions under Raising Exceptions: page 145.

106
How to Create a Custom Approval Type

(De)serializing Handler Arguments

The AME engine uses dynamic PL/SQL to execute your handler
routines at run time. Dynamic PL/SQL does not permit the use
of compound data types (records or tables of records) as bind
variables for a procedure’s arguments. So AME’s ame_util
package includes conversion routines that serialize (convert from
another data type to a string) and deserialize (convert the string
back to the data type) various ame_util data types used by the
engine. Where the AME engine needs to pass a compound data
type to a handler routine, or receive one from a handler routine,
this document’s procedure specifications identify the serialized
arguments. Always use the appropriate ame_util
(de)serialization routines to (de)serialize these arguments’
values.

The ame_util serialization routines use the character constant
ame_util.fieldDelimiter (currently a comma) as a field delimiter
within records, and the character constant
ame_util.RecordDelimiter (currently a semicolon) as a record
delimiter within tables. A parameter list’s native data type is an
ame_util.parameterList, which is a table of varchar2; so a
serialized parameter list uses ame_util.fieldDelimiter as a field
delimiter. Therefore, your approvals’ parameters must not
contain ame_util.fieldDelimiter. The AME user interface will
display an error message if you try to submit an approval
parameter containing an ame_util.fieldDelimiter (a semicolon).

The serialization routines can accept and return strings up to the
length of the data type ame_util. longestStringType, so make
sure your handlers declare local variables of this type for
serialized arguments.

ame_util (De)serialization Routines
serializeApproversTable

serializeIdList

serializeParametersTable

serializeStringList

deserializeApproversTable

deserializeIdList

deserializeParametersTable

deserializeStringList

Setting Values in approversTable Output Arguments

Various input and output arguments are serialized variables of
type ame_util.approverRecord or ame_util.approversTable. The
former is declared as follows:

type approverRecord is record(

 user_id integer,

 person_id integer,

 first_name varchar2(20),

 last_name varchar2(40),

 api_insertion varchar2(1),

107
How to Create a Custom Approval Type

 authority varchar2(1),

 approval_status varchar2(50));

The latter is a PL/SQL table of ame_util.approverRecord records.
See The AME API: page - 159 for details about the record’s
allowed values and semantics.

When a handler creates an approverRecord, it should fetch the
approver’s user_id, person_id, first_name, and last_name values
from fnd_user and per_all_people_f, and insert them into the
record. Your code can call ame_engine.getApproverNames to
fetch the first and last names. This procedure may return null in
any of its output arguments, depending on which values are
non-null in the fnd_user and per_all_people_f tables. The
handler should set approval_status to null. How your handler
sets the api_insertion and authority members is up to you. In a
list-creation handler, you should set api_insertion to
ame_util.AMEGenerated and authority to
ame_util.authorityApprover as a rule. In a list-modification
handler, you should carry the api_insertion and authority values
from an approver found in oldApproversIn to your insertion. See
The AME API: page - 159 for details regarding how the AME
engine treats api_insertion and authority values.

Raising Exceptions

Your handler code should always include at least a handler for
the others exception, and that exception handler should look like
this:

exception

 when others then

 ame_util.runtimeException(packageNameIn => ’[package

name]’,

 routineNameIn => ’[routine

name]’,

 exceptionNumberIn => sqlcode,

 exceptionStringIn => sqlerrm),

 transactionIdIn =>

 ame_engine.tempTransactionID

 applicationIdIn =>

ame_engine.tempAmeApplicationID,

 localErrorIn => false);

 raise;

If you want to raise an application-specific exception, your code
should catch the exception, handle it, and re-raise it, like this:

errorCode integer;

errorMessage varchar2(100);

begin

/* etc. */

exception

 when [application-specific exception] then

 errorCode := -20001;

 errorMessage := ’[your error message]’;

 ame_util.runtimeException(packageNameIn => ’[package

name]’,

108
How to Create a Custom Approval Type

 routineNameIn => ’[routine

name]’,

 exceptionNumberIn =>

errorCode,

 exceptionStringIn =>

sqlerrm),

 transactionIdIn =>

 ame_engine.tempTransactionID

 applicationIdIn =>

ame_engine.tempAmeApplicationID,

 localErrorIn => false);

raise_application_error(errorCode,

 errorMessage);

If your code catches specific exceptions that prevent it from
returning appropriate values to the AME engine, it should re-
raise the exceptions, as does the sample when-others exception
handler above.

Defining Approval Parameters

The interpretation of an approval’s parameter varies with the
handler category. The parameters of an authority approval type’s
approvals typically represent requirements for certain levels of
authority, and the handler typically generates a chain of
authority satisfying the most stringent such requirement. The
parameters of list-modification approvals indicate specific types
of list modifications, for example an alteration of the list to
represent non-uniformities in an organization’s signing-authority
rules. The parameters of approval-group approval types’
approvals typically identify a given approval group, and
possibly indicate how to select members of the group for
insertion into the approver list, or where in the list to insert them.

Ultimately, you must define the syntax and semantics rules for
the parameters of your handler’s approvals. Make sure you
define these rules in a way that lets your handler code sort,
aggregate, and interpret a set of parameters efficiently, because
the AME engine always passes a handler all of the parameter’s of
the approvals of a given approval type as a set.

How do I Code an Authority Handler?

As the name suggests, a list-creation or authority handler identifies
for AME the approvers within an authority hierarchy that
constitute a transaction’s chain of authority. Typical chains of
authority are based on the approval authority (job level),
position, or role of the transaction’s requestor (submitter). This
document uses the notion of a military chain of command as an
example.

109
How to Create a Custom Approval Type

Sample handler code

The ame_absolute_job_level package is ideal sample code for
authority handlers. You may wish to review this code before
reading the remainder of this section.

Package-Naming Conventions

Each authority approval type must have its own PL/SQL
package, compiled into the apps schema (or at least executable
by the apps account). The package’s name should have the
syntax:

ame_authorityType_handler

For example, if you wanted to create an approval type based on
military rank, you might name the approval type’s handler
package ’ame_military_rank_handler’.

Package Specification

Each authority handler package’s specification must be the same,
except for the package’s name. Here is the syntax for the
specification’s create statement:

create or replace package ame_authorityType_handler as

 procedure getFirstApprover(parametersIn in varchar2,

 firstApproverOut out varchar2);

 procedure getNextApprover(approverIn in varchar2,

 parametersIn in varchar2,

 nextApproverOut out varchar2);

 procedure hasFinalAuthority(approverIn in varchar2,

 parametersIn in varchar2,

 hasFinalAuthorityYNOut out

 varchar2);

 procedure getSurrogate(approverIn in varchar2,

 parametersIn in varchar2,

 surrogateOut out varchar2);

end ame_authorityType_handler;

Replace authorityType with a short name for the type of authority
implemented by the handler.

Common Arguments

All four procedures in the handler package’s specification have
the common argument parametersIn. This is a serialized
ame_util.parametersTable of approval parameters in no
particular order, one for each approval of each rule applying to
the transaction. Hence the same approval’s parameter may
appear several times in the parameter list. The parameters
represent—in no particular order—the authority requirements of
the AME rules that apply to the transaction.

110
How to Create a Custom Approval Type

getFirstApprover Functionality

The getFirstApprover procedure must return in firstApproverOut
a serialized ame_util.record, which should identify the first
approver in the default chain of authority for the transaction
with ID ame_engine.tempTransactionId. Continuing the military
example, getFirstApprover would return the user or person ID of
the transaction requestor’s commanding officer.

getNextApprover Functionality

The getNextApprover procedure must return in nextApproverOut
a serialized ame_util.record, which should identify the approver
who follows in the chain of authority the approver identified by
the serialized ame_util.approverRecord approverIn, given the
values of the parameters in parametersIn. In the military example,
getNextApprover would return the user or person ID of the
commanding officer of the approver identified by approverIn.

hasFinalAuthority Functionality

The hasFinalAuthority procedure returns ame_util.booleanTrue
in hasFinalAuthorityYNOut if the approver identified by the
serialized ame_util.approverRecord approverIn has final
authority for the transaction with ID
ame_engine.tempTransactionId, given the values of the approval
parameters in parametersIn—and returns ame_util.booleanFalse
otherwise. So hasFinalAuthority must implement the following
algorithm:
1. Identify the highest authority level required by the approval

parameters in parametersIn.
2. Fetch the authority level of the approver identified by

approverIn.
3. If the authority level in step 2 at least matches the authority

level in step 1, return ame_util.booleanTrue.
4. Return ame_util.booleanFalse.

In the military example, each parameter would represent a rank,
and parametersIn might consist of the unordered list {captain,
general, major}. Suppose approverIn represented a lieutenant.
Then step 1 in the above algorithm would determine that the
transaction required a general’s approval. Step 2 would
determine that the current approver was a lieutenant. The
comparison in step 3 would fail, and the procedure would return
ame_util.booleanFalse in step 4.

getSurrogate Functionality

The getSurrogate procedure must return in surrogateOut a
serialized ame_util.approverRecord that identifies the approver
who should approve a given transaction instead of the
presumably unresponsive approver identified by the serialized

111
How to Create a Custom Approval Type

ame_util.approverRecord approverIn. When an application calls
ame_api.updateApprovalStatus or
ame_api.updateApprovalStatus to update the approval_status
value of a given approver to ame_util.noResponseStatus, the
AME engine calls the appropriate handler’s getSurrogate
procedure to identify a surrogate for the unresponsive approver.
Often the surrogate will merely be the unresponsive approver’s
superior in the appropriate hierarchy, and will already be the
next approver; and in this case, the engine will not modify the
chain of authority. Otherwise, it will insert the surrogate into the
chain of authority right after the unresponsive approver.

How do I Code a List-Modification Handler?

AME uses list-modification handlers to modify the list of
approvers generated by one or more authority handlers. The
three common types of list modifications are authority
reductions, authority increases, and substitutions. AME provides
default approval types for all three. While AME’s architecture
makes it possible for you to create others, it is more likely that
you can meet your organization’s business requirements merely
by creating one or more specific approvals within the existing,
default approval types.

Sample handler code

The ame_lm_handlers package is ideal sample code for list-
modification handlers.

Procedure Syntax

A list-modification handler must be a PL/SQL procedure having
a create statement with the following syntax:

create procedure

ame_modType_lm_handler(targetApproverIdsIn in varchar2,

 approverTypesIn in varchar2,

 parametersIn in varchar2);

targetApproverIdsIn is an ame_util.idList. approverTypesIn is a
serialized ame_util.stringList. parametersIn is a serialized
ame_util.parametersTable. The procedure can be a standalone
procedure, but Oracle encourages you to code all of your list-
modification handlers into a single package named
’ame_custom_lm_handlers’. If you do, you can give the
procedure a name with the syntax:

 modType_handler

In this case, you should enter the package and procedure name
in package.procedure format, when you use the Approvals tab to
register the handler. In either case, modType represents the type
of list modification that the handler implements. For example, a
standalone list-modification handler that implements standard

112
How to Create a Custom Approval Type

delegations within the military chain of command might be
named ’ame_std_del_lm_handler’, and the packaged version
might be named ’ame_custom_lm_handlers.std_del_handler’.

Functionality

A list-modification handler modifies the list of approvers in
ame_engine.tempApproverList. Each list-modification or
substitution rule that has an approval of the type that uses the
handler procedure passes one row in each of targetApproverIdsIn,
approverTypesIn, and parametersIn. (The values for a given rule all
have the same index in each argument.) The handler procedure
should loop through these arguments, applying the following
rules to each row in them (indexed by, say, i):
1. If approverTypesIn(i) = ’any_approver_user_id’ (resp.

’any_approver_person_id’) and targetApproverIdsIn(i) is a
user_id (resp. person_id) in oldApproversIn, modify
ame_engine.tempApproverList by performing the approval
represented by the value of parametersIn(i).

2. If approverTypesIn(i) = ’final_approver_user_id’ (resp.
’final_approver_person_id’) and targetApproverIdsIn(i) is the
last user_id (resp. person_id) in oldApproversIn, modify
ame_engine.tempApproverList by performing the approval
represented by the value of parametersIn(i).

Typically the value of parametersIn(i) determines what type of
list modification the procedure should effect when one of the two
rules above applies. For example, you might create a special list-
modification handler that implemented a variety of standard
military delegations (to an officer’s executive officer or
administrative assistant, for example), with an approval for each
delegation. (The parameters for the example approvals might be
’XO’ and ’AA’.) Your list-modification handler can also make its
behavior vary with the values of the api_insertion and authority
fields of the rows in ame_engine.tempApproverList.

How do I Code an Approval-Group Handler?

AME uses approval-group handlers to augment the list of
approvers generated by one or more authority handlers and
possibly modified by one or more list-modification handlers. The
default approval-group handler has procedures for inserting an
approval group’s members before and after the (possibly
modified) authority list. You might want to code a custom
approval-group handler to pre- or post-insert a proper subset of
an approval group, or to insert the approval group somewhere
within the authority list.

113
How to Create a Custom Approval Type

Sample handler code

The ame_ag_handlers package is ideal sample code for approval-
group handlers.

Procedure Syntax

An approval-group handler must be a PL/SQL procedure
having a create statement with the following syntax:

create procedure ame_aGType_ag_handler(parametersIn in

 varchar2);

parametersIn is a serialized ame_util.parametersTable. The
procedure can be a standalone procedure, but Oracle encourages
you to code all of your approval-group handlers into a single
package named ’ame_custom_ag_handlers’. If you do, you
should give the procedure a name with the syntax:

aGType_handler

and you should enter the package and procedure name in
package.procedure format, when you use the Approvals tab to
register the handler. In either case, aGType represents the type of
approval-group approval that the handler implements. For
example, a standalone approval-group handler that implements
pre-authority-list clerical reviews might be named
’ame_clerical_ag_handler’, and the packaged version might be
named ’ame_custom_ag_handlers.clerical_handler’.

Functionality

An approval-group handler modifies the approver list in
ame_engine.tempApproverList. Each approval-group rule that has
an approval of the type that uses a handler passes one row to the
handler in parametersIn. The handler should loop through the
parameters, performing the approval-group insertions
represented by them. Typically a parameter value in parametersIn
identifies a specific approval group, and optionally determines
how the handler procedure uses that group to augment the list of
approvers (for example, what sort of subset of the group’s
members to insert, or where in the list order to do the insertion).

How do I Maintain Handler State?

Handler state is useful when a handler needs to avoid repeating
a costly computation, typically when it would otherwise
repeatedly calculate a sequence of values, where each value
depends on the previous value. Handler states can be specific to
the calculation of a transaction’s chain of authority. This case is
per-transaction handler state. Handler states can also be
independent of the particular transaction; this is per-handler
handler state. The ame_engine package provides a programming

114
How to Create a Custom Approval Type

interface for maintaining both kinds of handler state. The
programming interface lets a handler maintain one per-
transaction handler state per transaction (naturally), and
arbitrarily many kinds of handler state per handler. State values
are case-sensitive, so for example the state ’first approver’ differs
from the state ’First Approver’.

The typical motivation for handler states is avoiding the
necessity of walking up a chain of authority to re-establish a
transaction’s approval state. Without a means of maintaining
handler state, the handler would have to start at the beginning of
the chain each time it got called, in order to determine how many
places in the chain it had already ascended. If the chain were five
approvers long, and no redundant API calls occurred, the
handler would ascend the chain as follows:

 A

 A B

 A B C

 A B C D

 A B C D E

 A B C D E null

That’s 21 steps. Storing state, the behavior will instead be:

 A setState

 getState B setState

 getState C setState

 getState D setState

 getState E setState

 getState null clearState

That’s six steps.

Handler-State Routines

Six ame_engine routines provide the programming interface that
handlers should use to maintain per-transaction and per-handler
state. The per-transaction routines are getHandlerTransState,
clearHandlerTransState, and setHandlerTransState. The per-
handler routines are getHandlerState, clearHandlerState, and
setHandlerState.

115
How to Create a Custom Approval Type

Here are some notes about the data types and values for these
routines’ arguments:
1. handlerNameIn is the name of the actual handler package, is

case-insensitive, and can be at most 50 characters in length. It
is a required argument in all cases but one
(clearHandlerTransState).

2. parameterIn is a varchar2(100). It is absent in the per-
transaction interface, and optional in the per-handler
interface. If a handler wishes to maintain only one kind of
transaction-independent handler state, parameterIn should
always be null. Otherwise, parameterIn should have a
unique (case-sensitive) value corresponding to each kind of
transaction-independent handler state.

3. stateIn is a varchar2(100). It defaults to null in both
interfaces. This variable’s value represents the actual state.

Here are brief descriptions of each routine’s functionality:

function getHandlerTransState(handlerNameIn in varchar2)

return varchar2;

Returns the per-transaction handler state for the current
transaction. If no state exists, returns null.

procedure clearHandlerTransState(handlerNameIn in varchar2

default null);

If handlerNameIn is null, clears all per-transaction handler states;
otherwise, clears the transaction’s handler state only for the
handler named handlerNameIn.

procedure setHandlerTransState(handlerNameIn in varchar2,

 stateIn in varchar2 default

null);

Sets (creates or updates) the per-transaction handler state of the
current transaction to stateIn, for the handler named
handlerNameIn.

function getHandlerState(handlerNameIn in varchar2,

 parameterIn in varchar2 default

null)

 return varchar2;

Returns the per-handler handler state for the handler named
handlerNameIn for the current transaction type and the (possibly
null) parameter parameterIn. If no state exists, returns null.

procedure clearHandlerState(handlerNameIn in varchar2,

 parameterIn in varchar2 default

null);

Clears all handler states for the handler named handlerNameIn
and the (possibly null) parameter value parameterIn.

procedure setHandlerState(handlerNameIn in varchar2,

 parameterIn in varchar2 default

null,

 stateIn in varchar2 default null);

116
How to Create a Custom Approval Type

Sets (creates or updates) the per-handler handler state for the
handler named handlerNameIn and the (possibly null) parameter
parameterIn, for the current transaction type.

Typical Uses of Per-Transaction Handler State

The most typical use of handler state is avoiding repeatedly
ascending part or all of a chain of authority, either to find the
transaction’s current location in the chain, or to identify the end
of the chain. The first case occurs when knowing the person ID
or user ID of an approver is insufficient to determine a
transaction’s current location in the chain of authority. In this
case, the transaction state should be whatever data is minimally
sufficient to calculate the next approver in the chain of authority.
The getFirstApprover procedure sets this state, the
getNextApprover procedure fetches and then updates this state,
and the hasFinalAuthority procedure fetches this state, and also
clears it upon returning ame_util.booleanTrue. “Implementation
details” provides an example of the second case, where it is
computationally costly to calculate the end of a chain of
authority.

Typical Uses of Per-Handler Handler State

Per-handler state is generally useful when a handler needs to
bookmark its location in a process that is not specific to a
transaction. For example, in the position hierarchy, it is possible
for several individuals to occupy a single position. The position-
hierarchy handler’s getFirstApprover and getNextApprover
routines could cycle through these individuals by fetching and
updating a handler state identified by a parameter having the
syntax:

most_recent_position_approver:position ID

This state would presumably not be associated with a particular
calling transaction type, so calls to the handler-state routines for
this handler state would set applicationIdIn to null. A plausible
parameterIn value would be ’most_recent_position_approver:99’,
meaning ”The state value in this row is the person ID of the
approver most recently selected for the position with position ID
99.” If the state value is ’123’, the handler state would be
interpreted as, ”The ame_position_hierarchy_handler most
recently selected person ID 123 from position ID 99.”

Per-handler state can also be used to maintain multiple
transaction-specific states. In this case, the parameter value
would identify both the type of state and the transaction ID.

Handler-State Aging

AME includes a procedure that runs nightly, deleting from
AME’s per-handler-state table all data older than the default
value of the purgeFrequency configuration variable (see

117
How to Create a Custom Approval Type

purgeFrequency: page 114 for details). It is not possible to avoid
this purging, because to do so would make it possible for
handler-state data to accrue without limit. Therefore, handlers
should in general avoid the assumption that a handler state will
always exist, and should account for the possibility of a null state
when attempting to fetch a state.

For example, suppose that it is computationally expensive for an
authority handler to calculate from its parameter list which
parameter represents the most stringent approval requirement.
For example, suppose the parameter list names some military
ranks, say:

Lieutenant

Sergeant

Executive officer

Colonel

The hasFinalAuthority routine might need to know which of
these is the highest rank, in order to determine whether the rank
of the approver identified by approverIn matches or exceeds the
authority of the highest rank. (Perhaps an executive officer can
occur at different levels of the hierarchy, depending on which
chain of authority in the hierarchy one is ascending, that is,
depending on the transaction requestor’s location in the
hierarchy.)

In such a case, the expensive computation would be to ascend
the chain of authority starting at the requestor until the last rank
named in the parameter list is named, and concluding that this
last rank is the highest. A natural use of per-handler transaction
state would be to store this value as a per-transaction handler
state. (If the handler already stored some other value as a per-
transaction handler state, it could instead store the state as a per-
handler state having a parameter value that identified the
transaction.) To avoid assuming that the state already exists, the
hasFinalAuthority code would use the following logic:
1. Fetch the highest-required-rank transaction state.
2. If the state is null, calculate it the expensive way, and then

store it.
3. If the rank of the approver identified by approverIn at least

matches the highest required rank (fetched in step 1 or
calculated in step 2), return ame_util.booleanTrue.

4. Return ame_util.booleanFalse.

118
How to Create a Custom Approval Type

Creating an Approval Type

You must have the Application Administrator responsibility to
create an approval type.

” To create an approval type:
1. Choose the Approvals tab.
2. Choose the Add Approval Type button.
3. Enter a name for the approval type, the handler’s name, and

a user-friendly description of the approval type. When the
approval type is for list-creation and exception rules, the
description should refer to the hierarchy that the approval
type ascends, or the principle by which the handler decides
how high in the hierarchy to ascend.

4. Select any required attributes from the list of available
required attributes. (You can select several attributes by
holding down the Ctrl key while you select each attribute.)

5. Select the check boxes next to the rule types that can use the
approval type. (Typically, if you select either of the first two
rule types, you should select the other as well.)

6. Choose the Create Approval Type button.
The new approval type now appears on the list of approval
types.

119
The AME API

Appendix C
The AME API

120
The AME API

The AME API

This appendix documents AME’s application programming
interface (API). You should read this appendix only if you need
to create a custom approval type, or customize (generally a
custom or third-party) application to use AME to manage the
application’s approvals.

Types of Approvers

In AME, an approver list has three sub-lists. They are (in order of
occurrence):

• Pre-approvers
• Authority approvers
• Post-approvers

Below are explanations of each type of approver.

Authority Approvers

Authority approvers are either members of a chain of authority
within an organizational hierarchy, or are ad hoc approvers.

Chain-of-Authority Approvers

A chain-of-authority approver is an approver who is part of a chain
of authority. Generally such an authority approver appears in
the approver list because the approval rules that apply to the
relevant transaction require the approver. However, the
approver may also be a forwardee or a surrogate.

Ad hoc Authority Approvers

An ad hoc authority approver is dynamically inserted into a chain
of authority by the application that owns the relevant
transaction, after the chain of authority is complete.

Pre-Approvers

A pre-approver is an approver that precedes all chain-of-authority
approvers in an approver list.

Post-Approvers

A post-approver is an approver that follows all chain-of-authority
approvers in an approver list.

121
The AME API

Data Types

Most of the AME data types you need to be aware of are
declared in the package-header file ameoutil.pkh for the ame_util
PL/SQL package. The AME API uses a few of these data types
frequently. This section explains these commonly used types.

The ame_util.approverRecord Type

The AME API uses the ame_util.approverRecord record to
represent an approver in an approver list. This data type has the
declaration,

type approverRecord is record(

 user_id integer,

 person_id integer,

 first_name varchar2(20),

 last_name varchar2(40),

 api_insertion varchar2(1),

 authority varchar2(1),

 approval_status varchar2(50));

Below are explanations of the allowed values and semantics for
each field in this type.

The user_id Field

The user_id field may contain any valid value from the
fnd_user.user_id column. It may also contain the constant
ame_util.multipleUserIds. This constant means that AME found
several user_id values corresponding to the person_id value in
the approverRecord. Finally, the user_id field may be null.

The person_id Field

The person_id field may contain any valid value from the
per_all_people_f.person_id column, or it may be null.

The api_insertion Field

The api_insertion field may contain any of three constants. Here
are brief descriptions of the constants’ semantics:

ame_util.apiAuthorityInsertion represents an approver that has
been inserted into the chain of authority, so that there is a
discontinuity (jump) in the chain at this approver, in the sense
that this approver is generally not above the chain of authority’s
previous approver in the relevant hierarchy. This api_insertion
value results from the previous approver’s forwarding a request
for approval to the inserted approver.

ame_util.apiInsertion represents an ad hoc approver, that is, an
approver who is not part of a chain of authority. If such an
approver occurs between members of a chain of authority, the

122
The AME API

chain nevertheless continues past the ad hoc approver to the next
approver in the relevant hierarchy.

ame_util.oamGenerated represents an approver required by the
approval rules that apply to the relevant transaction.

The authority Field

The authority field may contain any of three constants. Here are
brief descriptions of the constants’ semantics:

ame_util.preApprover identifies a pre-approver.

ame_util.authorityApprover identifies an authority approver.

ame_util.postApprover identifies a post-approver.

The approval_status Field

The approval_status field may contain any of seven constants.
Here are brief descriptions of the constants’ semantics:

ame_util.approvedStatus means the approver approved the
transaction without forwarding the request for approval.

ame_util.approveAndForwardStatus means the approver
approved the transaction and also forwarded the request for
approval.

ame_util.clearExceptionsStatus should be passed to
ame_api.updateApprovalStatus or
ame_api.updateApprovalStatus2 to clear a transaction’s
exception log from the application that owns the transaction, for
example when the transaction’s workflow is restarted.

ame_util.exceptionStatus is returned by ame_api routines when
AME has raised an exception in the process of calculating a
transaction’s approver list. In this case, the application that owns
the transaction may wish to stop the transaction’s workflow. See
Runtime Exceptions: page 116 for details.

ame_util.forwardStatus means the approver forwarded the
request for approval of the relevant transaction, without
approving the transaction.

ame_util.noResponseStatus means the application that owns the
transaction requested the approver’s approval of the transaction,
and the approver has not responded to the request in a timely
fashion. (AME responds to this status by inserting the approver’s
surrogate into the approver list, after the approver.)

ame_util.rejectStatus means the approver rejected the
transaction.

123
The AME API

A null approval_status means the approver has not yet
responded to any request for approval of the transaction
(possibly because the application that owns the transaction has
not yet sent the approver such a request), but that the approver
still has time to respond to such a request.

In AME, a transaction is approved when every approver in the
transaction’s current approver list has one of the approval_status
values:

• ame_util.noResponseStatus
• ame_util.forwardStatus
• ame_util.approveAndForwardStatus
• ame_util.approveStatus

Note that the membership of a transaction’s current approver list
may change between calls to ame_api routines, depending on the
approval status of the previous approver list’s members. For
example, if an approver’s status gets updated to
noResponsStatus, the AME engine will add the approver’s
surrogate to the current list, the next time an ame_api routine is
called. This is one reason it is imperative that an application
always call ame_api.getAllApprovers each time it needs to work
with a transaction’s approver list, and ame_api.getNextApprover
each time it receives a response to a request for approval and
needs to send a notification to the next required approver in the
transaction’s approver list. (Changes in a transaction’s attribute
values, organizational data, and applicable AME approval rules
can also result in changes to the transaction’s current approver
list.)

The ame_util.approversTable Type

AME’s API represents approver lists as arguments of type
ame_util.approversTable. This data type is just a PL/SQL table
of ame_util.approverList records. The table is always indexed by
consecutive ascending integers starting at one.

The ame_util.insertionRecord Type

The getAvailableInsertions procedure uses the
ame_util.insertionRecord record to represent a possible dynamic
insertion. This data type has the declaration,

type insertionRecord is record(

 order_type varchar2(50),

 parameter stringType,

 api_insertion varchar2(1),

 authority varchar2(1),

 description varchar2(200));

Below are explanations of the allowed values and semantics for
each field in this type.

124
The AME API

The order_type and parameter Fields

The order field contains a string indicating the order relation that
AME uses to determine the insertion’s location in an
approverList, each time AME calculates the approver list. The
parameter field contains a value that indicates a specific instance
of the order relation. Here are brief explanations of each possible
value for the order_type field, with accompanying syntax and
semantics rules for the parameter field:

ame_util.absoluteOrder means the insertionRecord’s parameter
field should be interpreted as an absolute order number. For
example, if the approver should always be third in the list, the
order_type should have this value, and the parameter should be
’3’.

ame_util.afterApprover means the approver should always
follow the approver that it initially followed. In this case the
parameter field has the syntax:

{person_id,user_id}:n

where n is the person or user ID of the approver that the inserted
approver should follow. For example, ’person_id:123’ would
identify the approver to follow as the one with the person ID 123.

ame_util.beforeApprover means the approver should always
precede the approver that it initially preceded. In this case the
parameter field has the syntax:

{person_id,user_id}:n

where n is the person or user ID of the approver that the inserted
approver should precede. For example, ’person_id:123’ would
identify the approver to precede as the one with the person ID
123.

ame_util.firstAuthority means the approver should always be
the first chain-of-authority approver in each chain of authority.
In this case the parameter is not used.

ame_util.firstPostApprover means the approver should always
be the first post-approver. In this case the parameter is not used.

ame_util.firstPreApprover means the approver should always
be the first pre-approver. In this case the parameter is not used.

ame_util.lastPostApprover means the approver should always
be the last post-approver. In this case the parameter is not used.

ame_util.lastPreApprover means the approver should always be
the last pre-approver. In this case the parameter is not used.

125
The AME API

The api_insertion Field

This field has the same allowed values and semantics as the
api_insertion field of the ame_util.approverRecord data type. See
The api_insertion Field under The ame_util.approverRecord
Type: page 160 for details.

The authority Field

This field has the same allowed values and semantics as the
authority field of the ame_util.approverRecord data type. See
The authority Field under The ame_util.approverRecord Type:
page 160 for details.

The description Field

This field contains a user-friendly description of the possible
insertion represented by the insertionRecord.

The ame_util.insertionsTable Type

The ame_util.insertionsTable type is a PL/SQL table of
ame_util.insertionRecord records. The getAvailableInsertions
procedure uses an argument of this type to represent the set of
possible dynamic insertions at a given location in an approver list.
The table is always indexed by consecutive ascending integers
starting at one.

The ame_util.orderRecord Type

The getAvailableInsertions and getAvailableOrders procedures
use the ame_util.orderTypeRecord record to represent a possible
dynamic insertion’s order relation, for a given position in a given
transaction’s approver list. AME uses the order relation to
determine where in the approver list to insert the approver, each
time AME regenerates the relevant transaction’s approver list.
This data type has the declaration,

type orderRecord is record(

 order_type varchar2(50),

 parameter stringType,

 description varchar2(200));

The allowed values and semantics for each field in this type are
the same as those of the ame_util.insertionRecord Type. See The
ame_util.insertionRecord Type: page 162 for details.

The ame_util.ordersTable Type

The ame_util.ordersTable type is a PL/SQL table of
ame_util.orderRecord records. The getAvailableInsertions and
getAvailableOrders procedures use an argument of this type to
represent the set of possible order relations for a dynamic
insertion at a given location in a given transaction’s approver list.

126
The AME API

The table is always indexed by consecutive ascending integers
starting at one.

AME API Routines

Arguments

Many of AME’s API routines share certain arguments. Here are
brief descriptions of each:

approverIn always identifies the approver of interest within a
given transaction’s approver list.

applicationIdIn is the fnd_application.application_id value (or,
in the case of a third-party or custom application, pseudo-value)
of the application that owns the transaction identified by the
routine’s transactionIdIn argument.

transactionIdIn identifies the transaction of interest. Its value
must not contain white-space characters (space, tab, new-line, or
return characters), and must not be a negative integer (AME uses
negative integers internally to identify test transactions created
on the AME test tab).

transactionTypeIn is the transaction-type identifier that
distinguishes among an application’s transaction types. See How
AME Identifies Transaction Types: page 115 for details.

The remaining arguments used by AME’s API are generally self-
explanatory.

Formal and Functional Specifications

This section gives formal and functional specifications for each
public routine in AME’s PL/SQL API package, AME_API.

function validateApprover(approverIn in

ame_util.approverRecord)

 return boolean;

Returns true if the approver is a current (that is, validated)
person or user, otherwise false.

Typical use: to verify if a specific approver’s person ID or user ID
is valid. Note that AME always returns valid approvers, so it is
not necessary to validate approvers returned by AME. Instead,
an application may wish to call this function to validate inserted
approvers, before passing them to AME.

procedure clearAllApprovals(applicationIdIn in integer,

 transactionIdIn in varchar2,

 transactionTypeIn in varchar2 default

null);

127
The AME API

Deletes all approvers from a transaction’s approver list,
including inserted approvers.

Typical use: to restart a transaction’s approval process from
scratch, ignoring any approvals that have already occurred--if for
example a transaction was rejected, modified by the requestor,
and then restarted.

procedure clearDeletion(approverIn in

ame_util.approverRecord,

 applicationIdIn in integer,

 transactionIdIn in varchar2,

 transactionTypeIn in varchar2 default null);

Clears a deletion of an approver previously requested via the
deleteApprover or deleteApprovers API.

Typical use: Reverse a delete approver instruction

See also clearDeletions, deleteApprover, deleteApprovers.

procedure clearDeletions(applicationIdIn in integer,

 transactionIdIn in varchar2,

 transactionTypeIn in varchar2 default null);

The same as the clearDeletion API but in this instance clears
multiple deletions.

Typical use: Reverse multiple delete approver instructions

See also clearDeletion, deleteApprover, deleteApprovers.

procedure clearInsertion(approverIn in

ame_util.approverRecord,

 applicationIdIn in integer,

 transactionIdIn in varchar2,

 transactionTypeIn in varchar2 default null);

Clear the approver(s) inserted by calls to
ame_api.insertApprover, ame_api.setFirstAuthorityApprover. It
will also clear the approvers inserted as a result of forwarding.
This will NOT clear the approval statuses and the approver
deletions.

procedure clearInsertions(applicationIdIn in integer,

 transactionIdIn in varchar2,

128
The AME API

 transactionTypeIn in varchar2 default

null);

The same as the clearInsertion API but in this instance clears
multiple insertions.

procedure deleteApprover(applicationIdIn in integer,

 transactionIdIn in varchar2,

 approverIn in ame_util.approverRecord,

 transactionTypeIn in varchar2 default

null);

Deletes a single approver from a transaction’s approver list.
Note: This procedure should be called only after
getNextApprover or getAllApprovers has been called, for a
given transaction.

Typical use: To let an end user delete an approver that they
previously inserted dynamically (via the user interface of the
application that owns the transaction). Can also be used to
delete a rule-generated approver, if the mandatory boolean
attribute:

ALLOW_DELETING_RULE_GENERATED_APPROVERS

has the value ’true’. (Use this functionality with caution: it
essentially defeats the business rules stored in AME.)

See also deleteApprovers.

procedure deleteApprovers(applicationIdIn in integer,

 transactionIdIn in varchar2,

 approversIn in

ame_util.approversTable,

 transactionTypeIn in varchar2

default null);

Deletes a list of approvers from a transaction’s approver list.

This procedure is a wrapper for deleteApprover. See
deleteApprover for details.

procedure getAdminApprover(

 applicationIdIn in integer default null,

 transactionTypeIn in varchar2 default

null,

 adminApproverOut out

ame_util.approverRecord);

Returns an ame_util.approverRecord identifying the
administrative administrator for a given transaction’s transaction
type. This is the approver returned by getNextApprover and
getAllApprovers (in the first row of its ame_util.approverTable
return value) when an exception is raised while AME is
calculating a transaction’s approver list.

129
The AME API

Typical use: one way an application can check whether AME has
encountered an exception while processing a call to
getNextApprover or getAllApprovers is to compare the routine’s
return value to getAdminApprover’s return value. It is easier
simply to check whether the return value of getNextApprover or
getAllApprovers has the approval_status value
ame_util.exceptionStatus.

See also getNextApprover and getAllApprovers.

procedure getAllApprovers(applicationIdIn in integer,

 transactionIdIn in varchar2,

 transactionTypeIn in varchar2 default

null,

 approversOut out

ame_util.approversTable);

Returns a transaction’s current approver list, including both rule-
generated and inserted approvers, in the order that their
approval are required. The rows in approversOut are indexed by
consecutive ascending integers starting at one. The
approval_status values in approversOut reflect each approver’s
response to any requests for approvals to date that the
application owning the transaction has passed to AME by calling
updateApprovalStatus or updateApprovalStatus2.

Typical uses:
1. To display the entire approval list to an end user (either for

information or to allow insertions and deletions).
2. To analyze a transaction’s overall approval status.

Note that getAllApprovers should not be called just once and
then used for approval routing in lieu of repeated calls to
getNextApprover, because various data may change the
appropriate approver list for the transaction, between approvals.
See What Happens at Run Time: page 67 for details.

See also getNextApprover.

procedure getAndRecordAllApprovers(applicationIdIn in
integer,
 transactionIdIn in varchar2,
 transactionTypeIn in varchar2 default null,
 approversOut out
ame_util.approversTable);

This API is similar to ame_api.getAllApprovers. The only
difference is that this call will also store the approver list in the
AME temp tables.

procedure getApplicableRules1(applicationIdIn in integer,
 transactionIdIn in varchar2,

130
The AME API

 transactionTypeIn in varchar2 default null,
 ruleIdsOut out ame_util.idList);

Returns the list of applicable rules identifiers for the transaction.
The rule id can be used to fetch further information about the
rule including description, conditions, etc. If possible call
getApproversAndRules if both the approver list and the
applicable rules are required as only a single AME engine cycle is
required.

procedure getApplicableRules2(applicationIdIn in integer,
 transactionIdIn in varchar2,
 transactionTypeIn in varchar2 default null,
 ruleDescriptionsOut out ame_util.stringList);

Returns a list of rule descriptions for the transaction. The rule id
is not returned only the description. If further information is
required such as the applicable conditions it is necessary to call
either getApplicableRules1 [or 3] or getApproversAndRules1 [or
3].

procedure getApplicableRules3(applicationIdIn in integer,
 transactionIdIn in varchar2,
 transactionTypeIn in varchar2 default null,
 ruleIdsOut out ame_util.idList,
 ruleDescriptionsOut out ame_util.stringList);

Returns a list of rule descriptions and Ids for the transaction. If
the approver list is also required it is more efficient to call
getApproversAndRules3 as this only requires a single AME
engine cycle.

procedure getApproversAndRules1(applicationIdIn in integer,
 transactionIdIn in varchar2,
 transactionTypeIn in varchar2 default null,
 approversOut out ame_util.approversTable,
 ruleIdsOut out ame_util.idList);

Returns both applicable rules and the approver list in a single
call. This procedure and its two siblings only incur a single
AME engine cycle, whereas calling getApplicableRules and then
getAllApprovers requires two engine cycles. Using the list of
rule identifiers it is possible to fetch the relevant rule details
using the getRuleDetails collection of APIs

Typical use: Fetching rule information as well as the approver
list. The rule information is sometimes used to give more
detailed feedback to the approver as to why the transaction
requires approval

131
The AME API

See also getRuleDetails[1-3], getApproversAndRule2 and 3

procedure getApproversAndRules2(applicationIdIn in integer,
 transactionIdIn in varchar2,
 transactionTypeIn in varchar2 default null,
 approversOut out ame_util.approversTable,
 ruleDescriptionsOut out ame_util.stringList);

Similar to getApproversAndRules1 but returns a list of rule
descriptions rather than the rule Ids. Use this API if the rule
description is sufficient detail.

See also getApproversAndRule1 and 3

procedure getApproversAndRules3(applicationIdIn in integer,
 transactionIdIn in varchar2,
 transactionTypeIn in varchar2 default null,
 approversOut out ame_util.approversTable,
 ruleIdsOut out ame_util.idList,
 ruleDescriptionsOut out ame_util.stringList);

Similar to getApproversAndRules1 but in addition passes a list
of the applicable rule descriptions.

See also getRuleDetails[1-3], getApproversAndRule1 and 2

procedure getAvailableInsertions(applicationIdIn in integer,

 transactionIdIn in

varchar2,

 positionIn in integer,

 transactionTypeIn in

varchar2

 default null,

 availableInsertionsOut out

nocopy

ame_util.insertionsTable);

Returns a list of ame_util.insertionRecord records representing
the dynamic approver insertions that are possible at the absolute
position positionIn in the transaction’s current approver list. (See
The ame_util.insertionRecord: page 162 for details about the
interpretation of the records in availableInsertionsOut.)

Typical use: an application should call this procedure to get the
list of dynamic insertions allowed at a given position of a given
transaction’s current approver list, typically to display the
descriptions in the list to an end user at a user’s request, to let the
user select an insertion. If the user selected one of the insertions,
the application would pass it to AME by calling insertApprover.

132
The AME API

See also insertApprover and setFirstAuthorityApprover.

procedure getAvailableOrders(applicationIdIn in integer,

 transactionIdIn in varchar2,

 positionIn in integer,

 transactionTypeIn in varchar2

default null,

 availableOrdersOut out

 ame_util.ordersTable);

Returns a list of ame_util.orderType records, including in each a
user-friendly description. Each orderType record indicates an
order type for a possible dynamic approver insertion at the
absolute position positionIn in the transaction’s current approver
list.

Typical use: To facilitate dynamic approver insertions.

Note: this procedure is deprecated. Oracle encourages you to
use getAvailableInsertions instead.

See also getAvailableInsertions.

procedure getNextApprover(applicationIdIn in integer,

 transactionIdIn in varchar2,

 transactionTypeIn in varchar2

default null,

 nextApproverOut out

ame_util.approverRecord);

Returns the next approver required for the transaction, or
ame_util.emptyApproverRecord when the transaction’s
approval process is complete.

Typical use: an application should call getNextApprover and
updateApprovalStatus (or updateApprovalStatus2) iteratively
for a given transaction until getNextApprover returns an
ame_util.emptyApproverRecord, indicating that the
transaction’s approval process is complete.

See also getAllApprovers.

procedure getOldApprovers(applicationIdIn in integer,

 transactionIdIn in varchar2,

 transactionTypeIn in varchar2

default null,

 oldApproversOut out

ame_util.approversTable);

Returns the approver list that AME calculated the last time such
a calculation was necessary to respond to a call to AME’s API.
This “old” approver list is not necessarily the transaction’s
current list, which is what getAllApprovers returns. The old list
may very well differ from the current list (that is, be incorrect!),
so getOldApprovers is a deprecated routine. See What Happens
at Run Time: page 67 to learn what circumstances can change a
transaction’s approver list between calls to AME’s API.

133
The AME API

Typical use: none. Oracle strongly encourages applications to
rely instead on getAllApprovers.

See also getAllApprovers.

procedure getRuleDetails1(ruleIdIn in integer,

 ruleTypeOut out varchar2,
 ruleDescriptionOut out varchar2,
 conditionIdsOut out ame_util.idList,
 approvalTypeNameOut out
varchar2,
 approvalTypeDescriptionOut out
varchar2,
 approvalDescriptionOut out
varchar2);

procedure getRuleDetails2(ruleIdIn in integer,

 ruleTypeOut out varchar2,
 ruleDescriptionOut out varchar2,
 conditionDescriptionsOut out
ame_util.longestStringList,

 approvalTypeNameOut out varchar2,
 approvalTypeDescriptionOut out varchar2,
 approvalDescriptionOut out varchar2);

 procedure getRuleDetails3(ruleIdIn in integer,

 ruleTypeOut out varchar2,
 ruleDescriptionOut out varchar2,
 conditionIdsOut out ame_util.idList,
 conditionDescriptionsOut out
ame_util.longestStringList,
 conditionHasLOVsOut out ame_util.charList,
 approvalTypeNameOut out varchar2,
 approvalTypeDescriptionOut out varchar2,
 approvalDescriptionOut out varchar2);

procedure initializeApprovalProcess(applicationIdIn in

integer,

 transactionIdIn in varchar2,

 transactionType in varchar2 default

null,

recordApproverListIn in boolean default false);

Records the date at which the transaction’s approval process was
initiated and optionally records the current approver list (for the
sake of making that data available to getOldApprovers).

The procedure getAllApprovers requires a commit if there has
been no previous call to any of the API which require transaction
management. Otherwise, it is now a "read only" procedure (it
does not require a commit or rollback). To make sure it functions
as such, make sure your application calls

134
The AME API

initializeApprovalProcess (with or without recording the
approver list, it doesn't matter) before it calls any other ame_api
routine.

Typical use: to initialize the approval process.

procedure getConditionDetails(conditionIdIn in integer,

 attributeNameOut out varchar2,

 attributeTypeOut out varchar2,

 attributeDescriptionOut out varchar2,

 lowerLimitOut out varchar2,

 upperLimitOut out varchar2,

 includeLowerLimitOut out varchar2,

 includeUpperLimitOut out varchar2,

 currencyCodeOut out varchar2,

 allowedValuesOut out

ame_util.longestStringList)

Retrieves the details of a condition. This API is
used in conjunction with the getRuleDetails1,
getRuleDetails3 API. Displaying which
conditions were applicable to a rule can give
valuable feedback to the approver of a
transaction.

Typical use: Inform the approver what conditions were
evaluated for the transaction requiring approval. Required the
condition id to be passed which may be obtained from other API
calls as detailed below.

See also getRuleDetails1, getRuleDetails3

procedure insertApprover(applicationIdIn in integer,

 transactionIdIn in varchar2,

 approverIn in

ame_util.approverRecord,

 positionIn in integer,

 orderIn in ame_util.orderRecord,

 transactionTypeIn in varchar2

default null);

Dynamically inserts an approver with a given insertion-order
relation at a given position in the transaction’s current approver
list. The procedure will succeed only under the following
conditions:
1. The approval_status field of approverIn is null.
2. The approver identified by approverIn is not already in the

transaction’s approver list.
3. The combination of values in orderIn, the api_insertion field

of approverIn, and the authority field of approverIn match a
record returned by getAvailableInsertions.

135
The AME API

Typical use: to insert dynamically an approver selected by an
end user.

See also getAvailableInsertions and getAvailableOrders.

procedure setFirstAuthorityApprover(applicationIdIn in

integer,

 transactionIdIn in

varchar2,

 approverIn in

ame_util.approverRecord,

 transactionTypeIn in

varchar2

 default null);

Sets the first approver for each chain of authority in the
transaction’s approver list. (That is, if there are several chains of
authority, they will all start from approverIn, even though this
approver only appears at the start of the first chain.) This
procedure will succeed only under the following conditions:
1. The approval_status field of approverIn is null.
2. The approver identified by approverIn is not already in the

transaction’s approver list.
3. No chain-of-authority approver in the approver list has a

non-null approval_status value.

Typical use: to specify the beginning of a transaction’s chain of
authority, in the case of transaction types for which customers
will generally only implement a single chain of authority.

See also insertApprover.

procedure updateApprovalStatus(applicationIdIn in integer,

 transactionIdIn in varchar2,

 approverIn in ame_util.approverRecord,

 transactionTypeIn in varchar2 default

null,

 forwardeeIn in ame_util.approverRecord

 default ame_util.emptyApproverRecord);

Updates an approver’s status (to the approval_status value in
approverIn); and, if the approval_status value indicates that a
forwarding has occurred, identifies the forwardee. However, if
the approval_status value is ame_util.clearExceptionsStatus, the
procedure clears the transaction’s exception log in AME, without
changing any approver’s status, regardless of the approver
identified by approverIn.

When a chain-of-authority approver forwards, AME makes the
forwardee also a chain-of-authority approver. Otherwise, the
forwardee has the api_insertion value ame_util.apiInsertion, and
the same authority value as the forwarder.

Typical use: to update an approver’s record with the approval
result returned by Workflow to the application that owns the
transaction, in response to a request-for-approval notification.

136
The AME API

See also updateApprovalStatus2.

procedure updateApprovalStatus2(applicationIdIn in integer,

 transactionIdIn in varchar2,

 approvalStatusIn in

varchar2,

 approverPersonIdIn in

integer

 default null,

 approverUserIdIn in integer

default null,

 transactionTypeIn in

varchar2

 default null,

 forwardeeIn in

ame_util.approverRecord

 default

ame_util.emptyApproverRecord);

This is a wrapper for updateApprovalStatus that lets you
identify an approver by person ID or user ID, rather than passing
an entire ame_util.approverRecord to the API.

Typical use: to update an approver’s record with the approval
result returned by Workflow to the application that owns the
transaction, in response to a request-for-approval notification.

See also updateApprovalStatus.

How Should a Workflow use the AME API to Manage Approvals?

The basic imperative that drives AME’s design is to move all
approvals-related logic out of a transaction-processing
application and into AME. This logic includes checking whether
an approver is, in any of three plausible senses, a ”final”
approver.

The Basic Algorithm

Here is the basic algorithm that an application would implement
in a transaction type’s workflow, to use AME to manage the
transaction type’s approval processes:
1. A user submits a new transaction to the application.
2. If you wish to force the chain of approval to start at an

approver other than the approver that the rules will identify,
call setFirstAuthorityApprover.

3. Call ame_api.getNextApprover to get the person ID or user
ID of the next approver required for the transaction.

4. If ame_api.getNextApprover returns an empty
ame_util.approverRecord, the transaction is approved: stop.

5. Request an approval for the transaction from the approver
returned by ame_api.getNextApprover in step 3.

137
The AME API

6. When Workflow communicates to your application the
approver’s response to the request for approval in step 5,
translate the response into one of the allowed
approval_status values for the ame_util.approverRecord
data type. (Use the ame_util constants, not their values.) If
the response from Workflow does not translate to one of
these allowed values, handle this error condition and go to
step 5.

7. If the response from Workflow amounts to
ame_util.rejectStatus, handle the rejection and either go to
step 5 when the rejection has been handled, or stop.

8. Call ame_api.updateApprovalStatus to pass to AME the
approval status from step 6. If the status is either
ame_util.approveAndForwardStatus or
ame_util.forwardStatus, identify the forwardee (make sure
you set all of the appropriate fields in the forwardee’s
ame_util.approverRecord) in the forwardeeIn argument.
If Workflow indicates that a request for approval has timed
out, you may wish to move on to the next approver without
waiting further. To do so, call
ame_api.updateApprovalStatus, passing in approverIn an
ame_util.approverRecord identifying the unresponsive
approver, and having the approval_status value
ame_util.noResponseStatus. Do not pass an
ame_util.approverRecord in forwardeeIn; let it default to
ame_util.emptyApproverRecord.
If the unresponsive approver is not the final approver, the
AME engine will generally skip the approver (because their
surrogate is generally the next approver, in the case of chain-
of-authority approvers), marking them as unresponsive. If
the unresponsive approver’s surrogate is not already in the
approver list—for example, if the unresponsive approver is
the final chain-of-authority approver, and their surrogate is
their supervisor—AME will insert the surrogate into the
approver list immediately after the unresponsive approver.

9. Go to step 3.

Important Features of the Basic Algorithm

Note the following features of the basic algorithm:
1. There are only two possible stopping points: success at step

4, and failure at step 6.
2. AME complies with the Workflow exception-handling

model. See Runtime Exceptions: page 116 for details.
3. Regardless of whether a calling application uses the

Workflow exception-handling model, AME returns the
approverRecord returned by ame_api.getAdminApprover,
with the approval_status value ame_util.exceptionStatus,
whenever it must return one or more approver records and a
runtime exception occurs.

4. Oracle strongly recommends that when an erroring
workflow activity’s status is reset, the workflow call

138
The AME API

ame_api.updateApprovalStatus, passing it
ame_util.emptyApproverRecord for the erroring transaction,
but with its approval_status field set to
ame_util.clearExceptionsStatus. This will only clear the
transaction’s AME-internal exception log. If the
administrative approver who resets the workflow happens
to be one of the erroring transaction’s approvers, it will not
change that approver’s status. The administrative approver
should receive and respond to a normal notification
requesting their approval of the transaction.

5. The algorithm only uses Workflow to process notifications--
requests for approval, and responses to them. It does not use
Workflow to determine which approver has “final” authority
(in any sense). AME determines final authority on your
application’s behalf. Your code knows that a transaction has
been approved when (at step 4) getNextApprover returns an
ame_util.emptyApproverRecord.

6. More generally, your application does not make any
decisions about the approver list’s membership; it leaves all
such decisions to AME, so that the logic governing a
transaction type’s approval processes resides in a single
place (the transaction type’s set of rules in AME).

How Should an Application use AME’s API to Insert an Approver
Dynamically?

If a calling application needs to allow end users to insert
approvers dynamically, it should implement the following
algorithm:
1. Call getAllApprovers to get the entire the AME-generated

approver list.
2. Present this list to the end user, and prompt the user to select

a location in the list to insert an approver.
3. Prompt the user to query for an approver to insert at that

location.
4. Call validateApprover to ensure that the approver selected

by the user is a valid approver. If the approver is invalid, go
to step 3.

5. Call getAvailableInsertions for the location of interest.
6. Display the list of allowed insertion types returned by

getAvailableInsertions, and prompt the user to select one of
them.

7. Call insertApprover, passing it the approver and available-
insertion data from steps 3 and 6.

It is extremely important that the above or similar approach
is adopted. Failure to call
getAvailableInsertions/insertApprover could lead to the
situation that approval policies set into place are ignored

139
The AME API

when the additional approvers are inserted.

Frequently Asked Questions

How can I tell who is the final approver?

AME’s architecture lets customers define post-approval groups,
so that the last (final) approver is not necessarily the approver
having ”final” (signing) authority for a transaction. There is
(intentionally) no provision in AME to make post-approval
functionality unavailable in certain calling applications lacking it
in their native approvals logic, because one of the main ideas
behind AME is to let a customer use the same set of rules across
several calling applications, and the customer may want to use
post-approval logic for all of them. Moreover, AME’s
architecture lets customers define more than one chain of
authority for a single transaction, so that in such cases, typically
no one person would have signing authority for all of the chains
of authority required by the transaction’s approval rules. Again,
this is functionality that needs to be generally available.

So in AME, not only is the notion of a ”final” approver equivocal,
it is not always guaranteed to have a non-empty value, unless
one defines the concept to mean simply the last approver
required by the rules. In this case, a calling application
determines whether an approver is the final approver by trying
to fetch the next approver, and discovering that there isn’t one.

Why call AME after each approver?

It is possible for a calling application to use AME to generate an
initial list of approvers, and then avoid using AME to check
approval logic each time an approver responds to a request for
approval. This approach short-circuits the basic algorithm (see
The Basic Algorithm: page 171), and is very ill-advised, for five
reasons:
1. AME accounts for the possibility that a transaction’s

attributes may change during the approval process, which
might result in a change of the list of rules applying to the
transaction, and so to a change in the transaction’s approver
list.

2. AME accounts for the possibility that the rules applying to a
transaction may change (even if the transaction’s attribute
values don’t change), which again would change the
approver list.

3. AME accounts for organizational changes during the
approval process that could affect the approver list.

4. By avoiding using AME to manage approvals decisions, an
application defeats two of AME’s purposes: eliminating or
avoiding replication of approvals-logic functionality in each
application requiring approvals logic, and eliminating or

140
The AME API

avoiding variations in approvals functionality across
applications.

5. AME can insert a surrogate approver into a transaction’s
approver list, if an approver does not respond to a request
for approval in a timely fashion. But using the surrogate-
approver functionality requires that the application use the
basic algorithm, to make sure the surrogate appears in the
proper location in the approver list.

How do I force an approver who has already approved a transaction to approve it
again?

An application may want an approver to re-approve a
transaction, if (for example) the transaction’s attribute values
change. To do so, call ame_api.updateApprovalStatus or
updateApprovalStatus2, identifying the approver in the
appropriate argument(s) and passing a null approval_status
value.

Does AME Perform any Transaction Management?

AME does not perform any commits or rollbacks while
responding to an API call originating within a workflow. (AME
determines whether it has been called from within a workflow
by checking the value of the useWorkflow configuration
variable.) If the calling application does not use Workflow, the
only transaction management that AME performs at run time is
to commit certain autonomous transactions related to its own
exception log. This means that if an application calls AME’s API
from outside of a workflow, it must perform a commit when
AME responds normally to an API call, and a rollback when
AME raises an exception or returns an ame_util.approverRecord
with the approval_status value ame_util.exceptionStatus.

How do I force a chain of authority generated by one rule to come before another
chain generated by a second rule?

See How AME Sorts Rules at Run Time: page 134 for a
discussion of the problems of rule and approval-type order.

141
The AME API

143
The AME API

Administration83
API ..127
API routine......................................133
Approval descriptions39
Approval groups................................55
Approval parameters39
Approval rules.....................................8
Approval types40

absolute job level40
approval-group rules47
approvers.....................................110
categories107
caution...108
deserializing111
dual chains of authority.................44
final approver only........................42
list-creation-handler efficiency ...108
list-modification rules45
manager then final approver42
parameters113
relative job level......................42, 43
required values109
substitution rules46
supervisory level43
values ..111

Approval-Group handler117
Approval-group rules47
Approval-Group rules

dynamic post-approver..................48
dynamic pre-approver48
post-chain of authority approvals..47
pre-chain of authority approvals ...47

Approvals..39
Approvers

authority127
post-approvers.............................127
pre-approvers127
types ..127

Attribute classifications23
mandatory attributes......................23

Attribute levels..................................26
Attribute types...................................19
Attributes...19

dynamic attribute usages...............21
maintaining28
required ...40
static attribute usages20

Authority handler113
arguments....................................114

getFirstApprover.........................115
getNextApprover115
getSurrogate................................115
hasFinalAuthority115
package-naming conventions......114
sample handler116
sample handler code114
syntax..116

Condition types33
Conditions.....................................33

Conditions...33
maintaining35

Configuration variables
adminApprover83, 84
distributedEnvironment84
helpPath ..87
htmlPath..88
portalUrl..88
purgeFrequency88
useWorkflow...........................89, 90

Configuring variables
administration83

 70
Create a test transaction80
Creating an approval type...............123
Custom approval type

create...107
Data types128

ame_util.approverRecord Type ..128
Descriptions

approvals.......................................39
Dynamic attribute usages..................21
Example rule.....................................71
Handler state

maintain118
Handler-State routines119
Implement AME13
List-Modification rules45

final authority................................45
non-final authority45

Maintaining approval groups............58
Maintaining approvals49
Maintaining rules73
Mandatory attributes23
AME

advanages of using..........................6
Parameters

approvals.......................................39
Process Rules

144
The AME API

run time101
Required attributes40
Rule

example ...71
Rule types..65

list-creation exceptions67
list-creation rules...........................66
list-modification rules68
pre- and post-approval group rules

...70
substitutions69

Rules ...65
approval...8
rule types.......................................65
sorts ...71

Rules and transactions
fetch attribute values78
testing..77
view...79

Run time..8
process rules................................101
rules

sorts ...71

Runtime exceptions91
configuration

default94
transaction type.........................94

how do I edit
transaction type.........................95

how do I register
transaction type.........................95

how to respond..............................92
what happens91

Static attribute usages20
Substitution rules46
Test transaction

create...80
Transaction Types.............................90

descriptions90
IDs...90
view all exceptions96

Types
data..128
transaction.....................................90

Workflow
AME API143

	Table of Contents

