	   

	


	Oracle Replication Survival Guide 

Martin Zahn, Akadia AG, 25.09.2005 

Some Material in this Guide is overtaken from the official Oracle Replication Guide 




	Content 

Overview 

Read-Only Materialized Views
   Example 

Multi-Master Replication
  Overview
  Concepts and Terminology
  Replication Users 

Example for a Multimaster Site
  Create SCOTT Schemas
  Create Password Files
  Setup Oracle Network
  Setup Users on Master CEL1.WORLD and CEL2.WORLD
  Create Master Replication Group on CEL1.WORLD and CEL2.WORLD
  Setup Users on Materialized View Site REP1.WORLD and REP2.WORLD
  Create Materialized View Group on REP1.WORLD and REP2.WORLD 

Monitoring Master Sites
Monitoring the Deferred Transactions Queue
Monitoring Purges of Successfully Propagated Transactions
Monitoring the Error Queue
Monitoring Performance in a Replication Environment 

Removing the Replication from the Database 



Overview 

If you're going to realize the full potential of Oracle's advanced replication facilities and simultaneously avoid the pitfalls, you need to [image: image11.jpg]


understand the architecture on which they are based. 

Note that replicating data is fundamentally different from distributing data. When data is distributed, it may be accessed transparently from multiple locations, but a given table exists in only one location, and that location is responsible for its security and integrity. Replicated data, on the other hand, resides at multiple locations, each of which shares in its maintenance. Data replication implies an increased level of complexity because it introduces issues such as data synchronization and latency. This complexity is the price to pay for continuous operations when a remote data source is unavailable. 

	  

	Types of Replication 

Oracle's four basic types of replication. Starting from Oracle9 Read-only Snapshots are so called Read-Only Materialized Views. 

Replication Type 

Description 

Read-only materialized views 

A master table is copied to one or more databases. Changes in the master table are reflected in the snapshot tables whenever the snapshot refreshes. The snapshot site determines the frequency of the refreshes; data is pulled. 

Updateable materialized views 

Similar to read-only snapshots, except that the snapshot sites are able to modify the data and send their changes back to the master. The snapshot site determines the frequency of the refreshes and the frequency with which updates are sent back to the master. 

Multi-master replication 

A table is copied to one or more databases, and each database has the ability to insert, update, or delete records from it. Modifications are pushed to the other database at an interval that the DBA sets for each replication group. The highest theoretical frequency is once per second. 

Procedural replication 

A call to a packaged procedure or function is replicated to one or more databases. 

As you can see, these modes of replication are quite different, and each is suited for specific kinds of uses. A single environment can utilize all of these methods; they are not mutually exclusive. 

Read-Only Materialized Views 

Read-only snapshot sites can be used to provide local access to remote master tables. Having a local snapshots of the data improves query response time. Updates can only be issued against the master table. 

In a basic configuration, materialized views can provide read-only access to the table data that originates from a master site or master materialized view site. Applications can query data from read-only materialized views to avoid network access to the master site, regardless of network availability. However, applications throughout the system must access data at the master site to perform data manipulation language changes (DML). The master tables and master materialized views of read-only materialized views do not need to belong to a replication group. 

Read-only materialized views provide the following benefits: 

· Eliminate the possibility of conflicts because they cannot be updated. 

· Support complex materialized views. Examples of complex materialized views are materialized views that contain set operations or a CONNECT BY clause. 

Example 

In order to create one (or many) read-only snapshot of the master Oracle database tables, the following steps are necessary. 

· Master Site: Oracle 10.1.0.3, Solaris 9, SID=QUO3 

· Snapshot Site: Oracle 8.1.7.4, Solaris 8, SID=DIA1 

[image: image2.png]Remote update

Local Query aver DB Link
Materialized View Original Table
(Read-Only) (Updateable)

Materialized Replicate Table
View Master
(Refresh) Database

Database

SID=DIAT SID=QU03
Oracle 8.1.7.4 Oracle 10.1.0.3
Solaris 8 Solaris 9




Check TNSNAMES.ORA 

On Master (Host=quorum) 

DIA1.WORLD =
  (DESCRIPTION =
     (ADDRESS = (PROTOCOL = TCP)(HOST = diamond)(PORT = 1521))
     (CONNECT_DATA =
        (SERVICE_NAME = DIA1)
        (INSTANCE_NAME = DIA1)
        (SRVR = DEDICATED)
     )
  )

DIA1 =
  (DESCRIPTION =
     (ADDRESS = (PROTOCOL = TCP)(HOST = diamond)(PORT = 1521))
     (CONNECT_DATA =
        (SERVICE_NAME = DIA1)
        (INSTANCE_NAME = DIA1)
        (SRVR = DEDICATED)
     )
  ) 

On Snapshot (Host=diamond) 

QUO3.WORLD =
  (DESCRIPTION =
     (ADDRESS = (PROTOCOL = TCP)(HOST = quorum)(PORT = 1523))
     (CONNECT_DATA =
        (SERVICE_NAME = QUO3)
        (INSTANCE_NAME = QUO3)
        (SRVR = DEDICATED)
     )
  )

QUO3 =
  (DESCRIPTION =
     (ADDRESS = (PROTOCOL = TCP)(HOST = quorum)(PORT = 1523))
     (CONNECT_DATA =
        (SERVICE_NAME = QUO3)
        (INSTANCE_NAME = QUO3)
        (SRVR = DEDICATED)
     )
  ) 

Create DB Links 

On Master (Host=quorum) 

sqlplus scott/tiger@QUO3
CREATE DATABASE LINK DIA1 CONNECT TO scott IDENTIFIED BY tiger using 'DIA1';
Database link created. 

On Snapshot (Host=diamond) 

sqlplus scott/tiger@DIA1
CREATE DATABASE LINK QUO3 CONNECT TO scott IDENTIFIED BY tiger using 'QUO3';
Database link created. 

desc emp@QUO3;

 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------
 EMPNO                                     NOT NULL NUMBER(4)
 ENAME                                              VARCHAR2(10)
 JOB                                                VARCHAR2(9)
 MGR                                                NUMBER(4)
 HIREDATE                                           DATE
 SAL                                                NUMBER(7,2)
 COMM                                               NUMBER(7,2)
 DEPTNO                                             NUMBER(2) 

Create Snapshot Log 

For each table, which should be replicated, a SNAPSHOT LOG must be created (as user, who owns the table). 

A materialized view log (Snapshot Log) is a table at the materialized view's master site or master materialized view site that records all of the DML changes to the master table or master materialized view. A materialized view log is associated with a single master table or master materialized view, and each of those has only one materialized view log, regardless of how many materialized views refresh from the master. A fast refresh of a materialized view is possible only if the materialized view's master has a materialized view log. When a materialized view is fast refreshed, entries in the materialized view's associated materialized view log that have appeared since the materialized view was last refreshed are applied to the materialized view. 

On Master (Host=quorum) 

sqlplus scott/tiger@QUO3
DROP SNAPSHOT LOG ON emp;

CREATE SNAPSHOT LOG ON emp
     TABLESPACE tab
     STORAGE
     (INITIAL       200K
      NEXT          200K
      MINEXTENTS    1
      MAXEXTENTS    UNLIMITED
      PCTINCREASE   0);

Materialized view log created. 

Create Snapshot 

A snapshot contains on the remote site the data of the master table. All data changes are reflected in the snapshot after a refresh of the snapshot (either triggered manually or automatically). 

On Snapshot (Host=diamond) 

sqlplus scott/tiger@DIA1

CREATE SNAPSHOT emp
 PCTFREE 15
 STORAGE
 (INITIAL      200K
   NEXT        200K
   PCTINCREASE 0)
   TABLESPACE tab
 USING INDEX
   PCTFREE 0
   STORAGE
   (INITIAL     200K
    NEXT        200K
    PCTINCREASE 0)
    TABLESPACE idx
 REFRESH FORCE
 START WITH SYSDATE NEXT SYSDATE+(1/1440) /* 60 SECONDS */
 AS SELECT * FROM emp@QUO3;

Materialized view created. 

Create Synonym 

On Snapshot (Host=diamond) 

sqlplus scott/tiger@DIA1

CREATE PUBLIC SYNONYM emp FOR scott.emp;
Synonym created. 

Now, you can access the table emp locally which will be automatically refreshed every 60 sec. 

Refresh the Snapshot 

The snapshot on the remote site must be refreshed regularily. This can be done bullet either by hand after a substantial change on the master site or in regular intervalls. 

Manual Refresh 

On Snapshot (Host=diamond) 

sqlplus scott/tiger@DIA1

execute dbms_snapshot.refresh('scott.emp','F');
PL/SQL procedure successfully completed. 

The first parameter is a list of snapshots to be refreshed. The second describes the method, F stands for FAST refresh (only changes in the master table are propagated, C stands for complete refresh. 

There is also a dbms_snapshot.refresh_all routine. It requires some more privileges. 

execute dbms_snapshot.refresh_all; 

Automatic Refresh 

Automatic refresh is realized by parameters for a refresh group or by the definition of the snapshot. In order to run periodoc jobs in the database (as automatic refresh jobs), the ability to run SNP background jobs must be given.

Especially, in the file init<instance>.ora , located the parameter 

job_queue_processes = 1 

must be included (the default is 0) and the database must be restarted! This parameter allows background processes to be executed in one job queue. 

Check Automatic Refresh 

You may use the following query to check, if automatically refresh works. 

SELECT SUBSTR(job,1,4) "Job", SUBSTR(log_user,1,5) "User",
  SUBSTR(schema_user,1,5) "Schema",
  SUBSTR(TO_CHAR(last_date,'DD.MM.YYYY HH24:MI'),1,16) "Last Date",
  SUBSTR(TO_CHAR(next_date,'DD.MM.YYYY HH24:MI'),1,16) "Next Date",
  SUBSTR(broken,1,2) "B", SUBSTR(failures,1,6) "Failed",
  SUBSTR(what,1,20) "Command"
   FROM dba_jobs;

Job  User  Schem Last Date        Next Date        B Failed Command
---- ----- ----- ---------------- ---------------- - ------ --------------------
2    SCOTT SCOTT 06.09.2005 15:05 06.09.2005 15:06 N 0      dbms_refresh.refresh 

Drop Snapshots and Snapshot Logs 

On Master (Host=quorum) 

sqlplus scott/tiger@QUO3
spool drop_snapshot_logs.sql

select   'PROMPT Dropping Snapshot Log for '||MASTER||chr(10)
       ||'drop snapshot log on '||MASTER||';'
from   USER_SNAPSHOT_LOGS;

spool off
@drop_snapshot_logs.sql

PROMPT Snapshot Logs Dropped 

On Snapshot (Host=diamond) 

sqlplus scott/tiger@DIA1
spool drop_snapshots.sql

select   'PROMPT Dropping Snapshot for '||NAME||chr(10)
       ||'drop snapshot '||NAME||';'
from   USER_SNAPSHOTS;

@drop_snapshots.sql

PROMPT Snapshots dropped 

Refresh Groups 

If the snapshot must obey certain integrity rules, like referential integrity, then the refresh of the snapshot tables must be synchronized. This is achieved by creating refresh groups. 

dbms_refresh.make(
     name             => 'MY_GRP',
     list             => 'emp,dept,bonus,salgrade',
     next_date        =>  SYSDATE,
     interval         => 'SYSDATE + (1/1440)', /* 60 seconds */
     implicit_destroy => TRUE,    /* delete the group if substracting
                                     the last member */
     lax              => TRUE,    /* delete from other group if already
                                     existing in a group */
     rollback_seg     => 'RB06'
);
commit; 



Multi-Master Replication 

Overview 

You have already seen how to create and use read-only materialized views. They offer the powerful ability to replicate data in tables across separate databases. With multi-master replication, you can replicate more than just database tables. You can replicate: 

· Tables 

· Indexes 

· Procedures, functions, and triggers 

· Packages 

· User-defined types (Oracle9i) 

As always, there are plusses and minuses to using multi-master replication.
The positive benefits of MMR include the following: 

· Replicates more objects, including user-defined objects.
  

· Updates or modifies the objects being replicated. Adding a column to a table at the master definition site can be replicated to other master sites.
  

· Replicates with any number of other databases. Any master site can replicate with other master sites, updatable Mview sites, and read-only Mview sites. 

However, there are some downsides such as: 

· Potentially large network bandwidth requirements. Not only does multi-master push and pull changes between sites, it also sends acknowledgements and quite a bit of administrative data.
  

· Reduced Performance. Complexity and robustness comes at a price. MMR involves the use of triggers and procedures, and this can result in a database performance hit. Depending on how much data you are replicating, this performance hit can be substantial.
  

· Significant increases in administration requirements. When problems appear in the database, the DBA must insure that replication is not the cause or that the cause is not replicated to other databases. Database performance tuning and problem resolution becomes more complicated by an order of magnitude.
  

· Database changes require additional planning. Rolling out a new version of an application can be much more difficult. Each new version will require revisiting the design of the replication. 

The considerations above should reinforce not to implement a higher level of replication than you need. Multi-master replication is powerful, and it is complicated to create and monitor the replication environment. 

Concepts and Terminology 

Deferred Transaction 

A deferred transaction is a transaction that is queued for delivery to one or more remote databases. If you use multi-master replication with asynchronous propagation, Oracle creates deferred transactions for all local DML activity against the replicated tables. 

Replication Group 

A replication group is a collection of one or more replicated objects (typically tables) that are administrated together. Very generally speaking, the objects in a given replication group are logically related; for example, they are often the set of objects that a given application uses. A given replication group can contain objects from multiple schema, and a given schema can have objects in more than one replication group. However, any given object can be in only one replication group. 

The most significant property of replication groups is that all objects in a given group are quiesced together. That is, DML activity is enabled and disabled for all group members simultaneously. 

Quiescence 

Quiescence is the act of suspending DML activity for all tables in a given replication group. This is required in order to perform certain administrative tasks on objects in a replication group, such as altering a table. The Oracle built-in package procedure call that quiesces a replication group is DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY. 

Master Definition Site 

The master definition site of a replication group is the database instance from which the group is administered. This site is usually, but not necessarily, the site at which the replication group was originally created. 

Master Site 

A master site is a site that is participating in one or more replication groups but is not the master definition site. 

Replication Support 

Replication support refers to the packages and triggers that Oracle creates in order to propagate changes to replicated objects, to detect and resolve conflicts, and so on. 

Propagation and Conflict 

When Oracle propagates an update to destination tables, it expects the current data for the row at the destination to match the data at the originating site prior to the update. If the data is not the same, an update conflict results. Similarly, if an insert fails because of a primary key violation (i.e., a unique constraint violation) the result is a uniqueness conflict or violation. And, if the target row of a delete does not exist at the destination site, a delete conflict results. 

Unless you are propagating changes among master sites synchronously, there is a delay between the time a DML change is applied at the originating database and the time the transaction reaches the destination databases. This lag is known as propagation latency. 

Replication Users 

· The Administrator maintains the master group, adds or removes objects, etc. 

· The Propagator is responsible for pushing items in the deferred transaction queue to all other master sites. 

· The Receiver takes items that have arrived in the deferred transaction queue and applies them to the local objects. 

[image: image3.png]Master

Deferred Queue

Push

Items

f

Items

Propagator

Slave
Deferred Queue
- tems
]
Items.
Receiver




Oracle recommends that you use the Replication Administrator to perform all three tasks when establishing your replication environment. For additional security, you can establish a separate user as the receiver and propagator. 

· A master site can have only one propagator. 

· A propagator has the "execute any procedure" grant. 

· A master site can have multiple receivers. 

· A master group can have only one receiver per master site. 

· A receiver is not granted "execute any procedure". 

Example for a Multimaster Site 

Next, we illustrate how to set up both a master site and a materialized view replication site using the replication management API. 

[image: image4.png]CEL1.WORLD CEL2.WORLD

Master Master
Site Site

DE-Links

Materialized Materialized

View Site View Site

REP1.WORLD REF2.WORLD




Before you build the replication environment, you need to set up the sites that will participate in the replication environment. As illustrated there are separate processes for setting up a master site versus setting up a materialized view site. 

We use the following databases: 

· CEL1.WORLD 

· CEL2.WORLD 

· REP1.WORLD 

· REP2.WORLD 

Notice that REP1.WORLD and REP2.WORLD are materialized views based on the CEL1.WORLD. The arrows in the Figure represents database links. 

Important Note ! 

If you get an error when creating Replication Groups such as: 

ERROR at line 1:
ORA-04052: error occurred when looking up remote object
REPADMIN.SYS@CEL1.WORLD
ORA-00604: error occurred at recursive SQL level 2
ORA-12154: TNS:could not resolve the connect identifier specified 

then, connect directly to the Database as follows: 

export ORACLE_SID=CEL1
sqlplus repadmin/repadmin 

Now create the Replication Group. 

Create SCOTT Schemas 

We use the simple EMP/DEPT schema from SCOTT/TIGER. 

sqlplus scott/tiger@CEL1.WORLD
start demobld.sql

ALTER TABLE emp ADD (CONSTRAINT pk_emp PRIMARY KEY (empno) ENABLE);
ALTER TABLE dept ADD (CONSTRAINT pk_dept PRIMARY KEY (deptno) ENABLE);
ALTER TABLE emp ADD (
   CONSTRAINT fk_emp_dept FOREIGN KEY (deptno)
   REFERENCES dept (deptno) ENABLE);

sqlplus scott/tiger@CEL2.WORLD
start demobld.sql

ALTER TABLE emp ADD (CONSTRAINT pk_emp PRIMARY KEY (empno) ENABLE);
ALTER TABLE dept ADD (CONSTRAINT pk_dept PRIMARY KEY (deptno) ENABLE);
ALTER TABLE emp ADD (
   CONSTRAINT fk_emp_dept FOREIGN KEY (deptno)
   REFERENCES dept (deptno) ENABLE); 

The following sections contain step-by-step instructions for setting up the master sites in the sample replication environment: CEL1.WORLD and CEL2.WORLD. Before you set up the master sites, configure your network and Oracle Net so that all three databases can communicate with each other. 

Create Password Files 

If the DBA wants to start up an Oracle instance there must be a way for Oracle to authenticate this DBA. That is if (s)he is allowed to do so. Obviously, his password can not be stored in the database, because Oracle can not access the database if the instance has not been started up. Therefore, the authentication of the DBA must happen outside of the database. 

The init parameter remote_login_passwordfile specifies if a password file is used to authenticate the DBA or not. If it set either to shared or exclusive a password file will be used. 

Default location and file name 

The default location for the password file is: 

· $ORACLE_HOME/dbs/orapw$ORACLE_SID on Unix 

· %ORACLE_HOME%\database\PWD%ORACLE_SID%.ora on Windows. 

Deleting a password file 

If password file authentication is no longer needed, the password file can be deleted and the init parameter remote_login_passwordfile set to none. 

Password file state 

If a password file is shared or exclusive is also stored in the password file. After its creation, the state is shared. The state can be changed by setting remote_login_passwordfile and starting the database. That is, the database overwrites the state in the password file when it is started up. A password file whose state is shared can only contain SYS. 

Creating a password file 

Password files are created with the orapwd tool. 

orapwd file=orapwCEL1 password=manager entries=5 force=y 

Create a Symbolic Link from $ORACLE_HOME/dbs to the Password. 

lrwxrwxrwx 1 oracle dba 39 2005-09-13 16:55 initCEL1.ora -> /home/oracle/config/10.1.0/initCEL1.ora
lrwxrwxrwx 1 oracle dba 39 2005-09-14 11:22 initCEL2.ora -> /home/oracle/config/10.1.0/initCEL2.ora
lrwxrwxrwx 1 oracle dba 39 2005-09-14 08:20 initREP1.ora -> /home/oracle/config/10.1.0/initREP1.ora
lrwxrwxrwx 1 oracle dba 39 2005-09-14 11:22 initREP2.ora -> /home/oracle/config/10.1.0/initREP2.ora
lrwxrwxrwx 1 oracle dba 36 2005-09-22 11:22 orapwCEL1 -> /home/oracle/config/10.1.0/orapwCEL1
lrwxrwxrwx 1 oracle dba 36 2005-09-22 11:22 orapwCEL2 -> /home/oracle/config/10.1.0/orapwCEL2
lrwxrwxrwx 1 oracle dba 36 2005-09-22 11:22 orapwREP1 -> /home/oracle/config/10.1.0/orapwREP1
lrwxrwxrwx 1 oracle dba 36 2005-09-22 11:22 orapwREP2 -> /home/oracle/config/10.1.0/orapwREP2 

Adding Users to the password file 

Users are added to the password file when they're granted the SYSDBA or SYSOPER privilege. 

select * from v$pwfile_users;

USERNAME                       SYSDB SYSOP
------------------------------ ----- -----
SYS                            TRUE  TRUE

grant SYSDBA to scott;

Grant succeeded.

select * from v$pwfile_users;

USERNAME                       SYSDB SYSOP
------------------------------ ----- -----
SYS                            TRUE  TRUE
SCOTT                          TRUE  FALSE 

Setup Oracle Network 

The Network must be setup for all Sites: 

# Akadia AG, Fichtenweg 10, CH-3672 Oberdiessbach               listener.ora
# --------------------------------------------------------------------------
# File:        listener.ora
#
# Autor:       Martin Zahn Akadia AG
#
# Purpose:     Configuration file for Net Listener
#
# Location:    $TNS_ADMIN
#
# Certified:   Oracle 10.1.0.4 on Gentoo Linux (2004.0)
# --------------------------------------------------------------------------

LSNR101 =
  (DESCRIPTION_LIST =
    (DESCRIPTION =
      (ADDRESS = (PROTOCOL = TCP)(HOST = cellar)(PORT = 1521))
    )
  )

SID_LIST_LSNR101 =
  (SID_LIST =
    (SID_DESC =
      (GLOBAL_DBNAME = CEL1.WORLD)
      (ORACLE_HOME = /opt/oracle/product/10.1.0)
      (SID_NAME = CEL1)
    )
    (SID_DESC =
      (GLOBAL_DBNAME = CEL2.WORLD)
      (ORACLE_HOME = /opt/oracle/product/10.1.0)
      (SID_NAME = CEL2)
    )
    (SID_DESC =
      (GLOBAL_DBNAME = REP1.WORLD)
      (ORACLE_HOME = /opt/oracle/product/10.1.0)
      (SID_NAME = REP1)
    )
    (SID_DESC =
      (GLOBAL_DBNAME = REP2.WORLD)
      (ORACLE_HOME = /opt/oracle/product/10.1.0)
      (SID_NAME = REP2)
    )
  )

USE_PLUG_AND_PLAY_LSNR101 = OFF
STARTUP_WAIT_TIME_LSNR101 = 0
LOG_DIRECTORY_LSNR101 = /home/oracle/config/10.1.0
TRACE_FILE_LSNR101 = listener_LSNR101.trc
CONNECT_TIMEOUT_LSNR101 = 10
TRACE_LEVEL_LSNR101 = OFF
SAVE_CONFIG_ON_STOP_LISTENER = OFF 

# Akadia AG, Fichtenweg 10, CH-3672 Oberdiessbach               tnsnames.ora
# --------------------------------------------------------------------------
# File:        tnsnames.ora
#
# Autor:       Martin Zahn Akadia AG
#
# Purpose:     Configuration File for all Net Clients
#
# Location:    $TNS_ADMIN
#
# Certified:   Oracle 10.1.0.2 on Gentoo Linux (2004.0)
# --------------------------------------------------------------------------
#

CEL1.WORLD =
  (DESCRIPTION =
    (ADDRESS_LIST =
      (ADDRESS = (PROTOCOL = TCP)(HOST = cellar)(PORT = 1521))
    )
    (CONNECT_DATA =
      (SERVICE_NAME = CEL1.WORLD)
    )
  )

CEL1 =
  (DESCRIPTION =
    (ADDRESS_LIST =
      (ADDRESS = (PROTOCOL = TCP)(HOST = cellar)(PORT = 1521))
    )
    (CONNECT_DATA =
      (SERVICE_NAME = CEL1)
    )
  )

CEL2.WORLD =
  (DESCRIPTION =
    (ADDRESS_LIST =
      (ADDRESS = (PROTOCOL = TCP)(HOST = cellar)(PORT = 1521))
    )
    (CONNECT_DATA =
      (SERVICE_NAME = CEL2.WORLD)
    )
  )

CEL2 =
  (DESCRIPTION =
    (ADDRESS_LIST =
      (ADDRESS = (PROTOCOL = TCP)(HOST = cellar)(PORT = 1521))
    )
    (CONNECT_DATA =
      (SERVICE_NAME = CEL2)
    )
  )

REP1.WORLD =
  (DESCRIPTION =
    (ADDRESS_LIST =
      (ADDRESS = (PROTOCOL = TCP)(HOST = cellar)(PORT = 1521))
    )
    (CONNECT_DATA =
      (SERVICE_NAME = REP1.WORLD)
    )
  )

REP1 =
  (DESCRIPTION =
    (ADDRESS_LIST =
      (ADDRESS = (PROTOCOL = TCP)(HOST = cellar)(PORT = 1521))
    )
    (CONNECT_DATA =
      (SERVICE_NAME = REP1)
    )
  )

REP2.WORLD =
  (DESCRIPTION =
    (ADDRESS_LIST =
      (ADDRESS = (PROTOCOL = TCP)(HOST = cellar)(PORT = 1521))
    )
    (CONNECT_DATA =
      (SERVICE_NAME = REP2.WORLD)
    )
  )

REP2 =
  (DESCRIPTION =
    (ADDRESS_LIST =
      (ADDRESS = (PROTOCOL = TCP)(HOST = cellar)(PORT = 1521))
    )
    (CONNECT_DATA =
      (SERVICE_NAME = REP2)
    )
  ) 

# Akadia AG, Fichtenweg 10, CH-3672 Oberdiessbach                 sqlnet.ora
# --------------------------------------------------------------------------
# File:        sqlnet.ora
#
# Autor:       Martin Zahn Akadia AG
#
# Purpose:     Configuration File for all Net8 Clients
#
# Location:    $TNS_ADMIN
#
# Certified:   Oracle 10.1.0.2 on Gentoo Linux (2004.0)
# --------------------------------------------------------------------------
#

TRACE_LEVEL_CLIENT = OFF
NAMES.DIRECTORY_PATH= (TNSNAMES)
SQLNET.CRYPTO_SEED = 4fhfguweotcadsfdsafjkdsfqp5f201p45mxskdlfdasf
AUTOMATIC_IPC = ON
NAMES.DEFAULT_DOMAIN = WORLD
BEQUEATH_DETACH = NO
SQLNET.EXPIRE_TIME = 10
NAME.DEFAULT_ZONE = WORLD
USE_DEDICATED_SERVER = ON 

Setup INIT.ORA Parameters 

global_names = TRUE

db_name = CEL1

db_domain = WORLD

instance_name = CEL1

service_names = CEL1.WORLD

remote_login_passwordfile = exclusive

job_queue_processes = 10

parallel_min_servers = 2

parallel_max_servers = 10

Setup Users on Master CEL1.WORLD and CEL2.WORLD 

The following Figure shows the needed Steps to setup the users at the Master Sites. 

[image: image5.png]START

¥

Connect as System at

e
¥

Create Replcaton
Admingirator

12

Grant Priviges o Repleaten
Ramingiaor

Create Database Links
Betwaen Master Sies

¥

Regiter Propagaior

° ¥

Create Scheduked Links

¥

¥

Regiter Recshier

¥

‘Scheauls Purge at Master St

¥

add
Waterilzed View
Suppor?

Create Proxy Master Sie Users

Y

add
anather sie?

EnD

Multple maste sies (multimaster plcatin) can be
used only with the Enterprise Ediion of Oracle




The next steps shows how to create the following Users and Database Links on the two Master Sites. The commands for CEL2.WORLD are not shown, these are the same as for CEL1.WORLD. 

[image: image6.png]Master Site CEL1

Replication
Administrator
(Receiver)
(Propagator)

View Administrator
(proxy_snapadmin)

Proxy Materialized

Proxy Refresher

Private DB-Links

The proxy materialized view
administrator performs tasks at
the target master site on behalf
of the materialized view admini-
strator at the materialized view
site

Public DB-Links

The proxy refresher performs
tasks at the master site on
benalf of the refresher at the
materialized view site

Master Site CEL2

Replication
Administrator

(Receiver)
(Propagator)

Proxy Materialized
View Administrator

(proxy_snapadin)

Proxy Refresher





(1) Connect at Master Site CEL1.WORLD 

CONNECT sys/manager@CEL1.WORLD as sysdba; 

(2) Setup the Replication Administrator 

The Replication Administrator on the Master has the following Privileges 

· Administer replication groups and schemas 

· Propagate changes to remote sites 

CREATE USER repadmin IDENTIFIED BY repadmin
        DEFAULT TABLESPACE users
        TEMPORARY TABLESPACE temp
        QUOTA 0 ON system
        PROFILE default; 

GRANT CONNECT,RESOURCE TO repadmin; 

Authorise the Replication Administrator to administer replication groups and schemas. 

BEGIN
   DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA (
      username => 'repadmin');
END;
/ 

This procedure grants the necessary privileges to the Replication Administrator to administer any replication groups at the current site. 

(3) Grant create, lock and select to administrator 

GRANT
     LOCK ANY TABLE,
     COMMENT ANY TABLE,
     CREATE SESSION,
     SELECT ANY TABLE,
     CREATE TABLE,
     CREATE PROCEDURE,
     CREATE SEQUENCE,
     CREATE TRIGGER,
     CREATE VIEW,
     CREATE SYNONYM,
     ALTER SESSION,
     CREATE MATERIALIZED VIEW,
     CREATE DATABASE LINK,
     SELECT ANY DICTIONARY
TO repadmin; 

(4) Register Propagator 

Grant propagate privileges to the Replication Administrator, to propagate changes to remote sites. The propagator is responsible for propagating the deferred transaction queue to other master sites. 

BEGIN
   DBMS_DEFER_SYS.REGISTER_PROPAGATOR (
      username=>'repadmin');
END;
/ 

This procedure registers the specified user as the propagator for the local database. It also grants the following privileges to the specified user (so that the user can create wrappers): 

CREATE SESSION
CREATE PROCEDURE
CREATE DATABASE LINK
EXECUTE ANY PROCEDURE 

(5) Register Receiver 

Register receiver, the receiver receives the propagated deferred transactions sent by the propagator from other master sites. 

BEGIN

   DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (

      username => 'repadmin',

      privilege_type => 'receiver',

      list_of_gnames => NULL);

END;

/
This procedure assigns proxy materialized view administrator or receiver privileges at the master site or master materialized view site for use with remote sites. This procedure grants only the necessary privileges to the proxy materialized view administrator or receiver. 

privilege_type 

Specifies the privilege type you are assigning. Use the following values for to define your privilege_type: 

· receiver for receiver privileges. 

· proxy_snapadmin for proxy materialized view administration privileges 

list_of_gnames 

Comma-separated list of replication groups you want a user registered for receiver privileges. There must be no spaces between entries in the list. If you set list_of_gnames to NULL, then the user is registered for all replication groups, even replication groups that are not yet known when this procedure is called. 

(6) Schedule a job to delete successfully replicated transactions on Master 

In order to keep the size of the deferred transaction queue in check, you should purge successfully completed deferred transactions. The SCHEDULE_PURGE procedure automates the purge process for you. You must execute this procedure as the replication administrator. 

CONNECT REPADMIN/REPADMIN@CEL1.WORLD 

BEGIN
   DBMS_DEFER_SYS.SCHEDULE_PURGE (
       next_date => sysdate,
       interval => 'sysdate+1/24/30',
       delay_seconds => 0);
END;
/ 

(7a) Setup Proxy Materialized View Administrator 

The proxy materialized view administrator performs tasks at the target master site on behalf of the materialized view administrator at the materialized view site. 

CONNECT sys/manager@CEL1.WORLD as sysdba; 

CREATE USER proxyadmin IDENTIFIED BY proxyadmin
        DEFAULT TABLESPACE users
        TEMPORARY TABLESPACE temp
        QUOTA 0 ON system
        PROFILE default; 

GRANT CONNECT,RESOURCE TO proxyadmin; 

Register Proxy Materialized View Administrator 

BEGIN
   DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (
      username => 'proxyadmin',
      privilege_type => 'proxy_snapadmin',
      list_of_gnames => NULL);
END;
/ 

GRANT
     CREATE SESSION,
     SELECT ANY TABLE,
     SELECT_CATALOG_ROLE
TO proxyadmin; 

(7b) Setup Proxy Refresher 

The proxy refresher performs tasks at the master site on behalf of the refresher at the materialized view site. 

CREATE USER proxyrefresher IDENTIFIED BY proxyrefresher
        DEFAULT TABLESPACE users
        TEMPORARY TABLESPACE temp
        QUOTA 0 ON system
        PROFILE default; 

GRANT CREATE SESSION TO proxyrefresher;
GRANT SELECT ANY TABLE TO proxyrefresher; 

********** Now, do exactly the same for the Master Site CEL2.WORLD (Not shown here). *********** 

(8) Create the DB-Links between the master sites 

The database links provide the necessary distributed mechanisms to allow the different replication sites to replicate data among themselves. Before you create any private database links, you must create the public database links that each private database link will use. You then must create a database link between all replication administrators at each of the master sites that you have set up. 

CONNECT sys/manager@CEL1.WORLD as sysdba;
DROP PUBLIC DATABASE LINK CEL2.WORLD;
CREATE PUBLIC DATABASE LINK CEL2.WORLD USING '(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(COMMUNITY=TCP)(PROTOCOL=TCP)(Host=cellar)(Port=1521)))(CONNECT_DATA=(SID=CEL2)))';

CONNECT repadmin/repadmin@CEL1.WORLD;
CREATE DATABASE LINK CEL2.WORLD CONNECT TO repadmin IDENTIFIED BY repadmin; 

CONNECT sys/manager@CEL2.WORLD as sysdba;
DROP PUBLIC DATABASE LINK CEL1.WORLD;
CREATE PUBLIC DATABASE LINK CEL1.WORLD USING '(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(COMMUNITY=TCP)(PROTOCOL=TCP)(Host=cellar)(Port=1521)))(CONNECT_DATA=(SID=CEL1)))';

CONNECT repadmin/repadmin@CEL2.WORLD;
CREATE DATABASE LINK CEL1.WORLD CONNECT TO repadmin IDENTIFIED BY repadmin; 

(9) Define a schedule for each database link 

Create a scheduled link by defining a database link when you execute the SCHEDULE_PUSH procedure. The scheduled link determines how often your deferred transaction queue is propagated to each of the other master sites. You need to execute the SCHEDULE_PUSH procedure for each database link. The database link is specified in the destination parameter of the SCHEDULE_PUSH procedure. 

Even when using Oracle's asynchronous replication mechanisms, you can configure a scheduled link to simulate continuous, real-time replication. The scheduled links in this example simulate continuous replication. 

The following example schedules a periodic push every minute. Make sure that the refresh rate is not smalled than the time needed to refresh. 

CONNECT repadmin/repadmin@CEL1.WORLD

BEGIN
   DBMS_DEFER_SYS.SCHEDULE_PUSH (
      destination => 'CEL2.WORLD',
      interval => 'SYSDATE + (1/24/60)',
      next_date => SYSDATE,
      stop_on_error => FALSE,
      parallelism => 1,
      delay_seconds => 0);
END;
/ 

CONNECT repadmin/repadmin@CEL2.WORLD

BEGIN
   DBMS_DEFER_SYS.SCHEDULE_PUSH (
      destination => 'CEL1.WORLD',
      interval => 'SYSDATE + (1/24/60)',
      next_date => SYSDATE,
      stop_on_error => FALSE,
      parallelism => 1,
      delay_seconds => 0);
END;
/ 

Scheduling Continuous Pushes 

Even when using Oracle's asynchronous replication mechanisms, you can configure a scheduled link to simulate continuous, real-time replication. To do so, use the DBMS_DEFER_SYS.SCHEDULE_PUSH procedure and specify the following settings: 

Parameter 

Value 

delay_seconds 

1200 

interval 

Lower than the delay_seconds setting 

parallelism 

1 or higher 

execution_seconds 

Higher than the delay_seconds setting 

With this configuration, Oracle continues to push transactions that enter the deferred transaction queue for the duration of the entire interval. If the deferred transaction queue has no transactions to propagate for the amount of time specified by the delay_seconds parameter, then Oracle releases the resources used by the job and starts fresh when the next job queue process becomes available. 

Important Note ! 

We observed, that the Database cannot be shutdown with SHUTDOWN IMMEDIATE with these settings. The Database can only be shutdown with SHUTDOWN ABORT, therefore we do NOT recommend to use Continuous Pushes. 

The following is an example that simulates continual pushes: 

BEGIN
   DBMS_DEFER_SYS.SCHEDULE_PUSH (
      destination => 'CEL2.WORLD',
      interval => 'SYSDATE + (1/144)',
      next_date => SYSDATE,
      stop_on_error => FALSE,
      parallelism => 1,
      execution_seconds => 1500,
      delay_seconds => 1200);
END;
/ 

Create Master Replication Group on CEL1.WORLD and CEL2.WORLD 

After you have set up your master sites, you are ready to build a master group. 

[image: image7.png]Repaat
STEP6 for
&ach abct
ratwas

added during [

STEPa.

START

Create Schama At Masier Stes

v

Create Wiaster Graup.

k2

"Add obiects o Master Group

add

“add
‘another master
Sie?

‘Generats Replcation Support

e
data canficts
Fossible?

Resume Replaton

v

END

Configure Coniict Resotion
Vithds.





(1) Create Schema at Master Sites 

It is assumed that the SCOTT schema exists at CEL1.WORLD and CEL2.WORLD. 

(2) Create the Master Group 

When you add an object to your master group or perform other replication administrative tasks, you reference the master group name defined during this step. This step must be completed by the replication administrator. 

CONNECT repadmin/repadmin@CEL1.WORLD 

BEGIN
   DBMS_REPCAT.DROP_MASTER_REPGROUP (
   gname => 'REPG');
END;
/

BEGIN
   DBMS_REPCAT.CREATE_MASTER_REPGROUP (
   gname => 'REPG');
END;
/ 

(3) Add objects to the Replication Group on Master 

Now, add the replicated Objets (TABLE, INDEX, SYNONYM, TRIGGER, VIEW, PROCEDURE, FUNCTION, PACKAGE, and PACKAGE BODY) to the Replication Group. 

BEGIN
   DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
      gname => 'REPG',
      type  => 'TABLE',
      oname => 'EMP',
      sname => 'SCOTT',
      use_existing_object => TRUE,
      copy_rows => FALSE);
END;
/ 

BEGIN
   DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
      gname => 'REPG',
      type  => 'TABLE',
      oname => 'DEPT',
      sname => 'SCOTT',
      use_existing_object => TRUE,
      copy_rows => FALSE);
END;
/ 

If Your Tables Don’t Have a Primary Key. 

The DBMS_REPCAT.SET_COLUMNS procedure enables you to use an alternate column or group of columns, instead of the primary key, to determine which columns of a table to compare when using row-level replication. You must call this procedure from the master definition site. 

BEGIN
   DBMS_REPCAT.SET_COLUMNS (
   sname => 'owner_master',
   oname => 'DEPT',
   column_list => '"COL1","COL2","COL3","COL4"');
END; 

(4) Add Additional Master Site CEL2.WORLD 

After you have defined your master group at the master definition site = CEL1.WORLD (the site where the master group was created becomes the master definition site by default), you can define the other sites that will participate in the replication environment. 

In this example, the use_existing_objects parameter in the ADD_MASTER_DATABASE procedure is set to TRUE because it is assumed that the SCOTT schema already exists at all master sites. In other words, it is assumed that the objects in the SCOTT schema are precreated at all master sites. Also, the copy_rows parameter is set to FALSE because it is assumed that the identical data is stored in the tables at each master site. 

CONNECT repadmin/repadmin@CEL1.WORLD 

If you get an error when connection over SQL*Net for the DBMS_REPCAT.ADD_MASTER_DATABASE command such as: 

ERROR at line 1:
ORA-04052: error occurred when looking up remote object
REPADMIN.SYS@CEL1.WORLD
ORA-00604: error occurred at recursive SQL level 2
ORA-12154: TNS:could not resolve the connect identifier specified 

then, connect directly to the Database: 

export ORACLE_SID=CEL1
sqlplus repadmin/repadmin 

BEGIN
   DBMS_REPCAT.ADD_MASTER_DATABASE (
      gname => 'REPG',
      master => 'CEL2.WORLD',
      use_existing_objects => TRUE,
      copy_rows => FALSE,
      propagation_mode => 'ASYNCHRONOUS');
END;
/ 

Check that Master Site CEL2.WORLD is now in the Replication Group 'REPG'. 

Wait until CEL2.WORLD appears in the DBA_REPSITES view before continuing. Execute the following SELECT statement in another SQL*Plus session to make sure that CEL2.WORLD has appeared: 

SELECT DBLINK FROM DBA_REPSITES WHERE GNAME = 'REPG';
DBLINK
----------------------------------------------
CEL1.WORLD
CEL2.WORLD 

(5)  If conflicts are possible, then configure conflict resolution methods. 

The most common data conflict occurs when the same row at two or more different sites are updated at nearly the same time, or before the deferred transaction from one site was successfully propagated to the other sites. 

Before you define overwrite or discard conflict resolution methods, quiesce the master group that contains the table to which you want to apply the conflict resolution method. In a single master replication environment, quiescing the master group might not be required 

BEGIN
   DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
      gname => 'REPG');
END;
/ 

All Oracle conflict resolution methods are based on logical column groupings called column groups. 

BEGIN
   DBMS_REPCAT.MAKE_COLUMN_GROUP (
      sname => 'SCOTT',
      oname => 'EMP',
      column_group => 'EMPCG',
      list_of_column_names => 'ename,job,mgr,hiredate,sal,comm,deptno');
END;
/ 

This example creates an OVERWRITE conflict resolution method. 

BEGIN
   DBMS_REPCAT.ADD_UPDATE_RESOLUTION (
      sname => 'SCOTT',
      oname => 'EMP',
      column_group => 'EMPCG',
      sequence_no => 1,
      method => 'DISCARD',
      parameter_column_name => 'ename,job,mgr,hiredate,sal,comm,deptno');
END;
/ 

(6) Activate Replication Support for each added Table on Master 

Replication support generates the triggers and packages needed to support replication for a specified object. 

CONNECT repadmin/repadmin@CEL1.WORLD

BEGIN
    DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
      sname => 'SCOTT',
      oname => 'EMP',
      type => 'TABLE',
      min_communication => TRUE);
END;
/ 

BEGIN
    DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
      sname => 'SCOTT',
      oname => 'DEPT',
      type => 'TABLE',
      min_communication => TRUE);
END;
/ 

min_communication 

Set to false if any master site is running Oracle7 release 7.3.
Set to true when you want propagation of new and old values to be
minimized. The default is true. 

(7) Start the Replication on the Master 

We are now all set up and ready to replicate, so let’s do it. From the master database, start the replication process (track activity on the REPG objects). 

CONNECT repadmin/repadmin@CEL1.WORLD
You should wait until the DBA_REPCATLOG view is empty before resuming master activity. 

SELECT COUNT(*) FROM DBA_REPCATLOG WHERE GNAME = 'REPG'; 

BEGIN
   DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
     gname => 'REPG');
END;
/ 

The master site is now waiting for the snapshot site to begin replication. As changes are made to the master tables, they will be propagated as required. 

The view dba_repgroup can be used to check the status of the replication groups that you create. After you have created the replication groups and generated the replication support for various tables within that group, you should query the dba_repgroup table to insure that REPG status field is set to "Normal". 

select sname, master, status from dba_repgroup; 

SNAME                          M STATUS
------------------------------ - ---------
REPG                           Y NORMAL 

Setup Users on Materialized View Site REP1.WORLD and REP2.WORLD 

The following Figure shows the needed Steps to setup the users at the Materialized View Sites. 

[image: image8.png]START

i

Connect as Systemat
Viatanalzed Ve St

)

Create ateralzed View,
Sie Usars.

P

‘Create Datatase Links
o astar

e

Scheduls Puge At Materalzed
View Ste

]

Schedule Push at Materialzed

o
i

Create Proxy Users

¥

‘add
ansther
Shel

END





The next steps shows how to create the following Users and Database Links on the two Materialized View Sites. The commands for REP2.WORLD are not shown, these are the same as for REP1.WORLD. 

[image: image9.png]Master Site CEL1

The refresher is respansiale for
«pulling» changes made to the
replicated tables at the target
master site ta the materialized
View site

Replication
Administrator
(Receiver)
(Propagator)

Proxy Materialized
View Administrator

(proxy_snapadin)

Proxy Refresher

MView Site REP1
MView
Administrator
Private DB-Links (Receiver)
MView
Propagator
The Propagator is responsiole (Propagator)
for propagating the deferred
transaction queve to the target
master site. MView
| Owner

Private DB-Link





(1) Connect as system at Materialized View Site REP1.WORLD 

CONNECT sys/manager@REP1.WORLD as sysdba; 

(2) Create Materialized View Site Users 

Setup the Materialized View Administrator 

DROP USER mviewadmin CASCADE;
CREATE USER mviewadmin IDENTIFIED BY mviewadmin
        DEFAULT TABLESPACE users
        TEMPORARY TABLESPACE temp
        QUOTA 0 ON system
        PROFILE default;
GRANT CONNECT,RESOURCE TO mviewadmin; 

Authorise the Materialized View Administrator to administer replication groups and schemas. 

BEGIN
   DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA (
      username => 'mviewadmin');
END;
/ 

Grant create,lock and select to Materialized View Administrator 

GRANT
     LOCK ANY TABLE,
     COMMENT ANY TABLE,
     CREATE SESSION,
     SELECT ANY TABLE,
     CREATE TABLE,
     CREATE PROCEDURE,
     CREATE SEQUENCE,
     CREATE TRIGGER,
     CREATE VIEW,
     CREATE SYNONYM,
     ALTER SESSION,
     CREATE MATERIALIZED VIEW,
     CREATE DATABASE LINK,
     SELECT ANY DICTIONARY
TO mviewadmin; 

Create Materialized View Propagator 

The propagator is responsible for propagating the deferred transaction queue to the target master site. 

DROP USER propagator CASCADE;
CREATE USER propagator IDENTIFIED BY propagator
        DEFAULT TABLESPACE users
        TEMPORARY TABLESPACE temp
        QUOTA 0 ON system
        PROFILE default;
GRANT CONNECT,RESOURCE TO propagator; 

Grant privs to the Materialized View Propagator, to propagate changes to remote sites 

BEGIN
   DBMS_DEFER_SYS.REGISTER_PROPAGATOR (
      username => 'propagator');
END;
/ 

This procedure registers the specified user as the propagator for the local database. It also grants the following privileges to the specified user (so that the user can create wrappers): 

· CREATE SESSION 

· CREATE PROCEDURE 

· CREATE DATABASE LINK 

· EXECUTE ANY PROCEDURE 

Create the refresher 

The refresher is responsible for "pulling" changes made to the replicated tables at the target master site to the materialized view site. This user refreshes one or more materialized views. If you want the mviewadmin user to be the refresher, then this step is not required. The receiver is necessary only if the site will function as a master materialized view site for other materialized views sites. 

Register Receiver to Materialized View Administrator 

BEGIN
   DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (
      username => 'mviewadmin',
      privilege_type => 'receiver',
      list_of_gnames => NULL);
END;
/ 

(3) Setup Database Links to Master(s) 

Create Public Database Link 

CONNECT sys/manager@REP1.WORLD as sysdba;
DROP PUBLIC DATABASE LINK CEL1.WORLD;
CREATE PUBLIC DATABASE LINK CEL1.WORLD USING
'(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(COMMUNITY=TCP)(PROTOCOL=TCP)(Host=cellar)(Port=1521)))(CONNECT_DATA=(SID=CEL1)))'; 

Create the materialized view administrator database link. 

You need to create a database link from the materialized view administrator at the materialized view site to the proxy materialized view administrator at the master site. 

CONNECT mviewadmin/mviewadmin@REP1.WORLD;
DROP DATABASE LINK CEL1.WORLD;
CREATE DATABASE LINK CEL1.WORLD
CONNECT TO proxyadmin
IDENTIFIED BY proxyadmin
USING 'CEL1.WORLD'; 

Create the propagator/receiver database link. 

You need to create a database link from the propagator at the materialized view site to the receiver at the master site. The receiver was defined when you created the master site. 

CONNECT propagator/propagator@REP1.WORLD
DROP DATABASE LINK CEL1.WORLD;
CREATE DATABASE LINK CEL1.WORLD
CONNECT TO repadmin
IDENTIFIED BY repadmin
USING 'CEL1.WORLD'; 

(4) Schedule Purge at Materialized View Site (Optional) 

In order to keep the size of the deferred transaction queue in check, you should purge successfully completed deferred transactions. The SCHEDULE_PURGE procedure automates the purge process for you. If your materialized view site only contains "read-only" materialized views, then you do not need to execute this procedure. 

CONNECT mviewadmin/mviewadmin@REP1.WORLD 

BEGIN
   DBMS_DEFER_SYS.SCHEDULE_PURGE (
   next_date => SYSDATE,
   interval => 'SYSDATE + 1/24',
   delay_seconds => 0,
   rollback_segment => '');
END;
/ 

(5 ) Schedule Push at Materialized View site (Optional) 

If the materialized view site has a constant connection to its master site, then you optionally can schedule push at the materialized view sites. If the materialized view site is disconnected from its master site for extended periods of time, then it is typically better not to schedule push and refresh on demand, which pushes changes to the master site. 

CONNECT mviewadmin/mviewadmin@REP1.WORLD 

BEGIN
   DBMS_DEFER_SYS.SCHEDULE_PUSH (
      destination => 'CEL1.WORLD',
      interval => 'SYSDATE + 1/144',
      next_date => SYSDATE,
      stop_on_error => FALSE,
      delay_seconds => 0,
      parallelism => 0);
END;
/ 

(6) Create the proxy materialized view administrator at Materialized View site (Optional) 

The proxy materialized view administrator performs tasks at the target master materialized view site on behalf of the materialized view administrator at the materialized view sites based on this materialized view site. This user is not required if the site will not function as a master materialized view site for other materialized view sites. 

In our example we do not need this step. 

********** Now, do exactly the same for the Materialized View Site REP2 (Not shown here). *********** 

Create Materialized View Group on REP1.WORLD and REP2.WORLD 

The following Figure shows the needed Steps to setup the Materialized View Group at the Materialized View Sites. 

[image: image10.png]START

¥

Create atralzed View Logs

Sl
¥

Create Reploated Schema.

SRl
¥

Create aterialzed View Group

¥

Create Reftesh Group.

¥

"Add Objects to Materialzed

e
¥

add
ancther
obct?

"Add Objects to Refiesh Group

¥

“add
ancther
obct?

END

Repsal STEP 8 for
ach obct that
Was added duing
AT




(1) Create Materialized View Logs on Master 

When DML changes are made to the master table's data, Oracle stores rows describing those changes in the materialized view log and then uses the materialized view log to refresh materialized views based on the master table. This process is called an incremental or fast refresh. 

Without a materialized view log, Oracle must reexecute the materialized view query to refresh the materialized view. This process is called a complete refresh. Usually, a fast refresh takes less time than a complete refresh. 

A materialized view log is located in the master database in the same schema as the master table. A master table can have only one materialized view log defined on it. 

CONNECT scott/tiger@CEL1.WORLD 

CREATE MATERIALIZED VIEW LOG ON emp
  TABLESPACE tab; 

CREATE MATERIALIZED VIEW LOG ON dept
  TABLESPACE tab; 

(2)  Create the Replicated Schema and its Database Link 

Before building your materialized view group, you must make sure that the replicated schema exists at the remote materialized view site and that the necessary database links have been created. 

In this example, if the SCOTT schema does not exist, then create the schema. 

CONNECT sys/manager@REP1.WORLD as sysdba; 

GRANT
  CREATE SESSION,
  CREATE TABLE,
  CREATE PROCEDURE,
  CREATE SEQUENCE,
  CREATE TRIGGER,
  CREATE VIEW,
  CREATE SYNONYM,
  ALTER SESSION,
  CREATE MATERIALIZED VIEW,
  ALTER ANY MATERIALIZED VIEW,
  CREATE DATABASE LINK
TO SCOTT; 

CONNECT scott/tiger@REP1.WORLD;
DROP DATABASE LINK CEL1.WORLD;
CREATE DATABASE LINK CEL1.WORLD
  CONNECT TO proxyrefresher IDENTIFIED BY proxyrefresher
  USING 'CEL1.WORLD'; 

(3) Create Materialized View Group 

Now create a new, empty materialized view group in your slave database. CREATE_MVIEW_REPGROUP automatically calls REGISTER_MIEW_REPGROUP, but ignores any errors that may have happened during registration. 

CONNECT mviewadmin/mviewadmin@REP1.WORLD; 

If you get an error when connection over SQL*Net for the DBMS_REPCAT.CREATE_MVIEW_REPGROUP command such as: 

ERROR at line 1:
ORA-04052: error occurred when looking up remote object
PROXYADMIN.SYS@CEL1.WORLD
ORA-00604: error occurred at recursive SQL level 2
ORA-12154: TNS:could not resolve the connect identifier specified 

then, connect directly to the Database: 

export ORACLE_SID=REP1
sqlplus mviewadmin/mviewadmin 

BEGIN
   DBMS_REPCAT.CREATE_MVIEW_REPGROUP (
     gname  => 'REPG',
     master => 'CEL1.WORLD',
     propagation_mode => 'ASYNCHRONOUS');
END;
/ 

gname 

Name of the replication group. This group must exist at the specified master site or master materialized view site. 

master 

Fully qualified database name of the database in the replication environment to use as the master site or master materialized view site. 

propagation_mode 

Method of propagation for all updatable materialized views in the replication group. Acceptable values are synchronous and asynchronous. 

(4) Create a Refresh Group 

Now we must create a refresh group and the time interval used to determine when the members of this group should be refreshed. 

CONNECT mviewadmin/mviewadmin@REP1.WORLD; 

BEGIN
     DBMS_REFRESH.MAKE (
         name => 'REVG',
         list => '',
         next_date => SYSDATE,
         interval  => 'SYSDATE + 1/1440',
         implicit_destroy => FALSE,
         rollback_seg => '',
         push_deferred_rpc => TRUE,
         refresh_after_errors => FALSE);
END;
/ 

name 

Unique name used to identify the refresh group. Refresh groups must follow the same naming conventions as tables. 

list 

Comma-separated list of snapshots that you want to refresh. (Synonyms are not supported.) These snapshots can be located in different schemas and have different master tables; however, all of the listed snapshots must be in your current database. 

implicit_destroy 

Set this to TRUE if you want to delete the refresh group automatically when it no longer contains any members. 

push_deferred_rpc 

Used by updatable snapshots only. Use the default value, TRUE, if you want to push changes from the snapshot to its associated master before refreshing the snapshot. Otherwise, these changes may appear to be temporarily lost. 

refresh_after_errors 

Used by updatable snapshots only. Set this to 0 if you want the refresh to proceed even if there are outstanding conflicts logged in the DEFERROR view for the snapshot's master. 

(5) Add Objects to the Materialized View Group 

Now create all materialized view. - The word "snapshot" is synonymous with "materialized view". 

export ORACLE_SID=REP1
sqlplus scott/tiger 

DROP MATERIALIZED VIEW emp;
CREATE MATERIALIZED VIEW emp
TABLESPACE tab
NOCACHE
NOPARALLEL
USING INDEX TABLESPACE idx
  REFRESH FAST
  WITH PRIMARY KEY
  USING DEFAULT LOCAL ROLLBACK SEGMENT
  DISABLE QUERY REWRITE
AS
  SELECT * FROM scott.emp@CEL1.WORLD; 

DROP MATERIALIZED VIEW dept;
CREATE MATERIALIZED VIEW dept
TABLESPACE tab
NOCACHE
NOPARALLEL
USING INDEX TABLESPACE idx
  REFRESH FAST
  WITH PRIMARY KEY
  USING DEFAULT LOCAL ROLLBACK SEGMENT
  DISABLE QUERY REWRITE
AS
  SELECT * FROM scott.dept@CEL1.WORLD; 

EXIT; 

Add the materialized views to the Materialized View Group. 

export ORACLE_SID=REP1
sqlplus mviewadmin/mviewadmin 

BEGIN
   DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
      gname => 'REPG',
      sname => 'SCOTT',
      oname => 'EMP',
      type => 'SNAPSHOT',
      min_communication => TRUE);
END;
/ 

BEGIN
   DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
      gname => 'REPG',
      sname => 'SCOTT',
      oname => 'DEPT',
      type => 'SNAPSHOT',
      min_communication => TRUE);
END;
/ 

(6) Add Objects to the Refresh Group 

Add the materialized views to the refresh group. 

BEGIN
   DBMS_REFRESH.ADD (
      name => 'REVG',
      list => 'SCOTT.EMP',
      lax => TRUE);
END;
/ 

BEGIN
   DBMS_REFRESH.ADD (
      name => 'REVG',
      list => 'SCOTT.DEPT',
      lax => TRUE);
END;
/ 

lax 

A materialized view can belong to only one refresh group at a time. If you are moving a materialized view from one group to another, then you must set the lax flag to true to succeed. Oracle then automatically removes the materialized view from the other refresh group and updates its refresh interval to be that of its new group. Otherwise, the call to ADD generates an error message. 

Manually Refresh 

Now manually refresh the refresh group. 

BEGIN
     DBMS_REFRESH.REFRESH (
         name => 'REVG');
END;
/ 

********** Now, do exactly the same for the Materialized View Site REP2 (Not shown here). *********** 

Test the Replication 

The Replication is now working and should be tested. Login as User SCOTT and UPDATE some rows. Check if the changed rows will appear on the other Sites. 

connect scott/tiger@CEL1.WORLD

update emp set job = 'ENGINEER' where empno = 7934;
commit; 

select * from emp;

     EMPNO ENAME      JOB              MGR HIREDATE         SAL       COMM     DEPTNO
---------- ---------- --------- ---------- --------- ---------- ---------- ----------
      7369 SMITH      CLERK           7902 17-DEC-80        800                    20
      7499 ALLEN      SALESMAN        7698 20-FEB-81       1600        300         30
      7521 WARD       SALESMAN        7698 22-FEB-81       1250        500         30
      7566 JONES      MANAGER         7839 02-APR-81       2975                    20
      7654 MARTIN     SALESMAN        7698 28-SEP-81       1250       1400         30
      7698 BLAKE      MANAGER         7839 01-MAY-81       2850                    30
      7782 CLARK      MANAGER         7839 09-JUN-81       2450                    10
      7788 SCOTT      ANALYST         7566 09-DEC-82       3000                    20
      7839 KING       PRESIDENT            17-NOV-81       5000                    10
      7844 TURNER     SALESMAN        7698 08-SEP-81       1500          0         30
      7876 ADAMS      CLERK           7788 12-JAN-83       1100                    20

     EMPNO ENAME      JOB              MGR HIREDATE         SAL       COMM     DEPTNO
---------- ---------- --------- ---------- --------- ---------- ---------- ----------
      7900 JAMES      CLERK           7698 03-DEC-81        950                    30
      7902 FORD       ANALYST         7566 03-DEC-81       3000                    20
      7934 MILLER     ENGINEER        7782 23-JAN-82       1300                    10 

connect scott/tiger@CEL2.WORLD 

select * from emp;

     EMPNO ENAME      JOB              MGR HIREDATE         SAL       COMM     DEPTNO
---------- ---------- --------- ---------- --------- ---------- ---------- ----------
      7369 SMITH      CLERK           7902 17-DEC-80        800                    20
      7499 ALLEN      SALESMAN        7698 20-FEB-81       1600        300         30
      7521 WARD       SALESMAN        7698 22-FEB-81       1250        500         30
      7566 JONES      MANAGER         7839 02-APR-81       2975                    20
      7654 MARTIN     SALESMAN        7698 28-SEP-81       1250       1400         30
      7698 BLAKE      MANAGER         7839 01-MAY-81       2850                    30
      7782 CLARK      MANAGER         7839 09-JUN-81       2450                    10
      7788 SCOTT      ANALYST         7566 09-DEC-82       3000                    20
      7839 KING       PRESIDENT            17-NOV-81       5000                    10
      7844 TURNER     SALESMAN        7698 08-SEP-81       1500          0         30
      7876 ADAMS      CLERK           7788 12-JAN-83       1100                    20

     EMPNO ENAME      JOB              MGR HIREDATE         SAL       COMM     DEPTNO
---------- ---------- --------- ---------- --------- ---------- ---------- ----------
      7900 JAMES      CLERK           7698 03-DEC-81        950                    30
      7902 FORD       ANALYST         7566 03-DEC-81       3000                    20
      7934 MILLER     ENGINEER        7782 23-JAN-82       1300                    10 

If you have any troubles or the rows do not appear, then monitor your environment. 

Monitoring Master Sites 

This section contains queries that you can run to display information about a master replication environment. The replication environment can be a multimaster environment, a master materialized view environment, or a hybrid environment that includes multiple master sites and materialized views. 

connect sys/manager@CEL1.WORLD as sysdba; 

Listing General Information About a Master Site 

You can find the following general information about a master site: 

· The number of administrative requests. 

· The number of administrative request errors. 

· The number of unpropagated deferred transaction-destination pairs. Each deferred transaction can have multiple destinations to which it will be propagated, and each destination is a single deferred transaction-destination pair 

· The number of deferred transaction errors (error transactions). 

· The number of successfully propagated transactions that are still in the queue. These transactions should be purged from the queue. 

COLUMN GLOBAL_NAME HEADING 'Database' FORMAT A25
COLUMN ADMIN_REQUESTS HEADING 'Admin|Reqests' FORMAT 9999
COLUMN STATUS HEADING 'Admin|Errors' FORMAT 9999
COLUMN TRAN HEADING 'Def|Trans|Pairs' FORMAT 9999
COLUMN ERRORS HEADING 'Def|Trans|Errors' FORMAT 9999
COLUMN COMPLETE HEADING 'Propagated|Trans' FORMAT 9999

SELECT G.GLOBAL_NAME, D.ADMIN_REQUESTS, E.STATUS, DT.TRAN, DE.ERRORS, C.COMPLETE
    FROM (SELECT GLOBAL_NAME FROM GLOBAL_NAME) G,
      (SELECT COUNT(ID) ADMIN_REQUESTS FROM DBA_REPCATLOG) D,
      (SELECT COUNT(STATUS) STATUS FROM DBA_REPCATLOG WHERE STATUS = 'ERROR') E,
      (SELECT COUNT(*) TRAN FROM DEFTRANDEST) DT,
      (SELECT COUNT(*) ERRORS FROM DEFERROR) DE,
      (SELECT COUNT(A.DEFERRED_TRAN_ID) COMPLETE FROM DEFTRAN A
    WHERE A.DEFERRED_TRAN_ID NOT IN (
      SELECT B.DEFERRED_TRAN_ID FROM DEFTRANDEST B)) C; 

                                           Def    Def
                            Admin  Admin Trans  Trans Propagated
Database                  Reqests Errors Pairs Errors      Trans
------------------------- ------- ------ ----- ------ ----------
CEL1.WORLD                      2      2     0      0          0 

Listing the Master Sites Participating in a Master Group 

Run the following query to list the master sites for each master group at a replication site and indicate which master site is the master definition site for each master group: 

COLUMN GNAME HEADING 'Master Group' FORMAT A20
COLUMN DBLINK HEADING 'Sites' FORMAT A25
COLUMN MASTERDEF HEADING 'Master|Definition|Site?' FORMAT A10

SELECT GNAME, DBLINK, MASTERDEF
    FROM DBA_REPSITES
    WHERE MASTER = 'Y'
    AND GNAME NOT IN (SELECT GNAME FROM DBA_REPSITES WHERE SNAPMASTER = 'Y')
    ORDER BY GNAME; 

The subquery in the SELECT statement ensures that materialized view groups do not appear in the output. Your output looks similar to the following: 

                                               Master
                                               Definition
Master Group         Sites                     Site?
-------------------- ------------------------- ----------
REPG                 CEL1.WORLD                Y
REPG                 CEL2.WORLD                N 

This list indicates that CEL1.WORLD is the master definition site for the PPC_REPG master group, which also includes the master sites CEL1.WORLD. 

Listing General Information About Master Groups 

You can use the query in this section to list the following general information about the master groups at a master site: 

· The name of each master group. 

· The number of unpropagated deferred transaction-destination pairs. Each deferred transaction can have multiple destinations to which it will be propagated, and each destination is a single deferred transaction-destination pair. 

· The number of deferred transaction errors (error transactions) for each master group 

· The number of administrative requests for each master group 

· The number of administrative request errors for each master group 

COLUMN GNAME HEADING 'Master Group' FORMAT A15
COLUMN deftran HEADING 'Number of|Deferred|Transaction|Pairs' FORMAT 9999
COLUMN deftranerror HEADING 'Number of|Deferred|Transaction|Errors' FORMAT 9999
COLUMN adminreq HEADING 'Number of|Administrative|Requests' FORMAT 9999
COLUMN adminreqerror HEADING 'Number of|Administrative|Request|Errors'
COLUMN adminreqerror FORMAT 9999

SELECT G.GNAME,
       NVL(T.CNT1, 0) deftran,
       NVL(IE.CNT2, 0) deftranerror,
       NVL(A.CNT3, 0) adminreq,
       NVL(B.CNT4, 0) adminreqerror
    FROM
    (SELECT DISTINCT GNAME FROM DBA_REPGROUP WHERE MASTER='Y') G,
    (SELECT DISTINCT RO.GNAME, COUNT(DISTINCT D.DEFERRED_TRAN_ID) CNT1
        FROM  DBA_REPOBJECT RO, DEFCALL D, DEFTRANDEST TD
        WHERE RO.SNAME = D.SCHEMANAME
        AND RO.ONAME = D.PACKAGENAME
        AND RO.TYPE IN ('TABLE', 'PACKAGE', 'MATERIALIZED VIEW')
        AND TD.DEFERRED_TRAN_ID = D.DEFERRED_TRAN_ID
        GROUP BY RO.GNAME ) T,
    (SELECT DISTINCT RO.GNAME, COUNT(DISTINCT E.DEFERRED_TRAN_ID) CNT2
        FROM DBA_REPOBJECT RO, DEFCALL D, DEFERROR E
        WHERE RO.SNAME = D.SCHEMANAME
        AND RO.ONAME = D.PACKAGENAME
        AND RO.TYPE IN ('TABLE', 'PACKAGE', 'MATERIALIZED VIEW')
        AND E.DEFERRED_TRAN_ID = D.DEFERRED_TRAN_ID
        AND E.CALLNO = D.CALLNO
        GROUP BY RO.GNAME ) IE,
    (SELECT GNAME, COUNT(*) CNT3 FROM DBA_REPCATLOG GROUP BY GNAME) A,
    (SELECT GNAME, COUNT(*) CNT4 FROM DBA_REPCATLOG
        WHERE STATUS = 'ERROR'
        GROUP BY GNAME) B WHERE G.GNAME = IE.GNAME (+)
        AND G.GNAME = T.GNAME (+)
        AND G.GNAME = A.GNAME (+)
        AND G.GNAME = B.GNAME (+) ORDER BY G.GNAME; 

                  Number of   Number of                     Number of
                   Deferred    Deferred      Number of Administrative
                Transaction Transaction Administrative        Request
Master Group          Pairs      Errors       Requests         Errors
--------------- ----------- ----------- -------------- --------------
REPG                      1           0              0              0 

Listing Information About Materialized Views Based on a Master 

If you have materialized view sites based on a master, then you can use the query in this section to list the following information about the master: 

· The number of replication groups at a master. The replication groups can be either master groups or materialized view groups. 

· The number of registered materialized view groups based on the replication groups at the master. 

· The number of registered materialized views based on objects at the master. The objects can be either master tables or master materialized views. 

· The number of materialized view logs at the master. 

· The number of deployment templates at the master. 

COLUMN repgroup HEADING 'Number of|Replication|Groups' FORMAT 9999
COLUMN mvgroup HEADING 'Number of|Registered|MV Groups' FORMAT 9999
COLUMN mv HEADING 'Number of|Registered MVs' FORMAT 9999
COLUMN mvlog HEADING 'Number of|MV Logs' FORMAT 9999
COLUMN template HEADING 'Number of|Templates' FORMAT 9999

SELECT A.REPGROUP repgroup,
       B.MVGROUP mvgroup,
       C.MV mv,
       D.MVLOG mvlog,
       E.TEMPLATE template
    FROM (SELECT COUNT(G.GNAME) REPGROUP
             FROM DBA_REPGROUP G, DBA_REPSITES S
             WHERE G.MASTER = 'Y'
             AND S.MASTER = 'Y'
             AND G.GNAME = S.GNAME
             AND S.MY_DBLINK = 'Y') A,
         (SELECT COUNT(*) MVGROUP
             FROM DBA_REGISTERED_MVIEW_GROUPS) B,
         (SELECT COUNT(*) MV
             FROM DBA_REGISTERED_MVIEWS) C,
         (SELECT COUNT(*) MVLOG
             FROM (SELECT 1 FROM DBA_MVIEW_LOGS
             GROUP BY LOG_OWNER, LOG_TABLE)) D,
         (SELECT COUNT(*) TEMPLATE FROM DBA_REPCAT_REFRESH_TEMPLATES) E; 

  Number of  Number of
Replication Registered      Number of Number of Number of
     Groups  MV Groups Registered MVs   MV Logs Templates
----------- ---------- -------------- --------- ---------
          1          2              4         2         0 

Listing Information About the Materialized View Logs at a Master 

A materialized view log enables you to fast refresh materialized views based on a master. A master can be a master table or a master materialized view. If you have materialized view logs based at a master, then you can use the query in this section to list the following information about them: 

· The name of each log table that stores the materialized view log data 

· The owner of each materialized view log 

· The master on which each materialized view log is based 

· Whether a materialized view log is a row id materialized view log 

· Whether a materialized view log is a primary key materialized view log 

· Whether the materialized view log is an object id materialized view log 

· Whether a materialized view log has filter columns 

COLUMN LOG_TABLE HEADING 'Log Table' FORMAT A30
COLUMN LOG_OWNER HEADING 'Log|Owner' FORMAT A5
COLUMN MASTER HEADING 'Master' FORMAT A30
COLUMN ROWIDS HEADING 'Row|ID?' FORMAT A3
COLUMN PRIMARY_KEY HEADING 'Primary|Key?' FORMAT A7
COLUMN OBJECT_ID HEADING 'Object|ID?' FORMAT A6
COLUMN FILTER_COLUMNS HEADING 'Filter|Columns?' FORMAT A8

SELECT DISTINCT LOG_TABLE,
       LOG_OWNER,
       MASTER,
       ROWIDS,
       PRIMARY_KEY,
       OBJECT_ID,
       FILTER_COLUMNS
    FROM DBA_MVIEW_LOGS
    ORDER BY 1; 

                               Log                                  Row Primary Object Filter
Log Table                      Owner Master                         ID? Key?    ID?    Columns?
------------------------------ ----- ------------------------------ --- ------- ------ --------
MLOG$_DEPT                     SCOTT DEPT                           NO  YES     NO     NO
MLOG$_EMO                      SCOTT EMP                            NO  YES     NO     NO 

Listing the Materialized Views that Use a Materialized View Log 

More than one materialized view can use a materialized view log. If you have materialized view logs based at a master, then you can use the query in this section to list the following the materialized views that use each log: 

· The name of each log table that stores the materialized view log data 

· The owner of each materialized view log 

· The master on which each materialized view log is based 

· The materialized view identification number of each materialized view that uses the materialized view log 

· The name of each materialized view that uses the materialized view log 

COLUMN LOG_TABLE HEADING 'Mview|Log Table' FORMAT A30
COLUMN LOG_OWNER HEADING 'Mview|Log Owner' FORMAT A10
COLUMN MASTER HEADING 'Master' FORMAT A20
COLUMN MVIEW_ID HEADING 'Mview|ID' FORMAT 9999
COLUMN NAME HEADING 'Mview Name' FORMAT A20

SELECT L.LOG_TABLE, L.LOG_OWNER, B.MASTER, B.MVIEW_ID, R.NAME
FROM ALL_MVIEW_LOGS L, ALL_BASE_TABLE_MVIEWS B, ALL_REGISTERED_MVIEWS R
WHERE B.MVIEW_ID = R.MVIEW_ID
AND B.OWNER = L.LOG_OWNER
AND B.MASTER = L.MASTER; 

Mview                          Mview                           Mview
Log Table                      Log Owner  Master                  ID Mview Name
------------------------------ ---------- -------------------- ----- --------------------
MLOG$_DEPT                     SCOTT      DEPT                     6 DEPT
MLOG$_DEPT                     SCOTT      DEPT                     4 DEPT
MLOG$_EMP                      SCOTT      EMP                      5 EMP
MLOG$_EMP                      SCOTT      EMP                      3 EMP 

Listing Information About the Deployment Templates at a Master 

Deployment templates enable you to create multiple materialized view environments quickly. They also enable you to use variables to customize each materialized view environment for its individual needs. You can use the query in this section to list the following information about the deployment templates at a master: 

· The name of each deployment template 

· The owner of each deployment template 

· Whether a deployment template is public 

· The number of instantiated materialized view sites based on each deployment template 

· The comment associated with each deployment template 

COLUMN REFRESH_TEMPLATE_NAME HEADING 'Template|Name' FORMAT A10
COLUMN OWNER HEADING 'Owner' FORMAT A10
COLUMN PUBLIC_TEMPLATE HEADING 'Public?' FORMAT A7
COLUMN INSTANTIATED HEADING 'Number of|Instantiated|Sites' FORMAT 9999
COLUMN TEMPLATE_COMMENT HEADING 'Comment' FORMAT A35

SELECT DISTINCT RT.REFRESH_TEMPLATE_NAME,
       OWNER,
       PUBLIC_TEMPLATE,
       RS.INSTANTIATED,
       RT.TEMPLATE_COMMENT
    FROM DBA_REPCAT_REFRESH_TEMPLATES RT,
    (SELECT Y.REFRESH_TEMPLATE_NAME, COUNT(X.STATUS) INSTANTIATED
        FROM DBA_REPCAT_TEMPLATE_SITES X, DBA_REPCAT_REFRESH_TEMPLATES Y
        WHERE X.REFRESH_TEMPLATE_NAME(+) = Y.REFRESH_TEMPLATE_NAME
        GROUP BY Y.REFRESH_TEMPLATE_NAME) RS
        WHERE RT.REFRESH_TEMPLATE_NAME(+) = RS.REFRESH_TEMPLATE_NAME
        ORDER BY 1 

Monitoring Materialized View Sites 

This section contains queries that you can run to display information about the materialized view sites. 

sqlplus sys/manager@REP1.WORLD as sysdba 

Listing General Information About a Materialized View Site 

You can use the query in this section to list the following general information about the current materialized view site: 

· The number of materialized view groups at the site 

· The number of materialized views at the site 

· The number of refresh groups at the site 

COLUMN MVGROUP HEADING 'Number of|Materialized|View Groups' FORMAT 9999
COLUMN MV HEADING 'Number of|Materialized|Views' FORMAT 9999
COLUMN RGROUP HEADING 'Number of|Refresh Groups' FORMAT 9999

SELECT A.MVGROUP, B.MV, C.RGROUP
    FROM
    (SELECT COUNT(S.GNAME) MVGROUP
        FROM DBA_REPSITES S
        WHERE S.SNAPMASTER = 'Y') A,
     (SELECT COUNT(*) MV
        FROM DBA_MVIEWS) B,
     (SELECT COUNT(*) RGROUP
        FROM DBA_REFRESH) C; 

   Number of    Number of
Materialized Materialized      Number of
 View Groups        Views Refresh Groups
------------ ------------ --------------
           1            2               1 

Listing General Information About Materialized View Groups 

You can use the query in this section to list the following general information about the materialized view groups at the current materialized view site: 

· The name of each materialized view group 

· The master of each materialized view group 

· The method of propagation to a materialized view group's master, either asynchronous or synchronous 

· The comment associated with each materialized view group 

COLUMN GNAME HEADING 'Group Name' FORMAT A10
COLUMN DBLINK HEADING 'Master' FORMAT A25
COLUMN Propagation HEADING 'Propagation|Method' FORMAT A12
COLUMN SCHEMA_COMMENT HEADING 'Comment' FORMAT A30

SELECT S.GNAME,
       S.DBLINK,
       DECODE(S.PROP_UPDATES,
              0, 'ASYNCHRONOUS',
              1, 'SYNCHRONOUS') Propagation,
       G.SCHEMA_COMMENT
    FROM DBA_REPSITES S, DBA_REPGROUP G
    WHERE S.GNAME = G.GNAME
    AND S.SNAPMASTER = 'Y'; 

                                     Propagation
Group Name Master                    Method       Comment
---------- ------------------------- ------------ ------------------------------
REPG       CEL1.WORLD                ASYNCHRONOUS 

Listing Master Information For Materialized Views 

The following query shows the master for each materialized view at a replication site and whether the materialized view can be fast refreshed: 

COLUMN MVIEW_NAME HEADING 'Materialized|View Name' FORMAT A25
COLUMN OWNER HEADING 'Owner' FORMAT A10
COLUMN MASTER_LINK HEADING 'Master Link' FORMAT A30
COLUMN Fast_Refresh HEADING 'Fast|Refreshable?' FORMAT A16

SELECT MVIEW_NAME,
       OWNER,
       MASTER_LINK,
       DECODE(FAST_REFRESHABLE,
              'NO', 'NO',
              'DML', 'YES',
              'DIRLOAD', 'DIRECT LOAD ONLY',
              'DIRLOAD_DML', 'YES',
              'DIRLOAD_LIMITEDDML', 'LIMITED') Fast_Refresh
    FROM DBA_MVIEWS; 

                                                                         Fast
MVIEW_NAME                     Owner      Master Link                    Refreshable?
------------------------------ ---------- ------------------------------ ----------------
DEPT                           SCOTT      @CEL1.WORLD                    YES
EMP                            SCOTT      @CEL1.WORLD                    YES 

Listing the Properties of Materialized Views 

You can use the query in this section to list the following information about the materialized views at the current replication site: 

· The name of each materialized view 

· The owner of each materialized view 

· The refresh method used by each materialized view: COMPLETE, FORCE, FAST, or NEVER 

· Whether a materialized view is updatable 

· The last date on which each materialized view was refreshed 

COLUMN MVIEW_NAME HEADING 'Materialized|View Name' FORMAT A25
COLUMN OWNER HEADING 'Owner' FORMAT A10
COLUMN REFRESH_METHOD HEADING 'Refresh|Method' FORMAT A10
COLUMN UPDATABLE HEADING 'Updatable?' FORMAT A10
COLUMN LAST_REFRESH_DATE HEADING 'Last|Refresh|Date' FORMAT A25
COLUMN LAST_REFRESH_TYPE HEADING 'Last|Refresh|Type' FORMAT A15

SELECT MVIEW_NAME,
       OWNER,
       REFRESH_METHOD,
       UPDATABLE,
       TO_CHAR(LAST_REFRESH_DATE,'DD.MM.YYYY:HH24:MI:SS') LAST_REFRESH_DATE,
       LAST_REFRESH_TYPE
    FROM DBA_MVIEWS; 

                                                           Last                      Last
Materialized                         Refresh               Refresh                   Refresh
View Name                 Owner      Method     Updatable? Date                      Type
------------------------- ---------- ---------- ---------- ------------------------- ---------------
DEPT                      SCOTT      FAST       N          22.09.2005:19:29:31       FAST
EMP                       SCOTT      FAST       N          22.09.2005:19:29:31       FAST 

Listing Information About the Refresh Groups at a Materialized View Site 

Each refresh group at a materialized view site is associated with a refresh job that refreshes the materialized views in the refresh group at a set interval. You can query the DBA_REFRESH data dictionary view to list the following information about the refresh jobs at a materialized view site: 

· The name of the refresh group. 

· The owner of the refresh group. 

· Whether the refresh job is broken. 

· The next date and time when the refresh job will run. 

· The current interval setting for the refresh job. The interval setting specifies the amount of time between the start of a job and the next start of the same job. 

COLUMN RNAME HEADING 'Refresh|Group|Name' FORMAT A10
COLUMN ROWNER HEADING 'Refresh|Group|Owner' FORMAT A10
COLUMN BROKEN HEADING 'Broken?' FORMAT A7
COLUMN next_refresh HEADING 'Next Refresh'
COLUMN INTERVAL HEADING 'Interval' FORMAT A20

SELECT RNAME,
       ROWNER,
       BROKEN,
       TO_CHAR(NEXT_DATE, 'DD-MON-YYYY HH:MI:SS AM') next_refresh,
       INTERVAL
    FROM DBA_REFRESH
    ORDER BY 1;

Refresh    Refresh
Group      Group
Name       Owner      Broken? Next Refresh            Interval
---------- ---------- ------- ----------------------- --------------------
REVG       MVIEWADMIN Y       01-JAN-4000 12:00:00 AM SYSDATE + 1/24/4 

connect MVIEWADMIN/MVIEWADMIN@REP1
execute dbms_job.run(2); 

PL/SQL procedure successfully completed. 

Refresh    Refresh
Group      Group
Name       Owner      Broken? Next Refresh            Interval
---------- ---------- ------- ----------------------- --------------------
REVG       MVIEWADMIN N       01-JAN-4000 12:00:00 AM SYSDATE + 1/24/4 

Determining Which Materialized Views Are Currently Refreshing 

The following query shows the materialized views that are currently refreshing: 

COLUMN SID HEADING 'Session|Identifier' FORMAT 9999
COLUMN SERIAL# HEADING 'Serial|Number' FORMAT 999999
COLUMN CURRMVOWNER HEADING 'Owner' FORMAT A15
COLUMN CURRMVNAME HEADING 'Materialized|View' FORMAT A25

SELECT * FROM V$MVREFRESH; 

   Session  Serial                 Materialized
Identifier  Number Owner           View
---------- ------- --------------- -------------------------
        96      51 SCOTT           DEPT 

Monitoring Administrative Requests 

This section contains queries that you can run to display information about the administrative requests at a master site. 

Listing General Information About Administrative Requests at the Master 

You can use the query in this section to list the following general information about the administrative requests at a master site: 

· The identification number of each administrative request 

· The action requested by each administrative request 

· The status of each request 

· The master site where the request is being executed 

COLUMN ID HEADING 'Admin|Request|ID' FORMAT 999999
COLUMN REQUEST HEADING 'Request' FORMAT A25
COLUMN STATUS HEADING 'Status' FORMAT A15
COLUMN MASTER HEADING 'Master|Site' FORMAT A25

SELECT ID, REQUEST, STATUS, MASTER FROM DBA_REPCATLOG; 

  Admin
Request                                           Master
     ID Request                   Status          Site
------- ------------------------- --------------- -------------------------
     11 CREATE_MASTER_REPOBJECT   ERROR           CEL1.WORLD
     10 CREATE_MASTER_REPOBJECT   ERROR           CEL1.WORLD 

Determining the Cause of Administrative Request Errors at the Master 

You can determine the cause of an administrative request error by displaying its error message. 

COLUMN ID HEADING 'Admin|Request|ID' FORMAT 999999
COLUMN REQUEST HEADING 'Request' FORMAT A30
COLUMN ERRNUM HEADING 'Error|Number' FORMAT 999999
COLUMN MESSAGE HEADING 'Error|Message' FORMAT A32

SELECT ID, REQUEST, ERRNUM, MESSAGE
    FROM DBA_REPCATLOG WHERE STATUS = 'ERROR'; 

  Admin
Request                                  Error Error
     ID Request                         Number Message
------- ------------------------------ ------- --------------------------------
     11 CREATE_MASTER_REPOBJECT         -23308 ORA-23308: object PPB.ACTIVATION
                                               AREAPREFIX does not exist or is
                                               invalid

     10 CREATE_MASTER_REPOBJECT         -23308 ORA-23308: object PPB.ACTIVATION
                                               AREA does not exist or is invalid 

Listing Information About the Job that Executes Administrative Requests at the Master 

Each master group is associated with a DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN job that executes administrative requests. You can query the DBA_JOBS data dictionary view to list the following information about this job. The DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN porcedure executes the local outstanding deferred administrative procedures for the specified master group at the current master site, or (with assistance from job queues) for all master sites. 

· The job identification number of each do_deferred_repcat_admin job. Each job created by the DBMS_JOB package is assigned a unique identification number. 

· The privilege schema, which is the schema whose default privileges apply to the job. 

· The status of each do_deferred_repcat_admin job, either normal or broken. 

· The next date and time when each do_deferred_repcat_admin job will run. 

· The current interval setting for each do_deferred_repcat_admin job. The interval setting specifies the amount of time between the start of a job and the next start of the same job. 

COLUMN JOB HEADING 'Job ID' FORMAT 999999
COLUMN PRIV_USER HEADING 'Privilege|Schema' FORMAT A10
COLUMN BROKEN HEADING 'Broken?' FORMAT A7
COLUMN next_start HEADING 'Next Start'
COLUMN INTERVAL HEADING 'Interval' FORMAT A20

SELECT JOB,
       PRIV_USER,
       BROKEN,
       TO_CHAR(NEXT_DATE,'DD.MM.YYYY:HH:MI:SS AM') next_start,
       INTERVAL
    FROM DBA_JOBS
    WHERE WHAT LIKE '%dbms_repcat.do_deferred_repcat_admin%'
    ORDER BY 1; 

        Privilege
 Job ID Schema     Broken? Next Start             Interval
------- ---------- ------- ---------------------- --------------------
      2 REPADMIN   N       12.09.2005:04:25:06 PM SYSDATE + (1/144) 

Checking the Definition of Each DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN Job 

You can query the DBA_JOBS data dictionary view to show the definition of each DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN job at a replication site. The following query shows the definitions: 

COLUMN JOB HEADING 'Job ID' FORMAT 999999
COLUMN WHAT HEADING 'Definitions of Admin Req Jobs' FORMAT A70

SELECT JOB, WHAT
  FROM DBA_JOBS
  WHERE WHAT LIKE '%dbms_repcat.do_deferred_repcat_admin%'
  ORDER BY 1; 

 Job ID Definitions of Admin Req Jobs
------- ----------------------------------------------------------------------
      2 dbms_repcat.do_deferred_repcat_admin('"REPG"', FALSE); 

Monitoring the Deferred Transactions Queue 

This section contains queries that you can run to display information about the deferred transactions queue at a replication site. 

Listing the Number of Deferred Transactions for Each Destination Master Site 

You can find the number of unpropagated deferred transactions for each destination master site by running the query in this section. This query shows each master site to which the current master site is propagating deferred transactions and the number of deferred transactions to be propagated to each destination site. 

CONNECT repadmin/repadmin@CEL1.WORLD

COLUMN DEST HEADING 'Destination' FORMAT A45
COLUMN TRANS HEADING 'Def Trans' FORMAT 9999

SELECT DBLINK DEST, COUNT(*) TRANS
FROM DEFTRANDEST D
GROUP BY DBLINK; 

Destination                                   Def Trans

--------------------------------------------- ---------

CEL1.WORLD                                            1
Listing General Information About the Push Jobs at a Replication Site 

Each scheduled link at a replication site is associated with a push job that propagates deferred transactions in the deferred transaction queue to a destination site. You can use the query in this section to list the following information about the push jobs at a replication site: 

· The job identification number of each push job. Each job created by the DBMS_JOB package is assigned a unique identification number. 

· The privilege schema, which is the schema whose default privileges apply to the job. 

· The destination site where the deferred transactions are pushed. 

· The status of the push job, either normal or broken. 

CONNECT repadmin/repadmin@CEL1.WORLD

COLUMN JOB HEADING 'Job ID' FORMAT 999999
COLUMN PRIV_USER HEADING 'Privilege|Schema' FORMAT A10
COLUMN DBLINK HEADING 'Destination' FORMAT A40
COLUMN BROKEN HEADING 'Broken?' FORMAT A7

SELECT J.JOB,
       J.PRIV_USER,
       S.DBLINK,
       J.BROKEN
    FROM DEFSCHEDULE S, DBA_JOBS J
    WHERE S.DBLINK != (SELECT GLOBAL_NAME FROM GLOBAL_NAME)
    AND S.JOB = J.JOB
    ORDER BY 1; 

        Privilege
 Job ID Schema     Destination                              Broken?
------- ---------- ---------------------------------------- -------
      6 REPADMIN   CEL2.WORLD                               N 

Determining the Next Start Time and Interval for the Push Jobs 

Each scheduled link at a replication site is associated with a push job that propagates deferred transactions in the deferred transaction queue to a destination site. You can query the DEFSCHEDULE and DBA_JOBS data dictionary views to list the following information about the push jobs at a replication site: 

· The job identification number of each push job. Each job created by the DBMS_JOB package is assigned a unique identification number. 

· The destination site where the deferred transactions are pushed. 

· The next date and time when the push job will run. 

· The current interval setting for the push job. The interval setting specifies the amount of time between the start of a job and the next start of the same job. 

CONNECT repadmin/repadmin@CEL1.WORLD

COLUMN JOB HEADING 'Job ID' FORMAT 999999
COLUMN DBLINK HEADING 'Destination' FORMAT A22
COLUMN next_start HEADING 'Next Start'
COLUMN INTERVAL HEADING 'Interval' FORMAT A25

SELECT JOB,
       DBLINK,
       TO_CHAR(NEXT_DATE, 'DD-MON-YYYY HH:MI:SS AM') next_start,
       INTERVAL
    FROM DEFSCHEDULE
    WHERE DBLINK != (SELECT GLOBAL_NAME FROM GLOBAL_NAME)
    AND JOB IS NOT NULL
    ORDER BY 1; 

 Job ID Destination            Next Start              Interval
------- ---------------------- ----------------------- -------------------------
      6 CEL2.WORLD             25-SEP-2005 02:00:46 PM SYSDATE + (1/24/60) 

Determining the Total Number of Transactions Queued for Propagation 

Run the following query to display the total number of transactions in the deferred transaction queue that are waiting to be propagated: 

CONNECT repadmin/repadmin@CEL1.WORLD

SELECT COUNT(DISTINCT DEFERRED_TRAN_ID) "Transactions Queued"
    FROM DEFTRANDEST; 

Transactions Queued
-------------------
                  0 

Monitoring Purges of Successfully Propagated Transactions 

This section contains queries that you can run to display information about purges of successfully propagated transactions from the deferred transactions queue. 

Listing General Information About the Purge Job 

During standard setup of a replication site, you configure a purge job to remove successfully propagated transactions from the deferred transactions queue. You can query the DBA_JOBS data dictionary view to list the following information about the purge job at a replication site: 

· The job identification number of the purge job. Each job created by the DBMS_JOB package is assigned a unique identification number. 

· The privilege schema, which is the schema whose default privileges apply to the job. 

· The status of the job, either normal or broken. 

· The next date and time when the purge job will run. 

· The current interval setting for the purge job. The interval setting specifies the amount of time between the start of a job and the next start of the same job. 

CONNECT repadmin/repadmin@CEL1.WORLD

COLUMN JOB HEADING 'Job ID' FORMAT 999999
COLUMN PRIV_USER HEADING 'Privilege|Schema' FORMAT A10
COLUMN BROKEN HEADING 'Broken?' FORMAT A7
COLUMN next_start HEADING 'Next Start'
COLUMN INTERVAL HEADING 'Interval' FORMAT A25

SELECT JOB,
       PRIV_USER,
       BROKEN,
       TO_CHAR(NEXT_DATE, 'DD.MM.YYYY:HH:MI:SS AM') next_start,
       INTERVAL
    FROM DBA_JOBS
    WHERE WHAT LIKE '%dbms_defer_sys.purge%'
    ORDER BY 1; 

        Privilege
 Job ID Schema     Broken? Next Start             Interval
------- ---------- ------- ---------------------- -------------------------
      1 REPADMIN   N       13.09.2005:08:08:37 AM sysdate+1/24/30 

Checking the Definition of the Purge Job 

You can query the DBA_JOBS data dictionary view to show the definition of the purge job at a replication site. The following query shows the definition: 

SELECT WHAT "Definition of the Purge Job"
    FROM DBA_JOBS
    WHERE WHAT LIKE '%dbms_defer_sys.purge%' ORDER BY 1; 

Definition of the Purge Job
---------------------------------------------------------------------------------------
declare rc binary_integer; begin rc := sys.dbms_defer_sys.purge( delay_seconds=>0); end; 

Determining the Amount of Time Since the Last Purge 

The following query shows the total amount of time, in minutes, since the successfully propagated transactions were purged from the deferred transactions queue: 

SELECT ((SYSDATE - LAST_PURGE_TIME) / 60) "Minutes Since Last Purge"
    FROM V$REPLQUEUE; 

Minutes Since Last Purge
------------------------
                13.43333 

Determining the Total Number of Purged Transactions 

The following query shows the total number of successfully propagated transactions that have been purged from the deferred transaction queue since the instance was last started: 

SELECT TXNS_PURGED "Transactions Purged"
    FROM V$REPLQUEUE; 

Transactions Purged
-------------------
               6541 

Monitoring the Error Queue 

This section contains queries that you can run to display information about the error queue at a replication site. The error queue contains deferred transactions that resulted in an error at the destination site. These error transactions are placed in the error queue at the destination site. 

Listing General Information About the Error Transactions at a Replication Site 

The following query lists the general information about the error transactions at a replication site: 

COLUMN DEFERRED_TRAN_ID HEADING 'Deferred|Transaction|ID' FORMAT A11
COLUMN ORIGIN_TRAN_DB HEADING 'Origin|Database' FORMAT A15
COLUMN DESTINATION HEADING 'Destination|Database' FORMAT A15
COLUMN TIME_OF_ERROR HEADING 'Time of|Error' FORMAT A22
COLUMN ERROR_NUMBER HEADING 'Oracle|Error|Number' FORMAT 999999

SELECT DEFERRED_TRAN_ID,
       ORIGIN_TRAN_DB,
       DESTINATION,
       TO_CHAR(START_TIME, 'DD-Mon-YYYY hh24:mi:ss') TIME_OF_ERROR,
       ERROR_NUMBER
    FROM DEFERROR ORDER BY START_TIME; 

Deferred                                                            Oracle
Transaction Origin          Destination     Time of                  Error
ID          Database        Database        Error                   Number
----------- --------------- --------------- ---------------------- -------
1.8.2470    CEL2.WORLD      CEL1.WORLD      22-Oct-2003 07:19:14      1403 

You can use the deferred transaction ID and the destination database to either attempt to rerun the transaction that caused the error or to delete the error. 

For example, to attempt to rerun the transaction in the previous example, enter the following: 

EXECUTE DBMS_DEFER_SYS.EXECUTE_ERROR('1.8.2470', 'CEL1.WORLD'); 

To delete the error in the previous example, enter the following: 

EXECUTE DBMS_DEFER_SYS.DELETE_ERROR('1.8.2470', 'CEL1.WORLD'); 

Typically, you should delete an error only if you have resolved it manually. 

Determining the Percentage of Error Transactions 

When propagating transactions to a remote master site, some transactions are propagated and applied successfully while other transactions can result in errors at the remote master site. Transactions that result in errors are called error transactions. 

Run the following query to display the percentage of error transactions that resulted from propagation to the remote master site CEL2.WORLD: 

SELECT DECODE(TOTAL_TXN_COUNT, 0, 'No Transactions',
       (TOTAL_ERROR_COUNT/TOTAL_TXN_COUNT)*100) "ERROR PERCENTAGE"
  FROM DEFSCHEDULE
  WHERE DBLINK = 'CEL2.WORLD'; 

Error Percentage
----------------
           3.265 

If this query returns 'No transactions', then no transactions have been propagated to the specified remote site since the statistics were last cleared. 

Listing the Number of Error Transactions from Each Origin Master Site 

You can find the number of transaction errors resulting from pushes by each origin master site by running the query in this section. 

COLUMN SOURCE HEADING 'Origin' FORMAT A45
COLUMN ERRORS HEADING 'Def Trans Errors' FORMAT 9999

SELECT E.ORIGIN_TRAN_DB SOURCE, COUNT(*) ERRORS
    FROM DEFERROR E
    GROUP BY E.ORIGIN_TRAN_DB; 

Origin                                        Def Trans Errors
--------------------------------------------- ----------------
CEL2.WORLD                                                   1 

Listing the Error Messages for the Error Transactions at a Replication Site 

The following query lists the error messages for the error transactions at a replication site: 

COLUMN DEFERRED_TRAN_ID HEADING 'Deferred|Transaction|ID' FORMAT A11
COLUMN ERROR_MSG HEADING 'Error Messages' FORMAT A68

SELECT DEFERRED_TRAN_ID, ERROR_MSG
    FROM DEFERROR; 

Deferred
Transaction
ID          Error Messages
----------- --------------------------------------------------------------------
1.8.2470    ORA-01403: no data found 

Determining the Error Operations at a Replication Site 

The following query lists the type of operation that was attempted for each call that caused an error at a replication site: 

COLUMN CALLNO HEADING 'Call|Number' FORMAT 9999
COLUMN DEFERRED_TRAN_ID HEADING 'Deferred|Transaction|ID' FORMAT A11
COLUMN PACKAGENAME HEADING 'Package|Name' FORMAT A20
COLUMN PROCNAME HEADING 'Operation' FORMAT A15
COLUMN ORIGIN_TRAN_DB HEADING 'Origin|Database' FORMAT A15

SELECT /*+ ORDERED */
       C.CALLNO,
       C.DEFERRED_TRAN_ID,
       C.PACKAGENAME,
       C.PROCNAME, E.ORIGIN_TRAN_DB
    FROM DEFERROR E, DEFCALL C
    WHERE C.DEFERRED_TRAN_ID = E.DEFERRED_TRAN_ID
    AND C.CALLNO = E.CALLNO
    ORDER BY E.START_TIME; 

       Deferred
  Call Transaction Package                              Origin
Number ID          Name                 Operation       Database
------ ----------- -------------------- --------------- ---------------
     0 1.8.2470    EMPLOYEES$RP         REP_UPDATE      CEL2.WORLD 

Monitoring Performance in a Replication Environment 

This section contains queries that you can run to monitor the performance of your replication environment. 

Tracking the Average Number of Row Changes in a Replication Transaction 

The following query shows the average number of row changes in a replication transaction since instance startup: 

SELECT DECODE(TXNS_ENQUEUED, 0, 'No Transactions Enqueued',
       (CALLS_ENQUEUED / TXNS_ENQUEUED)) "Average Number of Row Changes"
  FROM V$REPLQUEUE; 

Average Number of Row Changes
-----------------------------
                        56.16 

If this query returns 'No Transactions Enqueued', then no transactions have been enqueued since the start of the instance. 

Tracking the Rate of Transactions Entering the Deferred Transactions Queue 

The following query shows the average number of transactions for each second entering at the deferred transactions queue at the current site since instance startup: 

SELECT (R.TXNS_ENQUEUED / ((SYSDATE - I.STARTUP_TIME)*24*60*60)) "Average TPS"
    FROM V$REPLQUEUE R, V$INSTANCE I; 

Average TPS
-----------
        150 

Determining the Average Network Traffic Created to Propagate a Transaction 

Propagation of deferred transactions creates a certain amount of traffic on your network. Here, the network traffic created by a transaction is the number of bytes being sent and received and the number of network round trips needed to propagate the transaction. 

The following query shows the average network traffic created when propagating a transaction to the CEL2.WORLD remote master site: 

COLUMN AV_BYTES HEADING 'Average Bytes' FORMAT 999999999
COLUMN AV_TRIPS HEADING 'Average Round Trips' FORMAT 9999999

SELECT
 DECODE(TOTAL_TXN_COUNT, 0, 'No Transactions',
 ((TOTAL_BYTES_SENT + TOTAL_BYTES_RECEIVED) / TOTAL_TXN_COUNT)) AV_BYTES,
 DECODE(TOTAL_TXN_COUNT, 0, 'No Transactions',
 (TOTAL_ROUND_TRIPS / TOTAL_TXN_COUNT)) AV_TRIPS
 FROM DEFSCHEDULE WHERE DBLINK = 'CEL2.WORLD'; 

Average Bytes          Average Round Trips
---------------------- -------------------
69621.5                5 

If this query returns 'No transactions' in both columns, then no transactions have been propagated to the specified remote site since the statistics were last cleared. 

Determining the Average Amount of Time to Apply Transactions at Remote Sites 

Average latency is the average number of seconds between the first call of a transaction on the current site and the confirmation that the transaction was applied at the remote site. The first call begins when the user makes the first data manipulation language (DML) change, not when the transaction is committed. 

The following query shows the average latency for applying transactions at the remote master site CEL2.WORLD: 

SELECT AVG_LATENCY "Average Latency"
    FROM DEFSCHEDULE
    WHERE DBLINK='CEL2.WORLD'; 

Average Latency
---------------
           25.5 

Determining the Percentage of Time the Parallel Propagation Job Spends Sleeping 

When the parallel propagation coordinator is inactive, it is sleeping. You control the amount of time that the propagation coordinator sleeps using the delay_seconds parameter in the DBMS_DEFER_SYS.PUSH procedure. 

The following query shows the percentage of time that the parallel propagation coordinator spends sleeping when propagating transactions to the CEL2.WORLD remote master site: 

SELECT DECODE(AVG_THROUGHPUT, 0, NULL,
       ((TOTAL_SLEEP_TIME / (TOTAL_TXN_COUNT / AVG_THROUGHPUT)) * 100))
       "Percent Sleep Time"
  FROM DEFSCHEDULE WHERE DBLINK = 'CEL2.WORLD'; 

Percent Sleep Time
------------------
                 2 

In this case, the parallel propagation coordinator is active 98% of the time. 

If this query returns a NULL, then no transactions have been propagated to the specified remote site since the statistics were last cleared or since the last database startup. 

Clearing the Statistics for a Remote Master Site in the DEFSCHEDULE View 

To clear the propagation statistics in the DEFSCHEDULE view for a particular remote master site, use the CLEAR_PROP_STATISTICS procedure in the DBMS_DEFER_SYS package. For example, to clear the propagation statistics for the CEL2.WORLD remote master site, run the following procedure: 

BEGIN
  DBMS_DEFER_SYS.CLEAR_PROP_STATISTICS (
   dblink => 'CEL1.WORLD');
END;
/ 

Monitoring Parallel Propagation of Deferred Transactions Using V$REPLPROP 

The V$REPLPROP dynamic performance view provides information about current parallel propagation sessions. 

The V$REPLPROP dynamic performance view is only relevant if you are using parallel propagation of deferred transactions. If you are using serial propagation, then this view is empty. 

Determining the Databases to Which You Are Propagating Deferred Transactions 

Run the following query to list the database link of each database to which you are currently propagating deferred transactions using parallel propagation: 

SELECT DBLINK "Database Link"
    FROM V$REPLPROP
    WHERE NAME LIKE '%Coordinator%'; 

Database Link
-----------------
CEL2.WORLD
ORC3.WORLD 

Determining the Transactions Currently Being Propagated to a Remote Master 

You can list the following information about the transactions that are currently being propagated to a specified remote master site using parallel propagation: 

· The transaction identification number of each transaction. 

· The number of calls in each transaction. 

· The percentage of processed calls in each transaction. The number in this column becomes larger as the calls in the transaction are processed. When the number reaches 100, all of the calls are processed. 

SELECT /*+ ORDERED */ P.XID "Tran Being Propagated",
       (MAX(C.CALLNO) + 1) "Number of Calls in Tran",
       (P.SEQUENCE/MAX(C.CALLNO) + 1) * 100 "% Processed Calls"
   FROM V$REPLPROP P, DEFCALL C
   WHERE P.NAME LIKE '%SLAVE%'
   AND P.DBLINK = 'CEL1.WORLD'
   AND C.DEFERRED_TRAN_ID = P.XID
   GROUP BY P.XID, P.SEQUENCE; 

Tran Being Propagated  Number of Calls in Tran % Processed Calls
---------------------- ----------------------- -----------------
1.11.4264                                43357               78
1.15.4256                                23554               49 

The transaction identification numbers should change as existing transactions are pushed and new transactions are processed. This query can be particularly useful if the any of the following conditions apply to your replication environment: 

· You push a large number of transactions on a regular basis. 

· You have some transactions that are very large. 

· You are simulating continuous push using asynchronous propagation. 

If the first two bullets apply to your replication environment, then you can run this query to check if the slave processes are pushing the transactions. In this type of environment, the slave processes do not exist when they are not pushing transactions. 

In replication environments that are simulating continuous push, the slave processes exist whenever there are transactions to push in the deferred transactions queue. When there are no transactions to push, the slave processes might not exist. So, when there are transactions to push, you can use this query to make sure the slave processes exist and are processing the transactions. 

Removing the Replication from the Database 

Stop replication 

CONNECT repadmin/repadmin@CEL1.WORLD;

BEGIN
   DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
   gname => 'REPG');
END;
/ 

Drop Materialized View Group 

CONNECT mviewadmin/mviewadmin@REP1.WORLD;

BEGIN
   DBMS_REPCAT.DROP_MVIEW_REPGROUP (
      gname => 'REPG');
END;
/ 

Drop Refresh Group 

BEGIN
   DBMS_REFRESH.DESTROY (
      name => 'REVG');
END;
/ 

Drop materialized views 

DROP MATERIALIZED VIEW scott.emp;
DROP MATERIALIZED VIEW scott.dept; 

Drop Master Replication Group 

CONNECT repadmin/repadmin@CEL1.WORLD; 

BEGIN
   DBMS_REPCAT.DROP_MASTER_REPGROUP (
      gname => 'REPG');
END;
/ 

Drop Materialized View Logs 

DROP MATERIALIZED VIEW LOG ON scott.emp;
DROP MATERIALIZED VIEW LOG ON scott.dept; 

Remove Database Links 

CONNECT mviewadmin/mviewadmin@REP1.WORLD;
DROP DATABASE LINK CEL1.WORLD; 

CONNECT sys/manager@CEL1.WORLD as sysdba;
DROP PUBLIC DATABASE LINK CEL2.WORLD; 

Remove any leftover DBA_JOBS 

CONNECT repadmin/repadmin@CEL1.WORLD

COLUMN JOB HEADING 'Job ID' FORMAT 999999
COLUMN PRIV_USER HEADING 'Privilege|Schema' FORMAT A10
COLUMN BROKEN HEADING 'Broken?' FORMAT A7
COLUMN next_start HEADING 'Next Start'
COLUMN INTERVAL HEADING 'Interval' FORMAT A25

SELECT JOB,
       PRIV_USER,
       BROKEN,
       TO_CHAR(NEXT_DATE, 'DD.MM.YYYY:HH:MI:SS AM') next_start,
       INTERVAL
    FROM DBA_JOBS
ORDER BY 1; 

EXECUTE Dbms_Job.Remove(<Number>); 

Remove Administrator 

CONNECT sys/manager@CEL1.WORLD as sysdba;
--
BEGIN
   DBMS_REPCAT_ADMIN.UNREGISTER_USER_REPGROUP (
      username=>'repadmin',
      privilege_type => 'receiver',
      list_of_gnames => NULL);
END;
/

BEGIN
   DBMS_REPCAT_ADMIN.UNREGISTER_USER_REPGROUP (
      username=>'proxyadmin',
      privilege_type => 'proxy_snapadmin',
      list_of_gnames => NULL);
END;
/ 

CONNECT sys/manager@REP1.WORLD as sysdba;

BEGIN
   DBMS_REPCAT_ADMIN.UNREGISTER_USER_REPGROUP (
      username=>'mviewadmin',
      privilege_type => 'receiver',
      list_of_gnames => NULL);
END;
/ 

Unregister Propagator 

CONNECT sys/manager@REP1.WORLD as sysdba;

BEGIN
   Dbms_Defer_Sys.Unregister_Propagator (
      username=>'propagator');
END;
/ 

Revoke Admin Any Schema Privilage from Replication Administrator 

CONNECT sys/manager@CEL1.WORLD as sysdba;

BEGIN
   Dbms_Repcat_Admin.Revoke_Admin_Any_Schema (
      username=>'repadmin');
END;
/ 


