
It’s all about the Cardinalities

ORACLE SQL

PERFORMANCE TUNING

AND OPTIMIZATION

By Kevin Meade

It’s all about the Cardinalities

Oracle SQL Performance Tuning and Optimization

Copyright 2014 by Kevin Meade

km133688@sbcglobal.net

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or by any information storage and retrieval

system, without the prior written permission of the copyright owner.

However, subject to all other legal limitations in their respective locales and limited to any rights others may

have like trademark holders etc. that might be referenced in this book, as author and copyright holder to my

material:

I give permission to publishers and distributors to provide viewing access to this book in order to allow

prospective buyers opportunity to evaluate the book before purchase. One example of this is Amazon’s

“Look Inside” feature.

I give permission to anyone to distribute all the helper scripts as shown in the KNOW YOUR SCRIPTS

section, to others without restriction. Those distributing these scripts agree to release me from any liability

as I offer no warranty express or implied to these scripts. This book is after all, about sharing and improving

the work-a-day world of Oracle.

I give permission to anyone who owns a legal copy of this book in whatever form to reproduce pieces of it

for educational purposes. This would include but not be limited to: sharing information with friends, writing

your own book or web article, or creating a class using these materials. Just be reasonable, don’t go

making copies of entire chapters, and remember to mention the book please.

It’s all about the Cardinalities

1

Contents

About the Author 19

How this Book is Different 21

Those who came before 23

Getting the FREE STUFF 25

Reviews on Amazon 27

WWW.ORAFAQ.COM 29

John Watson ... 29

Jim Irvine ... 29

Lalit Kumar .. 29

Mark Kilgour .. 29

Ross Leishman ... 30

Saša Dominković .. 30

Soaring with Eagles 31

Barry Ward .. 31

Dennis Deluzio .. 31

It’s all about the Cardinalities

2

Dheeraj Madadi ... 31

Jack McGuirk ... 31

Nirav Kathrani.. 31

Robert Romanowski 31

Subrahmanyam Jannalagadda 32

Chapter 1: DRIVING TABLE
and JOIN ORDER 33

The Four Parts of a Query 33

The Filtered Rows Percentage Method 34

First Look at a Query ... 35

Query Diagrams .. 36

Driving Table and Join Order ... 37

COUNT QUERIES and FILTER QUERIES 38

FRP Spreadsheet .. 39

A Filtered Rows Percentage Example 40

1. Format the PROBLEM QUERY .. 41

2. Familiarize yourself with the problem query 45

Get a Description .. 45
Look for Mistakes ... 45
Check for the Unusual ... 46

3. Create a spreadsheet ... 47

It’s all about the Cardinalities

3

4. List tables from the query in the spreadsheet 47

5. Note the row count for each table ... 49

6. Build and run FILTER QUERIES for each table 50

7. Note the filtered row counts .. 52

8. Compute FILTERED ROWS PERCENTAGE for each table . 52

9. Determine PREFERRED JOIN ORDER 53

10. Construct a QUERY DIAGRAM .. 54

11. Determine INITIAL JOIN ORDER .. 55

12. Build and run RECONSTRUCTION QUERIES 57

ATT_EMP_ORG Reconstruction Query ... 58
CBE_EMP Reconstruction Query .. 58
V_CBE_LV_RQST Reconstruction Query .. 58
V_PLCY_DIM Reconstruction Query .. 59
V_LV_PLN_USGE_FACT Reconstruction Query ... 60
ATT_LV_TYP (LV_SEG_LV_TYP) Reconstruction Query ... 61
ATT_LV_PLN_TYP Reconstruction Query ... 62
ATT_LV_PLN Reconstruction Query ... 63

13. Note reconstruction row counts .. 65

14. Use CARDINALITY FEEDBACK to adjust join order 65

15. Repeat (11) thru (12) once if join order changed 65

16. Determine if further action is necessary 66

Summary #1 .. 69

How to use FILTERED ROWS PERCENTAGE
Method .. 69

Backtracking on CARDINALITY FEEDBACK 70

14. Use CARDINALITY FEEDBACK to adjust join order 70

15. Repeat (11) through (12) once if join order changed 71

The Short Cut (Brain over Brawn) 73

It’s all about the Cardinalities

4

Scripts used in the Chapter 79

Chapter Summary ... 79

Chapter 2: Ways to Use a
Query Execution Plan Error!
Bookmark not defined.

EXPLAIN PLAN Conventions Used Error!
Bookmark not defined.

Ways to Use a QEP Error! Bookmark not
defined.

Identifying where the CBO thinks it will be spending most of its
time and resources Error! Bookmark not defined.
Locating mistakes in Cardinality Estimates . Error! Bookmark not
defined.
Observing how Oracle has modified the Query .. Error! Bookmark
not defined.

QUERY REWRITE (Implicit Data Type Conversion) Error! Bookmark not defined.
QUERY REWRITE (Meaningless Expression Removal and Predicate Ordering) Error!
Bookmark not defined.
QUERY REWRITE (Imaginary Predicates) Error! Bookmark not defined.

Checking Predicate Efficiencies.... Error! Bookmark not defined.

FILTER = WASTE: Evaluating Efficiency in Fetching Rows Error! Bookmark not defined.
FILTER = WASTE: Evaluating Efficiency in Joining Rows Error! Bookmark not defined.
FILTER = WASTE: Partial Use of a Concatenated Index Error! Bookmark not defined.

It’s all about the Cardinalities

5

Comparing Estimates to Actuals ... Error! Bookmark not defined.
Viewing text of REMOTE queries in distributed transactions Error!
Bookmark not defined.
Learning about Database Features from the OUTLINE Error!
Bookmark not defined.

Chapter Summary Error! Bookmark not
defined.

Chapter 3: The Best Indexes for
a Query ... Error! Bookmark not
defined.

What a Simple Query has to Say Error!
Bookmark not defined.

Poor Use of Data Types Error! Bookmark not defined.
Effect of Functions on Indexing..... Error! Bookmark not defined.
WHERE Clause Organization Error! Bookmark not defined.

ACCESS vs. FILTER vs. COVERAGE ... Error!
Bookmark not defined.

ACCESS....................................... Error! Bookmark not defined.
FILTER (Pre-Table Filtering) Error! Bookmark not defined.
COVERAGE Error! Bookmark not defined.

It’s all about the Cardinalities

6

Example of BEST INDEX Error! Bookmark
not defined.

Example of Code Yielding ACCESS Error! Bookmark not
defined.
Example of Code Yielding FILTERError! Bookmark not defined.

Quick Summary #1 Error! Bookmark not
defined.

Creating Indexes for Join Queries Error!
Bookmark not defined.

The Join Query Error! Bookmark not defined.
ACCESS and FILTER in a Join Query Error! Bookmark not
defined.
Reversing the Join Order Error! Bookmark not defined.

Quick Summary #2 Error! Bookmark not
defined.

How Predicates Use Indexes Error! Bookmark
not defined.

Inequality Predicates stop ACCESS and start FILTER Error!
Bookmark not defined.
DUNSEL COLUMNS in an Index stop ACCESS and start FILTER
 ... Error! Bookmark not defined.

COVERAGE Error! Bookmark not defined.

It’s all about the Cardinalities

7

Example of a COVERING INDEX . Error! Bookmark not defined.
Limitations of COVERAGE Error! Bookmark not defined.
Quick Summary #3 Error! Bookmark not defined.

Our versions of CREATE INDEX Error!
Bookmark not defined.

New CREATE INDEX command Syntax Variations Error!
Bookmark not defined.

A Larger Indexing Example in Action Error!
Bookmark not defined.

Making Friends with the Query Error! Bookmark not defined.
The Indexing Process Error! Bookmark not defined.

1) Determine the DRIVING TABLE and JOIN ORDER for the query. Error! Bookmark not
defined.

Indexing the Driving Table Error! Bookmark not defined.

2) Reduce the query down to only those elements related to the table. Error! Bookmark not
defined.
3) Select the appropriate variation of our own CREATE INDEX command syntax (DRIVING
TABLE or INNER TABLE OF A JOIN) .. Error! Bookmark not defined.
4) Walk the REDUCED QUERY for each rule in the selected CREATE INDEX command
syntax and pop columns into the index as they satisfy a rule. Error! Bookmark not defined.

Indexing an INNER TABLE of a join Error! Bookmark not
defined.

2) Reduce the query down to only those elements related to the table. Error! Bookmark not
defined.

It’s all about the Cardinalities

8

3) Select the appropriate variation of our own CREATE INDEX command syntax (DRIVING
TABLE or INNER TABLE OF A JOIN) .. Error! Bookmark not defined.
4) Walk the REDUCED QUERY for each rule in the selected CREATE INDEX command
syntax and pop columns into the index as they satisfy a rule. Error! Bookmark not defined.

Rest of the Larger Example Error! Bookmark not defined.

Index for table SNAPTSHOT_DATE (inner table in a join) Error! Bookmark not defined.
Index for table COVERAGE_DIM (inner table in a join) Error! Bookmark not defined.
Index for table CLAIM_STATUS_DIM (inner table in a join) Error! Bookmark not defined.
Index for table CLAIM_DETAIL_DIM (inner table in a join) Error! Bookmark not defined.
Index for table CLAIM_DISAB (inner table in a join) Error! Bookmark not defined.
Index for table COVERAGE_PLAN_CURRENT (inner table in a join) Error! Bookmark not
defined.
Index for table BEN (inner table in a join) .. Error! Bookmark not defined.
Index for table CLAIMANT_DIM (inner table in a join) Error! Bookmark not defined.
Index for table DIAGNOSIS_DIM (inner table in a join) Error! Bookmark not defined.
Index for table RELATED_CLAIMS_FLAG_DIM (inner table in a join) Error! Bookmark not
defined.
Index for table CLAIM_BENEFIT_EFF (inner table in a join) Error! Bookmark not defined.

Larger Example Summary Error! Bookmark not defined.
A Closer Look at Filtering Error! Bookmark not defined.

Query Plan Variation #1 (nothing) .. Error! Bookmark not defined.
Query Plan Variation #2 (post-table filtering) Error! Bookmark not defined.
Query Plan Variation #3 (filter) .. Error! Bookmark not defined.
Query Plan Variation #4 (filter / post-table filtering) Error! Bookmark not defined.
Query Plan Variation #5 (access) ... Error! Bookmark not defined.
Query Plan Variation #6 (access / post-table filtering) Error! Bookmark not defined.
Query Plan Variation #7 (access / filter) .. Error! Bookmark not defined.
Query Plan Variation #8 (access / filter / post-table filtering) Error! Bookmark not defined.

Quick Summary #4 Error! Bookmark not
defined.

Quick Summary #5 Error! Bookmark not
defined.

It’s all about the Cardinalities

9

Complicating Issues Error! Bookmark not
defined.

Poor Predicate Selectivity and Column Cardinality Error!
Bookmark not defined.

Scripts used in the Chapter .. Error! Bookmark
not defined.

Chapter Summary Error! Bookmark not
defined.

Chapter 4: JOINS Error!
Bookmark not defined.

The Join Game Error! Bookmark not defined.

TYPES OF QUERIES Error! Bookmark not
defined.

Example of PRECISION style Error! Bookmark not defined.
Example of WAREHOUSE style ... Error! Bookmark not defined.
Example of typical optimizations ... Error! Bookmark not defined.

SORT MERGE JOIN Error! Bookmark not
defined.

It’s all about the Cardinalities

10

JOIN CHARACTERISTICS .. Error! Bookmark
not defined.

THE 2% RULE Error! Bookmark not defined.

Using the 2% RULE Error! Bookmark not
defined.

NESTED LOOPS JOIN .. Error! Bookmark not
defined.

Nested Loops Join Sweet Spot Error! Bookmark not defined.
BAD NESTED LOOPS JOIN: CARDINALITY ERROR Error!
Bookmark not defined.
BAD NESTED LOOPS JOIN: INDEX SELECTIVITY Error!
Bookmark not defined.

HASH JOIN Error! Bookmark not defined.

Hash Join Sweet Spot Error! Bookmark not defined.
Hash Join Tune-ability Error! Bookmark not defined.
Two Most Common Hash Join Failures Error! Bookmark not
defined.

The Hash Join that Never Was... Error! Bookmark not defined.
Hash Join across a Partial Join Key ... Error! Bookmark not defined.

Hash Join Summary #1. Error! Bookmark not defined.
Hash Join Memory Management .. Error! Bookmark not defined.

INNER Table does not fit ... Error! Bookmark not defined.
Watching Work Areas Change ... Error! Bookmark not defined.

It’s all about the Cardinalities

11

Making a Hash Join go faster Error! Bookmark not defined.

Exploit the DUNSEL JOIN feature and drop the join altogether ... Error! Bookmark not defined.
Reduce the amount of data hashed in memory Error! Bookmark not defined.
Increase memory allocated for hash joins Error! Bookmark not defined.
Use Partitioning and Parallel Query to turn big hash joins into lots of small hash joinsError!
Bookmark not defined.

Complexity of Managing Work Area Size Error! Bookmark not
defined.

Fiddle with parameters that affect automatic memory management Error! Bookmark not
defined.
Go OLD SCHOOL and use manual memory management Error! Bookmark not defined.
Use partitioning to create lots of way smaller joins Error! Bookmark not defined.

Do you really need it Error! Bookmark not defined.

Scripts used in the Chapter .. Error! Bookmark
not defined.

Chapter Summary Error! Bookmark not
defined.

Chapter 5: HINTS Error!
Bookmark not defined.

Hints are a Discovery Tool and we only need
Three Error! Bookmark not defined.

It’s all about the Cardinalities

12

CARDINALITY / OPT_ESTIMATE Hint Error! Bookmark not
defined.

CARDINALITY Hint .. Error! Bookmark not defined.
OPT_ESTIMATE Hint .. Error! Bookmark not defined.
Comparing CARDINALITY / OPT_ESTIMATE Error! Bookmark not defined.
Exploiting CARDINALITY / OPT_ESTIMATE Error! Bookmark not defined.

ORDERED / LEADING Hint Error! Bookmark not defined.

ORDERED Hint .. Error! Bookmark not defined.
LEADING Hint .. Error! Bookmark not defined.
Exploiting ORDERED / LEADING ... Error! Bookmark not defined.

NO_INDEX Hint Error! Bookmark not defined.

Exploiting NO_INDEX .. Error! Bookmark not defined.

Other Useful Hints Error! Bookmark not defined.

NO_PARALLEL.. Error! Bookmark not defined.
OPTIMIZER_FEATURES_ENABLE ... Error! Bookmark not defined.
GATHER_PLAN_STATISTICS .. Error! Bookmark not defined.
DYNAMIC_SAMPLING ... Error! Bookmark not defined.

Scripts used in the Chapter .. Error! Bookmark
not defined.

Chapter Summary Error! Bookmark not
defined.

Chapter 6: BASICS Error!
Bookmark not defined.

It’s all about the Cardinalities

13

What are the Basics Error! Bookmark not
defined.

Modeling Paradigm, 3rd Normal Form, SQL Workload (OLTP,
DSS, ANALYTIC) Error! Bookmark not defined.
The Value of Third Normal Form to SQL Performance Error!
Bookmark not defined.
Data Types (Date=Date, Number=Number, String=String) .. Error!
Bookmark not defined.
NOT NULL Error! Bookmark not defined.
Constraints (Primary Key, Unique Key, Foreign Key, Check)
 ... Error! Bookmark not defined.

DUNSEL Join Removal (aka. Join Elimination) Error! Bookmark not defined.
RELY Constraints ... Error! Bookmark not defined.
Constraints vs. Statistics .. Error! Bookmark not defined.
Constraints vs. Indexes ... Error! Bookmark not defined.

INDEXES Error! Bookmark not defined.

Types of Indexes and Workload Scenarios Error! Bookmark not defined.
Strategy ... Error! Bookmark not defined.
BITMAP Indexes .. Error! Bookmark not defined.
Summarizing Indexes .. Error! Bookmark not defined.

Statistics Error! Bookmark not defined.

Fundamentals of Statistics .. Error! Bookmark not defined.
Where statistics can go wrong .. Error! Bookmark not defined.
What 11gR2 offers ... Error! Bookmark not defined.

Good Elementary SQL Error! Bookmark not defined.

Modifying indexed columns ... Error! Bookmark not defined.
Specifying incomplete outer-joins ... Error! Bookmark not defined.

It’s all about the Cardinalities

14

Use of NOT IN when faced with NULLS ... Error! Bookmark not defined.
Using non-deterministic PL/SQL functions from SQL Error! Bookmark not defined.
Failure to use the WITH clause .. Error! Bookmark not defined.

Scripts used in the Chapter .. Error! Bookmark
not defined.

Chapter Summary Error! Bookmark not
defined.

Chapter 7: ROW COUNTS and
RUN TIMES .. Error! Bookmark
not defined.

The Meeting Error! Bookmark not defined.

Analyzing the Analysis ... Error! Bookmark not
defined.

Dissecting PLAN_OUTPUT Error! Bookmark not defined.
Three (3) Kinds of Row Counts..... Error! Bookmark not defined.
Asking Questions about a Query Plan and FRP Data Error!
Bookmark not defined.
Asking Questions about Runtimes of Query Plan Steps Error!
Bookmark not defined.
Asking Questions about Errors in Query Plan Steps Error!
Bookmark not defined.
Asking Questions about EFFICIENCY of Query Plan Steps Error!
Bookmark not defined.

It’s all about the Cardinalities

15

Asking Questions about WASTE ROWS (FILTER Predicates)
 ... Error! Bookmark not defined.
How to Fix Problems Error! Bookmark not defined.

Environment .. Error! Bookmark not defined.
Semantics.. Error! Bookmark not defined.
Process .. Error! Bookmark not defined.

Scripts used in the Chapter .. Error! Bookmark
not defined.

Chapter Summary Error! Bookmark not
defined.

Chapter 8: EXADATA Error!
Bookmark not defined.

Not an Expert .. Error! Bookmark not defined.

Why EXADATA Error! Bookmark not defined.

Reasons NOT to go EXADATA Error!
Bookmark not defined.

How Much Faster Will My Apps Run Error!
Bookmark not defined.

Workload Characteristics Error! Bookmark
not defined.

Famed Ten Times to Forty Times Speed
Up Error! Bookmark not defined.

It’s all about the Cardinalities

16

SMARTSCAN .. Error! Bookmark not defined.

Column Projection Error! Bookmark not defined.
Row Filtering Error! Bookmark not defined.
iDB Messaging Error! Bookmark not defined.
Other Significant SMARTSCAN Optimizations .. Error! Bookmark
not defined.

Storage Indexes ... Error! Bookmark not defined.
PRE-Join Filtering with Bloom Filters ... Error! Bookmark not defined.

Less Common SMARTSCAN OptimizationsError! Bookmark not
defined.
Things that Sour the Secret Sauce Error! Bookmark not
defined.

Reconstructing a Consistent Block (block is being updated) Error! Bookmark not defined.
Chained Rows .. Error! Bookmark not defined.
Modified Columns in the WHERE clause .. Error! Bookmark not defined.

Partitioning and SMARTSCAN Error! Bookmark not defined.
Proving SMARTSCAN Happened . Error! Bookmark not defined.

2X to 4X Speed Up Error! Bookmark not
defined.

Increased Hardware Power Error! Bookmark not defined.
Database Software Enhancements Error! Bookmark not
defined.
SMART FLASH CACHE Error! Bookmark not defined.
Effects on Applications Error! Bookmark not defined.

OLTP ... Error! Bookmark not defined.

It’s all about the Cardinalities

17

Row by Row (Slow by Slow) Processing... Error! Bookmark not defined.
Star Schema Analytics ... Error! Bookmark not defined.
Star Schema Analytics using SMARTSCAN Error! Bookmark not defined.

Mapping Applications to Speed
Category Error! Bookmark not defined.

Do we still need Indexes Error! Bookmark not
defined.

New 2% RULE Error! Bookmark not defined.
Optimizer does not know SMARTSCAN Math ... Error! Bookmark
not defined.

Do we still need Traditional Tuning Error!
Bookmark not defined.

EXADATA Miscellaneous Error! Bookmark
not defined.

SQL has costs on the database server too . Error! Bookmark not
defined.
HCC is a Specialized Feature Error! Bookmark not defined.

Why .. Error! Bookmark not defined.
Minding the Details of HCC ... Error! Bookmark not defined.
Compression Levels .. Error! Bookmark not defined.
READ ONLY Data .. Error! Bookmark not defined.
Different Compression Strategies for Different Data Processing Scenarios Error! Bookmark not
defined.

How to Become Better at EXADATA Error!
Bookmark not defined.

It’s all about the Cardinalities

18

Chapter Summary Error! Bookmark not
defined.

LAB: Reverse Engineering the
QEP Error! Bookmark not
defined.

LAB Time = 4 hours Error! Bookmark not
defined.

Summary of the LAB Error! Bookmark not
defined.

Part 1 (query analysis) Error! Bookmark not defined.
Break .. Error! Bookmark not defined.
Part 2 (cardinality analysis) Error! Bookmark not defined.
Break .. Error! Bookmark not defined.
Part 3: (rebuilding the original query) Error! Bookmark not
defined.
NOTES: .. Error! Bookmark not defined.

Part 1 (query analysis) ... Error! Bookmark not
defined.

Step #1: Dump the QEP for the query to get a query plan to work
with ... Error! Bookmark not defined.

It’s all about the Cardinalities

19

PLAN_TABLE_OUTPUT .. Error! Bookmark not defined.
Query Block Name / Object Alias (identified by operation id): Error! Bookmark not defined.
Outline Data .. Error! Bookmark not defined.
Predicate Information (identified by operation id): Error! Bookmark not defined.
Column Projection Information (identified by operation id): Error! Bookmark not defined.

Step #2: Identify the DRIVING TABLE for the query plan Error!
Bookmark not defined.
Step #3: Locate references to database row source objects in the
query plan Error! Bookmark not defined.
Step #4: Construct the list of tables accessed by the query plan
 ... Error! Bookmark not defined.
Step #5: Construct the data model for the query plan Error!
Bookmark not defined.
Step #6: Construct the join order (join sentence) for the query
plan .. Error! Bookmark not defined.
Step #7: Construct the join hierarchy for the query plan Error!
Bookmark not defined.
Step #8: Construct the query diagram for the query plan Error!
Bookmark not defined.

Summary #1 Error! Bookmark not defined.

Break Error! Bookmark not defined.

Part 2 (cardinality analysis) ... Error! Bookmark
not defined.

Step #9: Construct NUM_ROWS query for the query plan .. Error!
Bookmark not defined.
Step #10: Construct COUNT QUERIES for the query plan .. Error!
Bookmark not defined.
Step #11: Construct FILTER QUERIES for the query plan .. Error!
Bookmark not defined.

It’s all about the Cardinalities

20

Step #12: Construct the FRP spreadsheet for the query plan
(NUM_ROWS/row count/rows/filtered row count) Error!
Bookmark not defined.

Summary #2 Error! Bookmark not defined.

Part 3: (rebuilding the original query) Error!
Bookmark not defined.

What is Column Projection Error! Bookmark not defined.

Scripts used in the Chapter .. Error! Bookmark
not defined.

LAB SUMMARY Error! Bookmark not
defined.

Appendix: Know Your Scripts
 Error! Bookmark not defined.

Cowardly Disclaimer Error! Bookmark not
defined.

Scripts for analyzing queries and plans .. Error!
Bookmark not defined.

Scripts for examining an active database Error!
Bookmark not defined.

It’s all about the Cardinalities

21

Scripts for looking at metadata and trying to fix
a problem query Error! Bookmark not
defined.

Script Walkthrough Error! Bookmark not
defined.

showplan11g Error! Bookmark not defined.
showplan11gshort Error! Bookmark not defined.
showplanconstraints11g Error! Bookmark not defined.
showplancountqueries11g Error! Bookmark not defined.
showplandatamodel11g Error! Bookmark not defined.
showplandrivingtable11g Error! Bookmark not defined.
showplanfilterqueries11g Error! Bookmark not defined.
showplanfrpspreadsheetcode11g . Error! Bookmark not defined.
showplanindexes11g Error! Bookmark not defined.
showplannumrows11g Error! Bookmark not defined.
showplanquerydiagram11g Error! Bookmark not defined.
showplantables11g Error! Bookmark not defined.
showplantablesunique11g Error! Bookmark not defined.
loadplanfromcache11g Error! Bookmark not defined.
loadplanfromhist11g Error! Bookmark not defined.
showtopcpu11g Error! Bookmark not defined.
showowner Error! Bookmark not defined.
showindexes Error! Bookmark not defined.
showconstraints Error! Bookmark not defined.
showcolstats Error! Bookmark not defined.
showhistograms............................ Error! Bookmark not defined.
showallscanrates Error! Bookmark not defined.
showallworkareas Error! Bookmark not defined.
showgencardinalitycheckcode Error! Bookmark not defined.

It’s all about the Cardinalities

22

Script Summary Error! Bookmark not
defined.

Index Error! Bookmark not
defined.

It’s all about the Cardinalities About the Author

23

About the Author

Thanks for buying this book. I hope you enjoy it and I hope I am able to offer you something new in the world
of SQL Tuning. I am Kevin Meade.

In 1984 I typed SELECT 8 FROM EMP; into a SQL*Plus prompt, and after a brief delay was presented with
a green screen full of scrolling 8s. Following five minutes of confusion and certainty that this thing called
Oracle was broken, I realized I had fat-fingered the shift key on my very first SQL statement, and thus began
my career as an Oracle RDBMS Professional with a mistake.

In retrospect, IT WAS MY FAULT might have been the best possible first lesson to learn, for someone just
starting out in the Oracle space. There would be many more mistakes over the next thirty years, and many
more times when my ego had me jumping to the conclusion that it was an Oracle bug. But there was always
a nagging reminder of a screen full of 8s giving cause to keep at it a little while longer to find some yet elusive
better understanding. Though there were bugs to be found, there were many more occasions where it was
my fault.

My career path is not anything particularly special. It is probably a lot like yours. Just out of school, I started
in Connecticut in the scientific industry as a COBOL Developer supporting a clunky DSS system, and landed
my first Oracle work by accident. Three months on the first real job that Mommy and Daddy didn’t get me,
my Boss at the time John was hunched over his desk looking at pages full of SELECT statements and things
called DEPT and EMP. “Oh, Structured Query Language eh?” I said. “You know this stuff?” he inquired.
“Well …” but I never got a chance to finish. “Good, you are now our resident Oracle expert Kev. Here is what
I need”, pushing a boxed set of three 7x9 books in my direction (yeah that was it for documentation in those
days). I took notes while he talked, like maybe that might impress him, said thanks, and went back to my
office to start reading (yeah we had real offices in those days too). I didn’t have the heart to tell him that there
was only one class I had taken related to this stuff, and that class itself actually had nothing to do with SQL,
but rather traditional Data Processing. My experience was limited to 20 pages of appendix material in the
back of the class book that I only read because I was waiting outside the computer lab at college to ask a girl
out for margaritas and chips at the Margarita Ville right next door. This was a commonly used watering hole
for college students at CCRI for as we all know, assembler language makes much more sense when buzzed.
The girl never materialized, but six months later the Oracle job did. Not a bad trade I guess.

So I was having a good time at this Oracle stuff. It was way easier than writing COBOL code. A couple years
went by, a couple of Oracle conferences attended, and I learned there was this job called ORACLE DBA that
paid 50% more than my job called ORACLE DEVELOPER. I want me one of those jobs, I thought. So I got
out the resume, made liberal use of WHITE-OUT and after six minutes of blowing across the page, I typed
over what used to say Oracle Developer, the words Oracle DBA. What did I have to lose? Near as I could
tell it was pretty much the same job anyway cause in those days you did everything. A local head-hunter
assured me that if I was willing to travel then it would be no problem at all. True to his word, in three weeks’
time I was on my way to Georgia to a place that did configuration management for Nuclear Power Plants. I
hated to leave my first job. I knew I was going to miss the wit and humor of the team, and their passion for
quotes from old movies, but John said he was glad for me. He was starting to wonder why I had waited so
long to make my next move.

It’s all about the Cardinalities About the Author

24

The job was great too. Besides a lot of cool and unique problems to solve, I remember Quan Hong Lin (we
called him Henry for short (I miss Henry)) teaching me the right way to eat soft shell crab, and Friday’s with
the gang of six down at a local diner where if you bought a pitcher of beer you got the box of hot wings for
free. Six of us, six pitchers of Bud, and six boxes of free hot wings. Good times. But it was not to last. My
girl at the time Elaine, (these days my wife) said “this long distance thing is not working out. Either come back
or don’t bother to come back”. So I updated my resume again, made calls to head-hunters back home, and
said my goodbyes; for it was off to Massachusetts to another Oracle job in the engineering industry.

This DBA thing is awesome I thought. Two new jobs with two 50% raises, both in one year. But this job I
didn’t like. An hour drive and an hour on the T with people who looked like they had the life sucked out of
them (not hard to figure out why), to work in a company where tension was high since the place was going
out of business (the head-hunter forgot to mention that). Fortunately I was saved six months later by a friend
from my first job who was heading up an Ingres database project. He offered me a spot as a Senior DBA.
Wow I thought, do they make those? The job was of course more then I should have tried for, but how could
I say no. I wanted out of where I was and this was yet another raise, and Bob said he would give me all the
support I needed to get up to speed.

So without a lot of fanfare I made my way back to Connecticut to an Insurance company and started learning
that business. It wasn’t Oracle but how different could it be? Turned out there were a lot of transferable skills.
And the product Ingres at that time was actually a technically superior product to Oracle, and this company I
was now working for was throwing money around like crazy. So I got in with a really good team: Peter and
Paul and Gary and Rick and Rochelle and Sandy to name a few. They taught me how to play Hearts which
we did every day at lunch. And I had access to the greatest minds of that era in Relational Database
Technology. I even met Michael Stronebraker and got an autographed copy of his book “The Ingres Papers”
(how geeky is that?). I learned a lot. But as with every BE ALL TO END ALL project, this one spent way too
much and produced nothing that anyone actually wanted, which someone finally noticed, so after a few years
of creative book keeping, it got shut down and I was looking for another place.

Once more to the head-hunters and this time down the street to another insurance company. It was Oracle
work again, the biggest user of Oracle in the state. Three years in I said, I like it here, plenty of work, they let
me do whatever I want, and they keep telling me I am great. I think I’ll stay. That was 1995 and I have been
here ever since. It was a very good decision too, for today I work remote out of my house, four days a week
working from a recliner (WFR) tuning SQL and in general providing whatever support my team asks of me.
A great team it is, full of people every bit as smart as me. You benefit from their brain power too as about
twenty of them have reviewed chapters of this book ahead of you. Let me tell you, it’s nice to soar with

eagles.

It’s all about the Cardinalities How this Book is Different

25

How this Book is Different

This book is different in two ways from its competition. First because I created rules for what this book should
be like, which I followed. And second I had the advantage of an intense unique experience to draw upon and
from which this book arose.

There is in fact a lot of competition for this book. This year alone there are two books published that directly
compete with this one. We are in a good time for writing about Oracle topics. Turns out I am not the only
Oracle Professional with multiple decades of Oracle experiences on hand to talk from. There are plenty of
us, and we are starting to get vocal.

After several false starts I finally finished the first chapter of this book. At this point it became clear that it was
not going to be easy writing a book on SQL Tuning. I also realized that there were several things about other
books I had read in the past which I really did not like, and it would take effort on my part, to keep my book
from doing the same things. So I created the following rules to write by and threw away the first chapter to
start over yet one more time.

My rules for this book.

 Only write about what I know. For some reason, maybe the need to feel like they

covered all the right topics, some authors talk about topics they do not really know.
This does two bad things. First it creates a topic for which there is only weak
coverage. Second it takes away precious space in a book that could have been used
to talk in more depth about something they really did know about. Neither of these
two things does the reader any service. Having seen this too many times in other
technical books about Oracle, I was adamant that I would not do that. One
ramification of this is that there may be topics that I should have covered but did not.
That’s the breaks. I make no excuse for it. There is no such thing as a complete or
definitive reference on anything Oracle anyway. But the good news is that this one
rule forced me to evaluate every topic in this book against other topics I could have
used. So you got the best of what there was for the five hundred pages I wanted to
fill.

 Focus on teaching the skill of SQL Tuning. I always liked college texts because

they actually taught something. Not that it is bad, there is clearly a market for them,
but many books in the Oracle space try to cover a large area and so have hundreds
of little points of interest, but in the end lack an overall goal. I wanted to teach SQL
TUNING as a skill so that is what I do. I provide the necessary critical mass of
knowledge to understand the topics discussed, and a process in how to apply it,
making certain to focus on the skill of SQL Tuning. Every topic covered in this book
was subjected to the question “How is this related to SQL Tuning?”.

It’s all about the Cardinalities How this Book is Different

26

 Offer something Unique. I do not enjoy books that are mostly a recapitulation of

the manuals. If I want to read the manuals I can do that online. Today a good book
should not only offer technical fact, but should also offer the author’s unique
experiences and perspectives that only they can give. That is where the real value-
added proposition is. What is the point of having decades of experience if you don’t
share it? So I am offering up my unique approaches and perspectives, along with
the technical details. I think you will find ideas presented here that you won’t read
anywhere else.

In addition to a set of rules that guided me in writing it, this book has the advantage of a special time in my
SQL Tuning life. Four years ago I was put on a three month gig. I was supposed to go into a place that had
a shortage of people, and fix some critical performance problems they had, while backfilling for lost staff. I
did such a good job at it that my now boss Sandeep would not give me back when the three months were up.
He wanted to keep me permanently. Seems he had the juice to do it too so I was moved to his Division and
the three month tuning job became a three year thing that covered hundreds of databases and problem SQL
from each.

I was not long into it when I figured out what a singularly unique opportunity had been put in front of me. So
much wrong. So much to be fixed. Opportunities Savoir Faire (they were everywhere). If I put real effort into
it, if I paid attention, and if I kept good notes, then I would have a fabulous experience to tell people about.
Hundreds and hundreds of problem SQL tuned, Sixty, maybe more Crisis Meetings attended. In the end, it
yielded a total revelation for me in how to tune SQL, with plenty of examples doing it. I draw heavily from
what I learned during this period, putting it into this book. What you get here is based on technique that works
in the trenches.

To summarize it all, this book is based on deep experience, stays true to its goal of teaching you SQL Tuning,
presents unique perspectives you won’t find anywhere else, and is backed by a massive reservoir of
successful tuning events and the learnings that came from them. That is how this book is different.

It’s all about the Cardinalities Those who came before

27

Those who came before

There are a lot of good books written in the last decade about SQL Tuning. But of all these books, there is
one that stands out among them. This book is Dan Tow’s SQL TUNING published in 2003. This book is by
many, considered the greatest book on SQL Tuning ever written. I hope now the second greatest book on
SQL Tuning ever written.

On the surface Dan’s book did not appear to be much different from most of the other material on the subject.
But it had one chapter that pushed it to the front of the class, and which to this day still makes it relevant.
Though at the time, there were many of us who practiced similar processes to what Dan presents, Dan was
the first to put into print in an easily digestible manner, a process which could be duplicated, and which could
reliably be used to tune SQL. Thus Dan was the first to make SQL Tuning accessible to the masses. Though
he wrote it for the RULES BASED OPTIMIZER, the technique he demonstrates is CARDINALITY based and
so, still relevant even today.

I kept waiting for Dan to revise his book to encompass the advances of Oracle in the last decade for things
like STATISTICS and HASH JOIN and DYNAMIC SAMPLING and STAR SCHEMAS and so on. But it never
came. Eventually I realized my expectations were unfair. Dan had done his job. He wrote the book that
needed to be written for that time. It was up to someone else to write the next one. It may sound pompous
of me, but I like to think I took that up with this book. You will find my first chapter to be similar to Dan’s work.
How could it not be? The basic idea of cardinality as a driver of performance in query plans is the same.

I do not know Dan. I have never met him, and have only visited his LinkedIn page twice. But I can still
recognize Dan for his contribution to our Art.

Thanks Dan.

It’s all about the Cardinalities Getting the FREE STUFF

29

Getting the FREE STUFF

You many have noticed that I have chosen to self-publish this book. The big publishers have a business to
run and need to make choices between going with a new author, and providing capital for existing successful
authors instead. I am a new author and that means a risk so no one was ready to take a chance on me yet.
Since AMAZON is the major player in self-publishing, that is where I went. But there are two issues that result
from this choice. First is that I do not have paid editors reviewing my work or layout of the pages of the book.
So you may find some things missing; for example, none of my exhibits have labels (too much work for a lazy
IT guy), and you may find my grammar less than stellar in a few places since no professional has edited it.

The other problem I have encountered is difficulty in figuring out how to add additional downloads to this book
or even to create a free downloadable document, and this prevents me from offering the scripts of this book
in electronic form through Amazon. It is doubtful Amazon will change how this works by the time the book
goes to print so instead, you can use these other two mechanisms to get the free stuff. This is essentially the
list of scripts I provide as part of the book.

Use one of these two methods to download electronic versions of the scripts from this book, ready to use.

 WWW.ORAFAQ.COM. This is a great website on all things Oracle, and I am a
registered member and moderator. So I posted the material on this site as an article
for you to download. Search on my name, or the book title, to find it. While you are
there, why don’t you become a member and stay a while. Membership is also free
and it offers a chance to ask questions of other Oracle experts better than me.

 KM133688@SBCGLOBAL.NET. This is my personal email. I should be so lucky
that the book sells so many copies it floods my in box. I look forward to hearing
about what you think. I would also be happy to provide additional items as they
become available, including sending you an email with all the scripts.

http://www.orafaq.com/
mailto:KM133688@SBCGLOBAL.NET

It’s all about the Cardinalities Reviews on Amazon

31

Reviews on Amazon

I have come to be a believer in the peer review system. Whether your review would be favorable or not, I
encourage you to write a review on this book on Amazon. People need to know what others think about the
stuff they buy before they buy it, and Amazon reviews offer that opportunity.

There is a plethora of books on related topics to this book that people will have to choose between when they
start looking for new knowledge in this subject area. Your review can help them make better choices and that
is what sharing is about. Don’t worry, I won’t sue you for leaving a negative feedback if you really think my
book was bad.

On the other hand, if you really think this book needs something it does not have, drop me a note about it so
I can add it to the text. One advantage of self-publishing is the ability to dynamically change subject matter
without a long delayed process to publish it.

It’s all about the Cardinalities WWW.ORAFAQ.COM

33

WWW.ORAFAQ.COM

This website is a special place to find help with Oracle. Membership is free and there are many Oracle
specialists who participate in this site providing their knowledge at no charge. From this pool of specialists
there were several who took time out of their lives to review chapters of this book. Each person mentioned
was assigned one of the chapters, though several helped me with more than one. Please find a description
of each as they describe themselves.

John Watson
Oracle Certified Master DBA

Director of Database Services

Skillbuilders Inc.

Jim Irvine
Jim is a Contract IT consultant working both in Oracle development and Testing functions, busy father of twins
and Oracle pedant.

Lalit Kumar
I started my IT career in ORDBMS technology as Database application developer, worked for couple of
organizations. Currently working in Oracle Corporation. My favorite topic has always been performance
tuning. It needs skills and expertise, always a difficult task, as mostly it is done manually, there are no
shortcuts. I am privileged to be one among the early reviewers of the "Basics of performance tuning" chapter.
Honestly, I never came across any other study material that talks about topics at such basic level. Now I know
the secret of Kevin's quote and it has become my favorite now:

"Performance tuning is all about cardinality". Read the book to reveal the secret

Mark Kilgour
Currently a production DBA at BSKYB* specializing in database performance tuning and troubleshooting.
Mainly I keep myself to myself, but I find the world of performance fascinating and rewarding and I like to pass
on as much as I can.

http://www.orafaq.com/

It’s all about the Cardinalities WWW.ORAFAQ.COM

34

When I'm not doing that, you'll find me throwing a mountain bike down a hill somewhere.

Ross Leishman
Principal Consultant, DWS Limited, Melbourne, Australia.

Saša Dominković
Croatia, Oracle developer.

It’s all about the Cardinalities Soaring with Eagles

35

Soaring with Eagles

I work with a team of experts in the Oracle space. Most of them have decades of experience behind them.
Several of them also have a specialty which interests them which to me is another indication of
professionalism. Several of my teammates took time from their lives to review chapters of this book. They
are listed here using descriptions of themselves as they provided them.

Barry Ward
Senior DBA, Data Warehousing specialty, and Connecticut College Men’s Head Squash Coach.

Dennis Deluzio
Senior DBA, 20 years.

Dheeraj Madadi
Senior Database Manager, 15 years.

Jack McGuirk
Senior DBA, Oracle Advanced Security Option specialty, 36 years in IT, 22 years doing Oracle.

Experience covers Unix System Administration, Networking, and Web Development from notepad to ASP to
VB.net.

Nirav Kathrani
Three years in Software Engineering, two in IT. Currently a Data Innovation Consultant.

Robert Romanowski
DBA, Enterprise Data Management, Technology Leadership Development Program.

It’s all about the Cardinalities Soaring with Eagles

36

Subrahmanyam Jannalagadda
Senior DBA, Enterprise Data Management, Technology and Solutions.

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

37

Chapter 1: DRIVING TABLE
and JOIN ORDER

Shopping analogies are often used to explain ideas in IT, so why not one more. Let us suppose you have a
shopping list with several items, and you must visit five different stores to buy all the items. How will the
shopping trip unfold?

If you view your shopping trip as a recreational experience, then you probably ignore the list of stores
someone else had in mind, and head to the Mall where upon your shopping trip becomes an outing. You get
something to eat from the Food Court, spend a half hour in the game room racking up extra balls on Silver
Ball Mania, do some comparison shopping revisiting several stores to get the best value for items that are not
actually on your list so you can justify why it is OK to get them, sit in a massage chair for ten minutes because
your feet hurt, and so on. Eventually you get the items you need whilst managing to overpay for them. For
some this is fun, though it will never be fast.

But if you are a gopher for some company (you go for this and you go for that), then you are not on vacation;
you are working. As such you want your shopping trip to be just that, a shopping trip. Your primary concern
is to get the stuff you need as fast as possible because other people are waiting on these items so they can
do their jobs. For this kind of shopping a smart gopher will grab a road map. The gopher will locate on the
map, each of the five stores designated by the Boss as valid shopping spots, and make two decisions: 1) the
gopher will decide on which store to got to first, and then 2) decide on what order to visit the rest of the stores.
The goal of the gopher is to minimize the amount of time spent on the road by optimizing the travel route and
this is accomplished by making good choices for which store to start at and what order to visit stores.

An experienced gopher will consider far more than just mileage between stores. The gopher may ask
questions like: What alternative routes exist between stores? What are the traffic volumes at different times
of the day for each route? How many stop signs and traffic signals are there on each route? Are any of the
alternative routes also school bus routes? Does it make sense to park the truck somewhere and take a
Trolley or Subway or other public transportation? The gopher may end up picking several legs of the journey
for factors other than simple shortest miles traveled, if these other factors make for shorter overall travel time.
In the end, through some kind of magic, the gopher figures out the best place to start, and the best order in
which to visit other places to be visited, and the gopher figures it out fast.

Executing a long running SQL query is much like gopher shopping, it is not a recreational experience. We
want whatever we do to be not only correct, but also efficient in the way it is done. Given a query that joins
five tables, a database optimizer must make the same two decisions as the gopher. It must decide on which
table to visit first (called DRIVING TABLE), and the order in which to visit tables during query execution (called
JOIN ORDER).

The Four Parts of a Query
There are in fact four parts to every efficient query:

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

38

 Driving Table: Table from which we access all other tables in the query.

 Join Order: Order in which we access tables in the query.

 Access Method: How we get rows from a table.

 Join Method: How we put rows together from two tables.

Although a poor choice with any of these four items can result in a poorly performing query, the first two
(DRIVING TABLE and JOIN ORDER) are by far the more important of the four. If the optimizer picks a good
DRIVING TABLE and a good JOIN ORDER for a query, then 99% of the time the optimizer will also make
good choices for ACCESS METHOD and JOIN METHOD everywhere else in the query.

It is somehow sad to think that SQL query tuning can be reduced in most cases to the act of getting the right
choices made for DRIVING TABLE and JOIN ORDER. But if we push the noise generated by various neat
theories and special cases into lane 2 and reserve Pole Position for our observations of what actually happens
in every day SQL workloads, then we are forced to conclude that this is just the way it is. And if it is going to
be this way, then we might as well exploit such a strong truth to our advantage.

Therefore we start our work in learning how to discover what is wrong with a problem query, by learning how
to determine what should be the DRIVING TABLE and JOIN ORDER of choice for a query. To do this, we
are going to use a technique called Filtered Rows Percentage.

The Filtered Rows Percentage Method

During execution of a query, keep the number of rows in transit as small as possible, at all times.

Said another way

Remove as many rows as possible as early as possible in query execution.

Yes, this is pretty much it. The truth, back in the 80’s when relational databases first made the scene, about
doing the least amount of work necessary in manipulating data to get an answer, is still the main query
performance truth of today. The CBO (Cost Based Optimizer) is going to apply lots of fancy mathematics and
look at potentially thousands of different query plans in its efforts to find the best way to get data for a query.
And if we did our jobs as DBAs, then most of the time the CBO will give us a well performing query we do not
need to worry about.

We will observe that ninety nine times out of one hundred, the best query plan is going to be the one that
does what was just said; keeps the size of intermediary row-sets as small as possible by eliminating as much
data as possible as early as possible. It is not a coincidence that a query plan which manipulates the least
amount of data in answering its query, is also most often the least expensive query plan. And this is the goal
of Filtered Rows Percentage; to move the least number of rows around during query execution by eliminating
as many rows as possible as early as possible in query execution.

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

39

First Look at a Query

The first rule of tuning SQL is not to tune the SQL but instead to get to learn the query. Consider the simple
example:

select count(*)

 from T1

,T2

 ,T3

 where t1.pk = t2.fk and

 T2.pk = 2 and t3.c = 3 and t2.pk

 = t3.fk;

Boy that is an ugly query. Let us format it so we can more readily work it. Neatness counts.

SELECT count(*)

FROM t1,

 t2,

 t3

WHERE t1.pk = t2.fk

 AND T2.pk = 2

 AND t3.c = 3

 AND t2.pk = t3.fk;

That is better. Look at the query for a moment to familiarize yourself with it and see what can be learned off
hand.

Observations on a query.

 First, there are three tables in the query. And if the names of the columns and the
joins they participate in are any indication of reality, we can presume that these three
tables are actually a hierarchy of tables (PARENT / CHILD / GRANDCHILD).
Naturally at some point if it becomes relevant, we should be consulting the data
dictionary and its constraint metadata to validate what we think is true about these
tables. But for now we will go with what we see.

 Additionally, we can see that the query seeks only one row from table T2 (T2.PK =
2). And we want only some of the child rows of this row from T3 (T3.C = 3). So it
appears that we are looking for a small subset of the total data available. Small of
course is relative but we offer a more formal definition of small in Chapter 4: Joins.

 Lastly, we might even question the need to reference table T1 at all in this query. If
we make some additional assumptions about our table: that T2.FK is defined as NOT
NULL and the foreign key is TRUSTED (it is enabled from the beginning, or we have
explicitly told Oracle to trust this constraint via RELY), then of what value is the join
back to T1? We cannot duplicate or lose rows joining to T1 under these stated
conditions, and we don’t want any data from T1 in our answer, so it is what we can
call a DUNSEL JOIN. It is a join which serves no useful purpose. We don’t even
need to do it.

Well, that is a lot to see in a cursory examination of a query. Is any of this information useful? Maybe.

What is really important is to take our time and be neat because neatness counts. The first two steps in

evaluating any query are to 1) Format it, and 2) Look at it before we do anything else.

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

40

Query Diagrams

Having completed our initial familiarization with the query, more detailed analysis can begin. One tool for

understanding queries is the query diagram. If we build a query diagram for our query, we can get a visual

representation of what it looks like. The basic query diagram for the above query looks like this:

 T1 ----- T2 ----- T3

 | |

 | |

 (c) (c)

Note we have listed tables in order of the FROM clause, and indicated joins by connecting lines, and indicated
constant test predicates via a sub-line and indicator. Already one can begin to see the natural join
progressions that might be possible.

Remembering the query's WHERE clause, it is reasonable to assume that the filter criteria T2.PK = 2 would
yield 1 row (it is after all a primary key check), whereas T3.C = 3 could yield multiple rows (though we do not
know how many).

We can label the query diagram with some made up row counts for discussion. Referencing the numbers
below, the filter criteria as applied to T2 without regard to joins in the query, will yield one row (this we know
from the PK). Also, the filter criteria as applied to T3 without regard to joins in the query, will yield 100 rows
(this we just made up so we can talk about what it might mean). Again, we made these numbers up so we
could have a meaningful discussion on join order. Given these expected row counts based on the query
WHERE clause criteria, we can evaluate different join orders to see what happens. For example:

 T1 ----- T2 ----- T3

 | |

 | |

 (c) (c)

 (1) (100) FILTERED ROW COUNT

If we start with T2 as our driving table, we start with pushing one row into query execution. This means we
start with one row in our intermediary row-set. We could then go up the table chain to T1 if we want. That
one row would lead us to one probe into T1 which assuming we are going up a foreign key to a parent table,
would yield again, only one row and thus we still have only one row in our intermediary row-set. We can then
join that one row to T3. This will result in one probe of T3 returning one-hundred rows (based on T.C = 3) so
that our final row-set has one-hundred rows. Given this join order, we carried one row in transit most of the
time, getting one hundred rows in the final step.

Or we could start with table T3 as the driving table. This choice of driving table would push one-hundred rows
into the query. Execution would proceed to join with T2 where we would do one-hundred probes into T2
resulting in one-hundred rows in our intermediary row-set. These are then followed by one-hundred probes
into T1 which would result in one-hundred rows in our final row-set. In this situation, the query carried forward
one-hundred rows all the time which is though not a lot, still more than the previous driving table and join
order.

As possibly a really bad choice, we could start with table T1 as our driving table. To understand why T1 might
be a poor choice for driving table, let us add the number of rows in each table in our query to our query
diagram so we have more to talk about. Again, these numbers are made up to serve our discussion. T1 has
one million rows in it; we note this in our query diagram. T2 has ten million rows and T3 has one-hundred
million rows. We note these in our query diagram.

 T1 ----- T2 ----- T3

 | |

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

41

 | |

 (c) (c)

 (1) (100) FILTERED ROW COUNT

(1M) (10M) (100M) rows in table

Given the total rows in each table as noted above, starting with table T1, we would push one-million rows into
query execution. T1 gives one million rows because it has no filter criteria and thus all rows must be fetched
and retained in this step. Once fetched these one million rows would lead to one-million probes of table T2
that would yield all rows in T2, which by our diagram is ten-million rows. We would then filter these ten-million
rows to return only one row (T2.PK = 2). Execution would then do one probe of T3 to return one-hundred
rows. Though the final answer is the same as before, we see that this choice of using T1 as the driving table
and the subsequent join order this driving table leads to, had us holding at two points during query execution,
millions of rows in our intermediary row-set.

These examples show that even for a simple query, not all tables are equal when it comes to their behavior
as a driving table. In one join order case, we needed to access all rows in a one-million row table and all rows
in a ten-million row table and throw away a lot of junk, which would require lots of I/O and lots of page gets
and lots of comparisons during joins and filtering. Yet in another case we had only one row in transit with the
final row-set of one-hundred rows being dumped directly to the caller when retrieved in the last step of query
execution.

Clearly, where you choose to start a query can have a significant impact on the work required to do the query.
A query diagram provides a visual of the alternatives when different driving tables are considered.

Driving Table and Join Order

The DRIVING TABLE is the first table from which other tables in a query can be joined. You have to start by
getting your first set of rows from some table in your query so where you start is the DRIVING TABLE

Two things make the driving table important:

 It determines which tables can be accessed next during query execution, effectively
deciding on a roadmap for the query.

 It determines the initial number of rows that the query will start with and thus drives
the amount of work the query will have to do in subsequent steps.

JOIN ORDER determines ongoing workload for the query. Assuming we do not allow CARTESIAN JOINS in
our query plans, the possible join orders (also called a join sequence) for this query are those shown here.
Only VALID join orders are considered. This means joins must follow the join paths made available by the
query, which can easily be seen by looking at the query diagram.

DRIVING POSSIBLE VALID

TABLE JOIN SEQUENCE

------- --------------------

T1 T1 --> T2 --> T3

T3 T3 --> T2 --> T1

T2 T2 --> T1 --> T3

T2 T2 --> T3 --> T1

We also saw that if we use NUMBER OF ROWS MANIPULATED as an estimate of the workload of a specific
JOIN SEQUENCE, then the cost of each join sequence is potentially different, sometimes very different,
particularly when we consider the SIZE OF INTERMEDIARY ROW-SETS generated as the outcome of some
of the joins.

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

42

The key to correct join order for our purposes, is to keep the intermediary row-set sizes as small as possible
throughout query execution. There are two ways to do this, each yielding a different cost.

Two strategies for keeping intermediary row-set sizes small:

 LEAST NUMBER OF ROWS: Pick a join sequence that is likely to return the least
number of rows after each join. This is what we saw in the example above when we
determined that the best join sequence was most likely T2, T1, and T3.

 LEAST PERCENTAGE OF ROWS: Pick a join sequence that is likely to remove the
highest percentage of rows from consideration as soon as possible. This is what
FILTERED ROWS PERCENTAGE method will attempt to do.

As an quick thought, if we actually used FRP (FILTERED ROWS PERCENTAGE) which is the strategy this
book wants you to learn and use, as the method to determine join sequence in the above example, we would
have concluded that T2, T3, T1 is likely the best join order, not the order T2, T1, T3 that we think is the best
order. This is just the way FRP works. Some might say this shows a flaw in the method. However the
opposite is actually true. If a strategy was to use LEAST NUMBER OF ROWS rather than LEAST
PERCENTAGE OF ROWS as the method for reducing workload, then it would tend to pick smaller tables
over larger tables as driving tables regardless of filtering criteria. It is common for queries to filter away
significant percentages of rows from large tables yet still have row-sets from those tables that have more
remaining rows than small lookup tables. A large table with one-hundred million rows in it but for which a
query filters away 99.9% of the rows, still sends one-hundred thousand rows into the query. This is far more
rows than a simple fifty row reference table. In such a situation, LEAST NUMBER OF ROWS would pick the
small table over the large table when considering driving table and placement in the join order, even though
no rows had been filtered from the small table. This could be a disaster for performance. Going with the
small table that does not remove any rows means keeping 100% of the workload. After access to such a
table, no reduction in workload would be achieved. Thus LEAST NUMBER OF ROWS misses opportunities
for workload reduction.

What this means is, we want to use the LEAST PERCENTAGE OF ROWS strategy when deciding on
DRIVING TABLE and JOIN ORDER.

COUNT QUERIES and FILTER QUERIES

Since cardinalities (row counts) are central to SQL tuning, we will often run pieces of a query in order to
validate ideas and collect information about intermediary row-set sizes and things like that. In particular there
are two types of these kinds of queries that the FILTERED ROWS PERCENTAGE technique uses. They are
called COUNT QUERIES and FILTER QUERIES. The next section will go into detail about these. For now
here is a simple example.

select *

from dept,emp,project

where project.emp_id = emp.emp_id

and emp.dept_id = dept.dept_id

and project.group_type = 'PT1’

and emp.ssn = '12345';

There are three tables in this query. From this we can construct three COUNT QUERIES.

select count(*) from dept;

select count(*) from emp;

select count(*) from project;

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

43

The idea is simple of course. These will count the number of rows in the table. Thus they are called COUNT
QUERIES.

But looking more closely, we see that there are predicates in this query too. Some are join predicates and
some are constant test predicates. We are interested in the constant test predicates. Since there are three
tables in the query we could create as many as three FILTER QUERIES as well. A filter query is the count
query but with all the predicates from the parent query that are based on constants. Note we are not interested
in the join predicates. Thus the parent query would produce these three filter queries.

select count(*) from dept;

select count(*) from emp where emp.ssn = '12345'

select count(*) from project where project.group_type = 'PT1’;

Notice that these queries contain only the constant test predicates for the associated table. Also note that
the DEPT filter query is the same as its count query since there are no constant test predicates.

These filter queries tell us about the size of the workload the associated table brings into the query. This is
crucial information used in FRP. Indeed, the major purpose of FRP as a strategy is to determine a good
choice of DRIVING TABLE and JOIN ORDER, and to learn if your query got off to a good start. A query that
gets off to a good start usually has few performance problems. We will refine what we mean by “good start”
as we progress through our examples.

FRP Spreadsheet

Ultimately one of your goals in this FRP process is to produce a spreadsheet that looks like this.

 Plan Filtered Actual

ID TABLE_NAME NUM_ROWS ROWCOUNT Cardinality Cardinality FRP

----- ------------- ---------- ---------- ----------- ----------- ------

 8 EMP_DIM 6243035 6243035 240117 215414 3.5

 9 EMP_LOC_DIM 329699 329699 296337 329699 100.0

 15 EMPLR_LOC_DIM 8874 8874 8874 8872 100.0

 19 EMP_DIM 6243035 6243035 240117 236469 3.8

 21 EMP_LOC_DIM 329699 329699 251761 212993 64.6

5 rows selected.

This spreadsheet collects cardinality information using COUNT QUERIES and FILTER QUERIES and
metadata from the data dictionary, and even data from the PLAN_TABLE, and does some simple math with
it. It is powerful. At the end of this chapter is a short cut example of how to use a special script that generates
this spreadsheet for you (less a few bugs you might need to work around).

Cardinality simply means row count, but there are many different kinds of row counts. We see in the FRP
Spreadsheet different cardinalities of interest. They can be classified as either estimated or actual, and can
also be classified as either unfiltered (full table) or filtered (rows removed based on constant test predicates
in the WHERE clause).

The four Cardinalities in the FRP Spreadsheet have these classification combinations:

 NUM_ROWS: Estimated, Unfiltered.

 ROWCOUNT: Actual, Unfiltered.

 PLAN CARDINALITY: Estimated, Filtered.

 FILTERED CARDINALITY: Actual, Filtered.

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

44

This FRP spreadsheet will allow you to consider many facets of the query. You can consider possible
DRIVING TABLE and JOIN ORDER for a query. You can consider the quality of statistics on your tables.
You can consider the ACCESS METHOD and JOIN METHOD for each table. And you can get a very close
idea of where the overall query workload is coming from. All of which you can compare to the current query
plan details for the problem query to see how different the current query plan may be from what the FRP
spreadsheet suggests it should be. You will learn all this in this chapter.

A Filtered Rows Percentage Example
We are going to walk through a real world example of using FRP (Filtered Rows Percentage). There are 16
steps in the process. Yes this is some work but nobody said tuning SQL was going to be easy. Again there
is a short cut script at the end of this chapter that does the work for you.

In this process about to be demonstrated, we are going to build a query diagram for our problem query, and
a FRP spreadsheet one piece at a time. When we are done the FRP spreadsheet will show us the DRIVING
TABLE and JOIN ORDER that is most likely the best choice for this query. It will also let us make other
determinations about the query and its query plan and the state of the environment it lives in.

Filtered Rows Percentage Method (FRP) helps us understand several crucial aspects about a query.

 Determine Driving Table and Join Order

 Determine basic query style (PRECISION QUERY or WAREHOUSE QUERY)

 Determine if the query got off to a good start (Stats and Cardinality Accuracy)

Once you have gone through this process successfully, a SQL script will be provided that does most of this
work automatically. Although the script may have some limitations, it makes using FRP much more efficient.
So please work your way through the FRP process here to understand its parts.

The process of FILTERED ROWS PERCENTAGE is as follows:

1. Format the PROBLEM QUERY

2. Familiarize yourself with the problem query

3. Create a spreadsheet

4. List tables from the query in the spreadsheet

5. Build COUNT QUERIES and note the row count for each table

6. Build and run FILTER QUERIES for each table

7. Note the filtered row counts

8. Compute FILTERED ROWS PERCENTAGE for each table

9. Determine PREFERED JOIN ORDER

10. Construct a QUERY DIAGRAM

11. Determine INITIAL JOIN ORDER

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

45

12. Build and run RECONSTRUCTION QUERIES

13. Note reconstruction row counts

14. Use CARDINALITY FEEDBACK to adjust join order

15. Repeat (11) thru (12) once if join order changed

16. Determine if further action is necessary

The FRP process may seem like a lot of work. The reality is this is a lot of work. But since we are only
applying this method for those one in one-thousand queries that is a problem, using the method is well worth
the effort. Additionally as you get better at this process, you will skip steps that have obvious answers to you.
Also, the magical script employed later will do this work for you.

The subsections that follow will walk through a real-life example. You will see how the method can take you
systematically towards a solution. Please notice that I have selected for teaching a rather large query. This
is for several reasons. One is that it allows for some repetition in the process to give plenty of opportunities
to do certain steps, and another is that I want to impress upon you that size of queries no longer matters.
When you use the FRP process, the big queries fall just as easily as the small ones. They just take a little
more time.

1. Format the PROBLEM QUERY

This first step of formatting the problem query is easy, and may seem so trivial as to be unnecessary. Don't
omit it though. The act of formatting the query forces you to begin to read it, and you'll find yourself catching
on to how the query was written to produce the desired business result. You'll be surprised what your
subconscious can pick up while you are rearranging a problem query to make it more readable.

For example, here is a poorly-performing query in its original state. This query has in fact already been
formatted once using a tool (via Toad or that free online SQL formatting website). But this kind of formatting
is only part of what we want.

SELECT v_cbe_lv_rqst.lv_rqst_cd,

 att_lv_pln.be_name,

 att_lv_pln.lv_pln_cd,

 att_lv_pln_typ.be_name,

 CASE

 WHEN LV_SEG_LV_TYP.lv_typ_cd NOT IN ('Not classified at this level'

) THEN

 LV_SEG_LV_TYP.be_name

 END seg_be_name,

 cbe_emp.emp_natl_id,

 SUM (Nvl (v_lv_pln_usge_fact.hrs_used_diff, 0)),

 SUM (Nvl (v_lv_pln_usge_fact.hrs_rmn_diff, 0))

FROM v_cbe_lv_rqst,

 att_lv_pln,

 att_lv_pln_typ,

 att_lv_typ LV_SEG_LV_TYP,

 cbe_emp,

 v_lv_pln_usge_fact,

 v_plcy_dim,

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

46

 att_emp_org

WHERE (cbe_emp.object_id = v_cbe_lv_rqst.emp_parent

 AND cbe_emp.start_date <= current_date

 AND cbe_emp.end_date > current_date)

 AND (att_emp_org.be_id = cbe_emp.emp_org_parent

 AND att_emp_org.start_date <= current_date

 AND att_emp_org.end_date > current_date)

 AND (att_lv_pln_typ.be_id = v_lv_pln_usge_fact.lv_pln_typ

 AND att_lv_pln_typ.start_date <= current_date

 AND att_lv_pln_typ.end_date > current_date)

 AND (att_lv_pln.be_id = v_lv_pln_usge_fact.lv_pln

 AND att_lv_pln.start_date <= current_date

 AND att_lv_pln.end_date > current_date)

 AND (LV_SEG_LV_TYP.be_id = v_lv_pln_usge_fact.lv_typ

 AND LV_SEG_LV_TYP.start_date <= current_date

 AND LV_SEG_LV_TYP.end_date > current_date)

 AND (v_plcy_dim.be_id = v_cbe_lv_rqst.case_1_parent

 AND v_plcy_dim.start_date <= current_date

 AND v_plcy_dim.end_date > current_date)

 AND (v_lv_pln_usge_fact.lv_rqst = v_cbe_lv_rqst.object_id

 AND v_cbe_lv_rqst.start_date <= current_date

 AND v_cbe_lv_rqst.end_date > current_date)

 AND (v_cbe_lv_rqst.scrty_cnstr_cd = '1')

 AND (v_plcy_dim.scrty_cnstr_cd = '1')

 AND (((v_plcy_dim.case_code) = '807915')

 AND (v_lv_pln_usge_fact.lv_pln_usge_dt <= '08-aug-2012')

 AND Trim(Substr (att_emp_org.emp_org_cd,

 Instr (att_emp_org.emp_org_cd, '-')

 + 1))

 IN ('4167781', '4167779', '4167777', '4167783', '4167785')

)

GROUP BY v_cbe_lv_rqst.lv_rqst_cd,

 att_lv_pln.be_name,

 att_lv_pln.lv_pln_cd,

 att_lv_pln_typ.be_name,

 CASE

 WHEN LV_SEG_LV_TYP.lv_typ_cd NOT IN (

 'Not classified at this level') THEN

 LV_SEG_LV_TYP.be_name

 END,

 cbe_emp.emp_natl_id;

This query was identified by an application team as taking too long and causing backlog in their batch
reporting system. It does some stuff with leave calculations, whatever that is, summing up used and
remaining leave days by some key. It is always nice to know in business terms what the query does,
particularly when you start looking at rewrites.

As just noted, if the query is not already formatted, then begin the process of getting to know the query by
formatting it for neatness. Everyone has their own approach to formatting. I recommend something simple
such as TOAD formatter, or an online web site that will format SQL for you.

Next, follow up with some organization of the SQL in addition to simple formatting.

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

47

SELECT v_cbe_lv_rqst.lv_rqst_cd,

 att_lv_pln.be_name,

 att_lv_pln.lv_pln_cd,

 att_lv_pln_typ.be_name,

 CASE

 WHEN LV_SEG_LV_TYP.lv_typ_cd NOT IN ('Not classified at this level'

) THEN

 LV_SEG_LV_TYP.be_name

 END seg_be_name,

 cbe_emp.emp_natl_id,

 SUM (Nvl (v_lv_pln_usge_fact.hrs_used_diff, 0)),

 SUM (Nvl (v_lv_pln_usge_fact.hrs_rmn_diff, 0))

FROM v_cbe_lv_rqst,

 att_lv_pln,

 att_lv_pln_typ,

 att_lv_typ LV_SEG_LV_TYP,

 cbe_emp,

 v_lv_pln_usge_fact,

 v_plcy_dim,

 att_emp_org

 WHERE 1 = 1

--

 AND cbe_emp.object_id = v_cbe_lv_rqst.emp_parent

 AND att_emp_org.be_id = cbe_emp.emp_org_parent

 AND att_lv_pln_typ.be_id = v_lv_pln_usge_fact.lv_pln_typ

 AND att_lv_pln.be_id = v_lv_pln_usge_fact.lv_pln

 AND lv_seg_lv_typ.be_id = v_lv_pln_usge_fact.lv_typ

 AND v_plcy_dim.be_id = v_cbe_lv_rqst.case_1_parent

 AND v_lv_pln_usge_fact.lv_rqst = v_cbe_lv_rqst.object_id

--

 AND cbe_emp.start_date <= current_date

 AND cbe_emp.end_date > current_date

 AND att_emp_org.start_date <= current_date

 AND att_emp_org.end_date > current_date

 AND att_lv_pln_typ.start_date <= current_date

 AND att_lv_pln_typ.end_date > current_date

 AND att_lv_pln.start_date <= current_date

 AND att_lv_pln.end_date > current_date

 AND lv_seg_lv_typ.start_date <= current_date

 AND lv_seg_lv_typ.end_date > current_date

 AND v_plcy_dim.start_date <= current_date

 AND v_plcy_dim.end_date > current_date

 AND v_cbe_lv_rqst.start_date <= current_date

 AND v_cbe_lv_rqst.end_date > current_date

--

 AND v_cbe_lv_rqst.scrty_cnstr_cd = '1'

 AND v_plcy_dim.scrty_cnstr_cd = '1'

 AND v_plcy_dim.case_code = '807915'

 AND v_lv_pln_usge_fact.lv_pln_usge_dt <= '08-aug-2012'

 AND Trim(Substr (att_emp_org.emp_org_cd,

 Instr (att_emp_org.emp_org_cd, '-') + 1))

 IN ('4167781', '4167779', '4167777', '4167783', '4167785')

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

48

GROUP BY v_cbe_lv_rqst.lv_rqst_cd,

 att_lv_pln.be_name,

 att_lv_pln.lv_pln_cd,

 att_lv_pln_typ.be_name,

 CASE

 WHEN LV_SEG_LV_TYP.lv_typ_cd NOT IN (

 'Not classified at this level') THEN

 LV_SEG_LV_TYP.be_name

 END,

 cbe_emp.emp_natl_id;

Formatting makes things neat, and neatness counts in this business. If you want to communicate ideas, you
do a better job when the page is pretty to look at.

Formatting concepts that can be applied to a query.

 Liberal use of white space. White space makes things easier to read so exploit this

fact.

 One thing, one line. Notice the CASE expression in the select list. It was simple

enough that it can fit on one line. So it gets put on one line. Same goes for WHERE
clause predicates, and everything else. Having to move across multiple lines to read
a single idea is more difficult than reading that same idea from one line. (Yes you
see things on multiple lines here, blame that on page size of the book).

 Organized WHERE clause. Maybe the most important change to the formatting of

the query is that the WHERE clause has been reorganized. This organization makes
it easier to see what lines are JOINS and what lines are CONSTANT TESTS.

Notice the expression WHERE 1 = 1. This is a do nothing line but it makes it possible to move all the other
lines around and this freedom to move stuff around makes organizing the rest of the WHERE clause easier.
It will also make doing additional steps in FRP easier as we will soon see.

Notice that meaningless parenthesis have been removed. These get in the way of easy comprehension of
the code when they exist but do nothing. It is presumed that the existence of open/close parenthesis pairs
means that there is some logic that requires them. This in turn makes us look for that logic. But this is a
waste of time for this query, since there is no such logic that requires these parenthesis pairs. The entire
query is CONJUNCTIVE FORM (ALL AND) so there is no need for them.

Notice we have grouped the WHERE clause into three sections. This is very convenient for understanding
what is happening in the WHERE clause, and it will make additional steps in FRP easier to do. We can see
a section for joins, and two sections for CONSTANT TESTS against the tables. Normally we would only need
one such section of each type, but because of the repeating nature of the tests, two seemed appropriate in
this case.

Notice also that the lines in the WHERE clause have been ordered by table name (more or less). Another
convenience that we will be able to exploit in a moment.

It may seem that we have spent considerable time formatting this query, and we have, twenty minutes in fact.
But it will pay dividends. This in itself is an important lesson to learn: if you are not willing to spend the time
to do things like this, then maybe you are not meant to be a SQL Tuner. Tuning takes time. If you don’t have
the time or patience to do something like format a query BEFORE you work with it, then you should consider
going into a different line of work.

The purpose of formatting is to aid in comprehension and communication. Anything you can do to improve
your ability to comprehend what you are working with is a good thing. Anything you can do to improve your

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

49

ability to communicate what you are thinking to someone else is even better. Good formatting helps with
both. A formatted query will also make other steps in the FRP process much easier to do so even if we are
thinking selfishly, we want to format the query before we work with it.

2. Familiarize yourself with the problem query

After the query is formatted, familiarization is the next step, so please familiarize yourself with the problem
query. Do this by getting a description of the query. You want the description in business terms. You know
what the code does. But what is the business problem being solved? Then look for mistakes. Many a query
bug has been found on the way towards optimizing a too-slow SQL statement. Finally, take note of anything
else unusual that happens to catch your eye.

Get a Description

Get a description in business terms of what the query is supposed to be doing. You won’t use this description
now, but it does make for a better presentation later when you have to explain to others what you did, and it
will be useful if you should reach the point where you have to start considering various rewrites of the query.
For the example query, we have already obtained a description from the developer of what the query does.
The developer remarked that the query sums up used and remaining leave days by employee and plan and
other keys. This description is a bit sparse but good enough for now I suppose.

Additionally we need at least some statistics on how much work this problem query is doing. Usually the best
you can hope for is an ELAPSED TIME metric from a recent problem run. In this case we were told that this
query was taking 22 minutes to complete. This will be very important information because any alternatives
we offer must be faster and ideally much faster than 22 minutes.

Look for Mistakes

Look for mistakes in the query. There is no sense in spending a lot of time trying to tune a query with obvious
mistakes. The sad truth is about one in ten queries you will be looking at have significant mistakes; mistakes
that make the answer they are giving suspect. The owners of these queries will not like being told their query
has an error but you are justified in not spending time in doing a job that you will only have to re-do later once
they fix their mistake. Who knows, they might fix their performance problem at the same time as fixing the
mistake.

Our example query does not appear to have any mistakes, but it does seem a little sloppy in places. For
example, look at the following portions of the query:

 SELECT

 CASE

 WHEN LV_SEG_LV_TYP.lv_typ_cd NOT IN ('Not classified at this level'

) THEN

 LV_SEG_LV_TYP.be_name

 END seg_be_name,

…

 SUM (Nvl (v_lv_pln_usge_fact.hrs_used_diff, 0)),

 SUM (Nvl (v_lv_pln_usge_fact.hrs_rmn_diff, 0));

The case expression has been given an alias. The sum expressions have not. It does make me wonder how
the query is actually used if there are no column names that can be referenced once the final result is
produced. Is this query view text that was extracted from the database? Is it a query passed back to a java
app that uses ordinal placement instead of column names to retrieve values? Or was the developer just

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

50

sloppy? We do not know. We may not care either. But this apparent sloppiness does make me pay a little
more attention suspecting that this query may have been put together somewhat hastily or maybe by mindless
cut/paste coding.

Check for the Unusual

Look for other things that seem unusual. This would be anything you fancy from your experience; User
Defined Functions, Use of Views, Interesting Sub-Queries, etc.

In the example query we see what appears to be at least three views being referenced. This could prove to
be a complicating factor later if we determine that the cause of a slowdown is in a view somewhere. We note
the views and keep looking.

FROM v_cbe_lv_rqst,

 att_lv_pln,

 att_lv_pln_typ,

 att_lv_typ LV_SEG_LV_TYP,

 cbe_emp,

 v_lv_pln_usge_fact,

 v_plcy_dim,

 att_emp_org

We also see that there are eight objects referenced in the FROM clause, but only five objects from which we
ultimately select data in our SELECT list. This means that three of the objects in the FROM clause are either
pass through objects, or existential objects. We must either go through an object in order to join to another
object or we are using a join to an object only to filter rows from (or possibly duplicate rows in) the answer.
Some of this information could be useful should we need to look at indexing strategies for this query.

SELECT v_cbe_lv_rqst.lv_rqst_cd,

 att_lv_pln.be_name,

 att_lv_pln.lv_pln_cd,

 att_lv_pln_typ.be_name,

 CASE

 WHEN LV_SEG_LV_TYP.lv_typ_cd NOT IN ('Not classified at this level'

) THEN

 LV_SEG_LV_TYP.be_name

 END seg_be_name,

 cbe_emp.emp_natl_id,

 SUM (Nvl (v_lv_pln_usge_fact.hrs_used_diff, 0)),

 SUM (Nvl (v_lv_pln_usge_fact.hrs_rmn_diff, 0))

We notice that the query has a GROUP BY clause, but no ORDER BY clause. I am pretty sure this is a query
from a 9i database. And I am also pretty sure the application system this query comes from is headed for an
EXADATA platform (11gR2). So I have to ask, is this another case of sloppy development? Is the lack of an
ORDER BY clause reflective of the fact that ordering is not needed because the receiver of the data really
does not care about the final ordering of rows from this query? Or will this application be calling me in six
months to debug why their ordered data is suddenly no longer ordered after they migrated to their new
platform because Oracle 11g has group by strategies that using hashing instead of sorting. These do not
exist in 9i, so reliance on GROUP BY to order data while working in 9i often won't work in 11g.

Lastly we notice some suspicious constant values in the WHERE clause:

 WHERE 1 = 1

…

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

51

 AND v_plcy_dim.case_code = '807915'

…

 AND Trim(Substr (att_emp_org.emp_org_cd,

 Instr (att_emp_org.emp_org_cd, '-') + 1))

 IN ('4167781', '4167779', '4167777', '4167783', '4167785')

Are those quoted strings really business data? They look awfully like surrogate key values from a sequence
number generator. Has someone gone and started using surrogate keys as real data? Maybe this is just a
query that was generated as an intermediary step by some transformation process. In fact that is exactly
what this query is but it was scary for a moment, and tells me choice of column names was maybe not great.

But enough of this. The purpose of looking at the query, BEFORE you do anything with it, is to gain some
appreciation for what it is and what it has suffered through to become the problem that it is. Remember our
analogy of gopher shopping wherein our gopher was taking advantage of knowledge of the environment to
get the best travel route (is this alternative route a bus route, etc.). Reviewing a query is your chance to
acquire similar knowledge. It is an opportunity to start thinking about traffic patterns so to speak and bus
routes, and stop signs, etc. so take advantage of it and review the query.

3. Create a spreadsheet

Now that we have dispensed with formatting and familiarization with the query at hand, we can being the
process of creating the actual FRP spreadsheet. The FRP spreadsheet will eventually list out various types
of row counts for all tables in the problem query. The first step is to create an empty spreadsheet. If not
using the supplied script (and at the moment we are not) then we normally would use Excel for this. But for
various “production” reasons of this book we are going to simplify this and use simple text reports as our
spreadsheet. This is OK as eventually that is what the automated script will give us anyway.

OWNER TABLE_NAME

--------------- ---------------

That was easy. This spreadsheet is one of the two main artifacts that is going to help us determine our
DRIVING TABLE and JOIN ORDER. We will be adding various columns in steps we are about to see, and
updating and sorting rows as we go. The final result will be a spreadsheet that gives us our DRIVING TABLE
and JOIN ORDER based on how rows are filtered out of the result set. The first step of course is to start an
empty spreadsheet.

4. List tables from the query in the spreadsheet

Next we create a listing of tables. Notice that the spreadsheet has two columns so far, one for the table owner
and one for the table name. We list tables at the moment in alphabetical order for convenience. This will
change as we add more columns to the spreadsheet.

 FROM V_CBE_LV_RQST,

 ATT_LV_PLN,

 ATT_LV_PLN_TYP,

 ATT_LV_TYP LV_SEG_LV_TYP,

 CBE_EMP,

 V_LV_PLN_USGE_FACT,

 V_PLCY_DIM,

 ATT_EMP_ORG

OWNER TABLE_NAME

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

52

------ ------------------

WHSUSR ATT_EMP_ORG

WHSUSR ATT_LV_PLN

WHSUSR ATT_LV_PLN_TYP

WHSUSR ATT_LV_TYP

WHSUSR CBE_EMP

WHSUSR V_CBE_LV_RQST

WHSUSR V_LV_PLN_USGE_FACT

WHSUSR V_PLCY_DIM

We get a list of tables used by the query and drop these on our spreadsheet. We might also be interested in
who owns these objects and whether these objects are tables or views or synonyms, and if an ALIAS was
used in the query for any of them. For brevity I usually keep this information out of the working spreadsheet
but here is a query that will garner some of this information for you. From it we will learn that PUBLIC
SYNONYMS are in use (not a good idea if you are moving to a shared platform), and that user WHSUSR is
the owner for these objects.

col object_name format a30

select owner,object_type,object_name

from dba_objects

where object_name = upper('&&1')

order by 1,2,3

/

17:29:41 SQL> @showowner V_CBE_LV_RQST

OWNER OBJECT_TYPE OBJECT_NAME

------------------------------ ------------------- --------------------------

PUBLIC SYNONYM V_CBE_LV_RQST

WHSUSR VIEW V_CBE_LV_RQST

2 rows selected.

17:29:50 SQL> @showowner ATT_LV_PLN

OWNER OBJECT_TYPE OBJECT_NAME

------------------------------ ------------------- --------------------------

PUBLIC SYNONYM ATT_LV_PLN

WHSUSR TABLE ATT_LV_PLN

WHS_VIEWER SYNONYM ATT_LV_PLN

3 rows selected.

… remaining omitted.

Note use of the SHOWOWNER script used to obtain the existential and ownership information on an object.
We have skipped many of the objects used in the query to save space. Adding these additional details, the
FRP spreadsheet now contains four columns. Not all columns are always needed.

OWNER TABLE_NAME OBJECT_TYPE ALIAS

------ ------------------ ----------- --------------

WHSUSR ATT_EMP_ORG TABLE

WHSUSR ATT_LV_PLN TABLE

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

53

WHSUSR ATT_LV_PLN_TYP TABLE

WHSUSR ATT_LV_TYP TABLE LV_SEG_LV_TYPE

WHSUSR CBE_EMP TABLE

WHSUSR V_CBE_LV_RQST VIEW

WHSUSR V_LV_PLN_USGE_FACT VIEW

WHSUSR V_PLCY_DIM VIEW

5. Note the row count for each table

We are going to add a ROWS column to our spreadsheet and note in it the number of rows in each table.

We can get this information two ways:

 From NUM_ROWS in DBA_TABLES

 By counting the rows in each table

NUM_ROWS is easier, but counting is more accurate and in the case of views or other composite objects
may be the only way to get a row count. The optimizer will normally be using NUM_ROWS when estimating
CARDINALITY of plan steps (though dynamic sampling changes this). If we count rows, we need to construct
COUNT QUERIES for each table. These are the COUNT QUERIES we need to get row counts for tables in
the problem query.

select count(*) rowcount,'ATT_EMP_ORG' from ATT_EMP_ORG;

select count(*) rowcount,'ATT_LV_PLN' from ATT_LV_PLN;

select count(*) rowcount,'ATT_LV_PLN_TYP' from ATT_LV_PLN_TYP;

select count(*) rowcount,'LV_SEG_LV_TYP' from ATT_LV_TYP;

select count(*) rowcount,'CBE_EMP' from CBE_EMP;

select count(*) rowcount,'V_CBE_LV_RQST' from V_CBE_LV_RQST;

select count(*) rowcount,'V_LV_PLN_USGE_FACT' from V_LV_PLN_USGE_FACT;

select count(*) rowcount,'V_PLCY_DIM' from V_PLCY_DIM;

13:28:00 SQL> select count(*) rowcount,'ATT_EMP_ORG' from ATT_EMP_ORG;

 ROWCOUNT 'ATT_EMP_OR

---------- -----------

 10875 ATT_EMP_ORG

1 row selected.

Above you see the COUNT QUERIES for each table in our query. You also see the result of executing the
first count query. For brevity, the rest of the count executions have been omitted and I filled in the results in
the spreadsheet after running each count query.

Notice the FRP spreadsheet now contains a filled in ROWS column so we now know the number of rows in
each table. As a hint, if we sort the spreadsheet by TABLE_NAME so that the order on the spreadsheet
matches the order in which we will run our generated COUNT QUERIES, it is easier to plug the resulting
numbers into the spreadsheet.

OWNER TABLE_NAME OBJECT_TYPE ALIAS ROWS

------ ------------------ ----------- -------------- -------

WHSUSR ATT_EMP_ORG TABLE 10875

WHSUSR ATT_LV_PLN TABLE 844

WHSUSR ATT_LV_PLN_TYP TABLE 15

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

54

WHSUSR ATT_LV_TYP TABLE LV_SEG_LV_TYPE 8

WHSUSR CBE_EMP TABLE 8079309

WHSUSR V_CBE_LV_RQST VIEW 613431

WHSUSR V_LV_PLN_USGE_FACT VIEW 4387560

WHSUSR V_PLCY_DIM VIEW 3657382

At this point we have two things to consider:

 We have a moderately useful piece of information. From the spreadsheet we have a
clear idea of which tables in the query are big and which ones are small (relative to
each other). We are starting to learn about where resources may be spent on this
query.

 We have ignored the potential complexity that VIEWS could throw into our process.
Most of the time when building a FRP spreadsheet, we can treat views as tables.
Each is just a source of rows. But there may be times when it becomes necessary to
tune individual views in order to successfully tune a query. At this moment, it would
be a mistake to assume that any of these views was the root of a performance issue
with this query. This also demonstrates how NUM_ROWS from the dictionary is not
sufficient. There is no NUM_ROWS for views so we are required to run a count
query to get the row count we need.

6. Build and run FILTER QUERIES for each table

Now that we know how many rows are in each table, we next want to know how many rows actually feed into
query processing from each table. We use what are called FILTER QUERIES to figure this out. Filter Queries
are queries that show us for some specific table, how many rows will remain AFTER FILTERING, if all we did
was use the filtering criteria found in the WHERE clause for that table. We learn how many rows remain after
filtering. For a table in the query, we examine the WHERE clause looking for CONSTANT TESTS against
the table. We then construct a COUNT (*) query against the table and add to it only these constant tests.
This gives us a Filter Query.

Since every table in this query has at least one filter expression that references a constant, we will need one
filter query for each table for a total of eight filter queries. If there are no filter criteria in the WHERE clause
for a table in the query, then there is no need to construct a filter query for that table since the filtered row
count will be the same as the number of rows in the table and we already have that information.

Here are the eight filter queries for our problem query. Notice there is a filter query for each table that has
associated filtering predicates in the WHERE clause that use constants. We are able to build a filter query
by examining the WHERE clause looking for those filtering predicates based on constants that are applied to
a specific table. You can see for example, how for table ATT_EMP_ORG, we took the three predicates from
the WHERE clause such that the predicates referenced the table, and they are based on CONSTANT TEST
filtering. For those who do not know it, CURRENT_DATE is an Oracle environment variable like SYSDATE.

SELECT Count(*) rowcount,

 'ATT_EMP_ORG'

FROM att_emp_org

WHERE 1 = 1

 AND att_emp_org.start_date <= current_date

 AND att_emp_org.end_date > current_date

 AND Trim(Substr (att_emp_org.emp_org_cd,

 Instr (att_emp_org.emp_org_cd, '-') + 1))

 IN ('4167781', '4167779', '4167777', '4167783', '4167785');

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

55

SELECT Count(*) rowcount,

 'ATT_LV_PLN'

FROM att_lv_pln

WHERE 1 = 1

 AND att_lv_pln.start_date <= current_date

 AND att_lv_pln.end_date > current_date;

SELECT Count(*) rowcount,

 'ATT_LV_PLN_TYP'

FROM att_lv_pln_typ

WHERE 1 = 1

 AND att_lv_pln_typ.start_date <= current_date

 AND att_lv_pln_typ.end_date > current_date;

SELECT Count(*) rowcount,

 'LV_SEG_LV_TYP,'

FROM att_lv_typ lv_seg_lv_typ

WHERE 1 = 1

 AND lv_seg_lv_typ.start_date <= current_date

 AND lv_seg_lv_typ.end_date > current_date;

SELECT Count(*) rowcount,

 'CBE_EMP'

FROM cbe_emp

WHERE 1 = 1

 AND cbe_emp.start_date <= current_date

 AND cbe_emp.end_date > current_date;

SELECT Count(*) rowcount,

 'V_CBE_LV_RQST'

FROM v_cbe_lv_rqst

WHERE 1 = 1

 AND v_cbe_lv_rqst.start_date <= current_date

 AND v_cbe_lv_rqst.end_date > current_date

 AND v_cbe_lv_rqst.scrty_cnstr_cd = '1';

SELECT Count(*) rowcount,

 'V_LV_PLN_USGE_FACT'

FROM v_lv_pln_usge_fact

WHERE v_lv_pln_usge_fact.lv_pln_usge_dt <= '08-aug-2012';

SELECT Count(*) rowcount,

 'V_PLCY_DIM'

FROM v_plcy_dim

WHERE 1 = 1

 AND v_plcy_dim.start_date <= current_date

 AND v_plcy_dim.end_date > current_date

 AND v_plcy_dim.case_code = '807915';

Running all eight filtering queries yields filtered row counts for each table. A filtered row count is the number
of rows that remain after filtering predicates have been applied. We see below that the filter query for table
ATT_EMP_ORG tells us that after filtering using only the CONSTANT TEST predicates applied to the table,
we will get only five rows from ATT_EMP_ORG feeding into the query.

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

56

11:00:52 SQL> SELECT Count(*) rowcount,

11:00:53 2 'ATT_EMP_ORG'

11:00:53 3 FROM att_emp_org

11:00:53 4 WHERE 1 = 1

11:00:53 5 AND att_emp_org.start_date <= current_date

11:00:53 6 AND att_emp_org.end_date > current_date

11:00:53 7 AND Trim(Substr (att_emp_org.emp_org_cd,'

 Instr (att_emp_org.emp_org_cd, '-') + 1)) IN (

11:00:53 8 '4167781', '4167779', '4167777', '4167783', '4167785');

 ROWCOUNT 'ATT_EMP_OR

---------- -----------

 5 ATT_EMP_ORG

1 row selected.

For brevity, the rest of the Filter Query executions have been omitted. I ran them all. They generated the
FILTERED ROWS column of the FILTERED ROWS PERCENTAGE spreadsheet and we will add these
filtered row counts in the next step.

7. Note the filtered row counts

Having executed all the filter queries, we take the resulting row count and put each into the spreadsheet by
table. Notice we have added the additional column FILTERED_ROWS and dropped our filtered row count
for each table into this column.

 OBJECT FILTERED

OWNER TABLE_NAME TYPE ALIAS ROWS ROWS

------ ------------------ ------ -------------- ------- --------

WHSUSR ATT_EMP_ORG TABLE 10875 5

WHSUSR ATT_LV_PLN TABLE 844 841

WHSUSR ATT_LV_PLN_TYP TABLE 15 15

WHSUSR ATT_LV_TYP TABLE LV_SEG_LV_TYPE 8 7

WHSUSR CBE_EMP TABLE 8079309 657370

WHSUSR V_CBE_LV_RQST VIEW 613431 158041

WHSUSR V_LV_PLN_USGE_FACT VIEW 4387560 4091046

WHSUSR V_PLCY_DIM VIEW 3657382 5

This starts to look interesting, but let us do the next step before commentary.

8. Compute FILTERED ROWS PERCENTAGE for each table

Now that we know for each table, how many rows there are in the table, and how many rows are filtered out
of the result based on INITIAL FILTER CRITERIA found in the WHERE clause, we can generate a statistic
that gives us a good idea of the EFFICIENCY of the filtering done against each table. We can compute the
FILTERED ROWS PERCENTAGE statistic for each table in this query. This is the magic number that tells
us how well our WHERE clause is filtering data from tables.

To do this we add a column to the spreadsheet called FILTERED ROWS % and we fill it in using the simple
Excel formula ROUND ((1-Y/X)*100, 0). So for table ATT_EMP_ORG, this is (1-5/10875)*100 = 99.95%
which when we round to the nearest integer gives us 100%. For the table ATT_EMP_ORG, 100% of the data
has been removed from consideration by the query’s filtering criteria. 100% is not an exact number because

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

57

of our rounding. We know from the spreadsheet that we will be getting five (5) rows from this table. But this
number is so small compared to the total number of rows in the table that the effective filtering is near 100%.

An alternative calculation and the one that the automated script uses, is to calculate the % of rows remaining
after filtering. It is the same basic info, but just how the script does it. The advantage of the alternative is that
it emphasizes the idea of eliminating rows as quickly as possible. But for now we use this first calculation.

 OBJECT FILTERED FILTERED

OWNER TABLE_NAME TYPE ALIAS ROWS ROWS ROWS %

------ ------------------ ------ -------------- ------- -------- --------

WHSUSR ATT_EMP_ORG TABLE 10875 5 100

WHSUSR ATT_LV_PLN TABLE 844 841 0

WHSUSR ATT_LV_PLN_TYP TABLE 15 15 0

WHSUSR ATT_LV_TYP TABLE LV_SEG_LV_TYPE 8 7 13

WHSUSR CBE_EMP TABLE 8079309 657370 92

WHSUSR V_CBE_LV_RQST VIEW 613431 158041 74

WHSUSR V_LV_PLN_USGE_FACT VIEW 4387560 4091046 7

WHSUSR V_PLCY_DIM VIEW 3657382 5 100

At this point, we now have very interesting data to work with. We can see from the FILTERED ROWS
PERCENTAGE column that there are some tables for which initial filtering criteria will remove almost all the
rows from consideration, and some tables from which we eliminate almost none of the rows from
consideration. Recall from our discussion of DRIVING TABLE that one of the ramifications of DRIVING
TABLE selection was the initial number of rows feeding into query execution, and that these rows drove the
amount of work for the rest of the query. As such, it makes sense for us to select a DRIVING TABLE for
which most of the data in the table is removed.

Based on the FILTERED ROWS PERCENTAGE data, we see there are two tables that look promising as
DRIVING TABLES: (ATT_EMP_ORG and V_PLCY_DIM). It may be easier to see this if we sort the rows in
our spreadsheet by FILTERED ROWS PERCENTAGE descending. Again please recall that for the time
being we are treating VIEWS as TABLES; they both are row sources for this query.

9. Determine PREFERRED JOIN ORDER

Sorting by FILTERED ROWS % column descending (and then ROWS ascending if we like) we get our
PREFERRED JOIN ORDER.

 OBJECT FILTERED FILTERED

OWNER TABLE_NAME TYPE ALIAS ROWS ROWS ROWS %

------ ------------------ ------ -------------- ------- -------- --------

WHSUSR ATT_EMP_ORG TABLE 10875 5 100

WHSUSR V_PLCY_DIM VIEW 3657382 5 100

WHSUSR CBE_EMP TABLE 8079309 657370 92

WHSUSR V_CBE_LV_RQST VIEW 613431 158041 74

WHSUSR ATT_LV_TYP TABLE LV_SEG_LV_TYPE 8 7 13

WHSUSR V_LV_PLN_USGE_FACT VIEW 4387560 4091046 7

WHSUSR ATT_LV_PLN TABLE 844 841 0

WHSUSR ATT_LV_PLN_TYP TABLE 15 15 0

Recall from our discussion of JOIN ORDER that our goal for picking a join order was to keep the size of
intermediary row-sets as small as possible throughout query execution, and that there were two ways to
achieve this. Also recall that by using FILTERED ROWS PERCENTAGE we were opting for choice #2.

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

58

2) Pick a join sequence that is likely to remove the highest percentage of rows from consideration

as soon as possible.

If we can process our tables in the order listed above in our spreadsheet, we are highly likely to be removing
the maximum amount of data from consideration as soon as is possible during query execution. By using
this join order, we will be reducing the number of rows joined, and number of key comparisons and data
comparisons required in subsequent steps, and reducing the number of rows floated by the query as the
query progresses in joining to each table in turn. So ATT_EMP_ORG looks to be our choice for DRIVING
TABLE because it is first in JOIN ORDER and the JOIN ORDER shown above is our PREFERRED JOIN
ORDER for all tables in the query.

However, it is very likely that we cannot simply access tables in the order listed above. This is because the
joins in the query determine what join sequences are valid for this query and our PREFERRED JOIN ORDER
may not be a valid sequence for this query. So although the above ordering may well be our PREFERRED
JOIN ORDER, it will likely need to be modified to account for the valid join sequences the query allows. We
have to somehow account for the joins in our query when considering our join order.

10. Construct a QUERY DIAGRAM

To assist us in determining what join sequences are valid and which are not and thus help us modify our
PREFERRED JOIN ORDER so that it reflects a valid join sequence, we can construct a QUERY DIAGRAM
that visually shows us what we need to know.

To construct a query diagram, follow these steps.

 List tables in a straight line across the page, with even space between them, in the
top down order as seen in the FROM clause

 Examine the WHERE clause for joins between tables and draw lines to connect the
tables that are joined

 If desired, examine the WHERE clause for constant tests against tables and draw a
vertical line from a filtered table down and label it with (c)

 If desired, note outer-joins using (+) syntax

 If desired, annotate the diagram with spreadsheet data (PREFERRED JOIN ORDER,
ROWS, FILTERED ROWS, FILTERED ROWS %, and whatever makes sense to
you)

 Use the alias for a table name on the query diagram if you need to save space or to
eliminate ambiguity.

This is one place where our SQL formatting will start to pay dividends. Recall that we organized the WHERE
clause such that all the joins between tables were in one place.

AND cbe_emp.object_id = v_cbe_lv_rqst.emp_parent

AND att_emp_org.be_id = cbe_emp.emp_org_parent

AND att_lv_pln_typ.be_id = v_lv_pln_usge_fact.lv_pln_typ

AND att_lv_pln.be_id = v_lv_pln_usge_fact.lv_pln

AND lv_seg_lv_typ.be_id = v_lv_pln_usge_fact.lv_typ

AND v_plcy_dim.be_id = v_cbe_lv_rqst.case_1_parent

AND v_lv_pln_usge_fact.lv_rqst = v_cbe_lv_rqst.object_id

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

59

We can exploit this when constructing our query diagram. How much information we put on the diagram
depends upon our use for it. At this point we only need the join information so we will limit our query diagram
to containing only the join information. The diagram gives us a visual representation of the joins between
tables in our query.

V_CBE_LV_RQST LV_SEG_LV_TYP V_PLCY_DIM

| | | | |

| | | ATT_LV_PLN | CBE_EMP | ATT_EMP_ORG

| | | | | | | | |

| | | | ATT_LV_PLN_TYP | | | V_LV_PLN_USAGE_FACT | |

| | | | | | | | | | | | | |

| | | | | | | | | | | | | |

| | | | | | | | | | | | | |

| | | | | +------------+ | | | | |

| | | | | | | | | | | |

| | | | +--------------------------------+ | | | |

| | | | | | | | | |

| | | +---+ | | |

| | | | | | | |

| | +--+ | |

| | | | | |

| +--+ |

| | | |

+--------------------------------------+ +-------------------------------+

Using the QUERY DIAGRAM, it is easy to see that when positioned at table X, only a subset of other tables
are immediately accessible via a join path. For example, if we position ourselves to table ATT_LV_PLN
(second from the left) then we can only move to table V_LV_PLN_USGE_FACT (just follow the line coming
out of ATT_LV_PLN). But if we did the opposite and position ourselves on V_LV_PLN_USGE_FACT (third
from the right) then we could go to any of LV_SEG_LV_TYP or ATT_LV_PLN or ATT_LV_PLN_TYP or
V_CBE_LV_RQST (again, just follow the lines).

Please note that I had to offset the table names in the diagram to make it easier to fit on the page without
reducing font sizes. This has no meaning to the data.

11. Determine INITIAL JOIN ORDER

With this QUERY DIAGRAM, it is now possible to merge our PREFERRED JOIN ORDER with the valid join
sequences as shown on the diagram, to determine a valid join order that most closely aligns with our
PREFERRED JOIN ORDER. We will call this our INITIAL JOIN ORDER and we will use it to start runtime
testing.

The FILTERED ROWS PERCENTAGE spreadsheet tells us that our DRIVING TABLE will be
ATT_EMP_ORG. It also tells us that the next table we want to visit is V_PLCY_DIM. But by examining the
query diagram, it is clear there is no direct path to V_PLCY_DIM from ATT_EMP_ORG. We would like to join
from ATT_EMP_ORG directly to V_PLCY_DIM but this is not a valid join sequence based on the query
diagram. Instead we must go through other tables to get from ATT_EMP_ORG to V_PLCY_DIM. Specifically,
we must follow the joins in the diagram such that we do this (this is a JOIN SENTENCE):

ATT_EMP_ORG  CBE_EMP  V_CBE_LV_RQST  V_PLCY_DIM.

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

60

To reach V_PLCY_DIM from ATT_EMP_ORG we must first visit ATT_EMP_ORG, then visit CBE_EMP, then
visit V_CBE_LV_RQST, which will then allow us to visit V_PLCY_DIM. This is what we mean when we say
“valid”. The PREFERRED JOIN ORDER does not present a valid join sequence based on the valid joins in
the query, which we can easily see using the query diagram.

In a similar fashion, we go through the motions and follow our PREFERRED JOIN ORDER, one table at a
time till we have accounted for all tables. So after making our way to V_PLCY_DIM, we check our
spreadsheet to see that the next table in our PREFERRED JOIN ORDER is CBE_EMP, but we have already
visited this table as a result of seeking V_PLCY_DIM, so we can move on. The next preferred table is
V_CBE_LV_RQST but we have already visited this table so we can move on. The next preferred table is
ATT_LV_TYP (alias LV_SEG_LV_TYP). We have not visited this table yet so we need to add it to our valid
join sequence. However once again there is no direct link between any of the tables we have already visited
and LV_SEG_LV_TYP so we have to follow the joins to get to it. Extending our join sequence accordingly
we come to:

ATT_EMP_ORG  CBE_EMP  V_CBE_LV_RQST  V_PLCY_DIM 

V_LV_PLN_USGE_FACT  LV_SEG_LV_TYP.

So from V_PLCY_DIM we visit V_LV_PLN_USGE_FACT and then we are allowed to visit ATT_LV_TYP (alias
LV_SEG_LV_TYP).

After visiting ATT_LV_TYP (alias LV_SEG_LV_TYP), the next preferred table is V_LV_PLN_USGE_FACT
but we have already visited this table so we can move on. The next preferred table is ATT_LV_PLN_TYP
which is directly accessible from one of the tables we have already visited so we extend our join sequence
again with:

ATT_EMP_ORG  CBE_EMP  V_CBE_LV_RQST  V_PLCY_DIM 

V_LV_PLN_USGE_FACT  LV_SEG_LV_TYP  ATT_LV_PLN_TYP.

After visiting ATT_LV_PLN_TYPE, the next preferred table is ATT_LV_PLN which is also now accessible
from at least one table we have already visited so we extend our join sequence with that table giving us:

ATT_EMP_ORG  CBE_EMP  V_CBE_LV_RQST  V_PLCY_DIM 

V_LV_PLN_USGE_FACT  LV_SEG_LV_TYP  ATT_LV_PLN_TYP  ATTT_LV_PLN.

This was the last table in our PREFERRED JOIN ORDER so we have now a JOIN SENTENCE that we
arrived at by following our PREFERRED JOIN ORDER as closely as possible but which we modified to
account for valid join paths as seen in our query diagram. This gives us our INITIAL JOIN ORDER. After
going through all that work, we do not want to lose this information so, we add a column to our spreadsheet
to show the INITIAL JOIN ORDER.

We see that the INITIAL JOIN ORDER is not the same as the PREFERRED JOIN ORDER but it is not too
far off either. A few tables have switched positions. We can reorder the spreadsheet by INITIAL JOIN ORDER
to aid the next step. In interest of space, I have started dropping columns we no longer need from the report.

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

61

 INITIAL

 OBJECT FILTERED FILTERED PREFERRED JOIN

TABLE_NAME ALIAS ROWS ROWS ROWS % JOIN ORDER ORDER

------------------ -------------- ------- -------- -------- ---------- -------

ATT_EMP_ORG 10875 5 100 1 1

CBE_EMP 8079309 657370 92 3 2

V_CBE_LV_RQST 613431 158041 74 4 3

V_PLCY_DIM 3657382 5 100 2 4

V_LV_PLN_USGE_FACT 4387560 4091046 7 6 5

ATT_LV_TYP LV_SEG_LV_TYPE 8 7 13 5 6

ATT_LV_PLN_TYP 15 15 0 7 7

ATT_LV_PLN 844 841 0 8 8

12. Build and run RECONSTRUCTION QUERIES

Reconstruction queries are a series of queries which are used to incrementally reconstruct our initial query
by incrementally adding one table at a time from our join order. Each successive query will introduce one
new table. Given that we have a join order to use from above, we can rewrite our beginning query into a
series of such queries. These queries will allow us to see how each new table adds to the cost of the query.
It will confirm for us that we have a good join sequence and after consideration of CARDINALITY FEEDBACK,
if there is potentially a better join order.

Below are the reconstruction queries based on our INITIAL JOIN ORDER for our problem query. Notice a
few things about them.

 ORDERED hint is used to ensure Oracle accesses tables in the order we want so

that we can explicitly determine DRIVING TABLE and JOIN ORDER. In 11g we
could also use LEADING hint but you will have to modify the hint with every new
reconstruction query. I am not suggesting that this hint should be used as the final
solution, only that it is a quick and easy way to validate our results.

 COUNT (*) is used to get the row count after the join to the new table and thus gives

us an indication of workload for the new table. By using only COUNT (*) we
potentially invalidate runtime metrics other than row count, but for this step in the
process we want the row count returned by each reconstruction query and are not
interested in its runtime. The row count will be useful in learning if a better join order
might exist than the INITIAL JOIN ORDER we are currently using.

 GROUP BY clause has been removed. We are interested in the number of raw rows

we visit because of each join, not aggregate rows.

We will have to undo these differences when we do our final confirmation test. But these changes are
necessary to build our reconstruction queries. A review of these queries will show that each new
reconstruction query adds one new table to the prior reconstruction query. The table added will be the next
table in our INITIAL JOIN ORDER from whatever the last table was that we built a reconstruction query for.
Obviously when we add a new table to make our next reconstruction query, we also need to add the join
criteria and filter criteria that is relevant.

I have not abbreviated the list of reconstruction queries that follows. I want you to see the full reconstruction
process and this requires all queries. These could have been put into an appendix but I feel the process
example loses something when this detail is removed.

The first table in our INITIAL JOIN ORDER is ATT_EMP_ORG, so this is the first reconstruction query we
build.

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

62

ATT_EMP_ORG Reconstruction Query

SELECT /*+ ORDERED */ Count(*) ROWCOUNT

FROM att_emp_org

WHERE 1 = 1

 --

 -- ATT_EMP_ORG

 --

 AND att_emp_org.start_date <= current_date

 AND att_emp_org.end_date > current_date

 AND Trim(Substr (att_emp_org.emp_org_cd,

 Instr (att_emp_org.emp_org_cd, '-') + 1))

 IN ('4167781', '4167779', '4167777', '4167783', '4167785');

Since CBE_EMP is the second table in our INITIAL JOIN ORDER this reconstruction query is next. We build
this reconstruction query by taking the prior reconstruction query and doing whatever we need to do to add
the next table into it. We add CBE_EMP to the FROM clause. We add to the WHERE clause, the join from
ATT_EMP_ORG to CBE_EMP, and add any constant tests related to the new table that are valid for the
totality of tables we have in this reconstruction query (currently only two tables).

CBE_EMP Reconstruction Query

SELECT /*+ ORDERED */ Count(*) ROWCOUNT

FROM att_emp_org,

 cbe_emp

WHERE 1 = 1

 --

 -- ATT_EMP_ORG

 --

 AND att_emp_org.start_date <= current_date

 AND att_emp_org.end_date > current_date

 AND Trim(Substr (att_emp_org.emp_org_cd,

 Instr (att_emp_org.emp_org_cd, '-') +

 1))

 IN ('4167781', '4167779', '4167777', '4167783', '4167785')

 --

 -- CBE_EMP

 --

 AND att_emp_org.be_id = cbe_emp.emp_org_parent

 AND cbe_emp.start_date <= current_date

 AND cbe_emp.end_date > current_date;

We do the same for all tables in our problem query (eight in this case). You can see now that once again our
formatting of the problem query pays another dividend. These reconstruction queries are much easier to
write given that we have organized the WHERE clause by section and table.

V_CBE_LV_RQST Reconstruction Query

SELECT /*+ ORDERED */ Count(*) ROWCOUNT

FROM att_emp_org,

 cbe_emp,

 v_cbe_lv_rqst

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

63

WHERE 1 = 1

 --

 -- ATT_EMP_ORG

 --

 AND att_emp_org.start_date <= current_date

 AND att_emp_org.end_date > current_date

 AND Trim(Substr (att_emp_org.emp_org_cd,

 Instr (att_emp_org.emp_org_cd, '-') +

 1))

 IN ('4167781', '4167779', '4167777', '4167783', '4167785')

 --

 -- CBE_EMP

 --

 AND att_emp_org.be_id = cbe_emp.emp_org_parent

 AND cbe_emp.start_date <= current_date

 AND cbe_emp.end_date > current_date

 --

 -- V_CBE_LV_RQST

 --

 AND cbe_emp.object_id = v_cbe_lv_rqst.emp_parent

 AND v_cbe_lv_rqst.start_date <= current_date

 AND v_cbe_lv_rqst.end_date > current_date

 AND v_cbe_lv_rqst.scrty_cnstr_cd = '1';

V_PLCY_DIM Reconstruction Query

SELECT /*+ ORDERED */ Count(*) ROWCOUNT

FROM att_emp_org,

 cbe_emp,

 v_cbe_lv_rqst,

 v_plcy_dim

WHERE 1 = 1

 --

 -- ATT_EMP_ORG

 --

 AND att_emp_org.start_date <= current_date

 AND att_emp_org.end_date > current_date

 AND Trim(Substr (att_emp_org.emp_org_cd,

 Instr (att_emp_org.emp_org_cd, '-') +

 1))

 IN ('4167781', '4167779', '4167777', '4167783', '4167785')

 --

 -- CBE_EMP

 --

 AND att_emp_org.be_id = cbe_emp.emp_org_parent

 AND cbe_emp.start_date <= current_date

 AND cbe_emp.end_date > current_date

 --

 -- V_CBE_LV_RQST

 --

 AND cbe_emp.object_id = v_cbe_lv_rqst.emp_parent

 AND v_cbe_lv_rqst.start_date <= current_date

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

64

 AND v_cbe_lv_rqst.end_date > current_date

 AND v_cbe_lv_rqst.scrty_cnstr_cd = '1'

 --

 -- V_PLCY_DIM

 --

 AND v_plcy_dim.be_id = v_cbe_lv_rqst.case_1_parent

 AND v_plcy_dim.start_date <= current_date

 AND v_plcy_dim.end_date > current_date

 AND v_plcy_dim.scrty_cnstr_cd = '1'

 AND v_plcy_dim.case_code = '807915';

V_LV_PLN_USGE_FACT Reconstruction Query

SELECT /*+ ORDERED */ Count(*) ROWCOUNT

FROM att_emp_org,

 cbe_emp,

 v_cbe_lv_rqst,

 v_plcy_dim,

 v_lv_pln_usge_fact

WHERE 1 = 1

 --

 -- ATT_EMP_ORG

 --

 AND att_emp_org.start_date <= current_date

 AND att_emp_org.end_date > current_date

 AND Trim(Substr (att_emp_org.emp_org_cd,

 Instr (att_emp_org.emp_org_cd, '-') +

 1))

 IN ('4167781', '4167779', '4167777', '4167783', '4167785')

 --

 -- CBE_EMP

 --

 AND att_emp_org.be_id = cbe_emp.emp_org_parent

 AND cbe_emp.start_date <= current_date

 AND cbe_emp.end_date > current_date

 --

 -- V_CBE_LV_RQST

 --

 AND cbe_emp.object_id = v_cbe_lv_rqst.emp_parent

 AND v_cbe_lv_rqst.start_date <= current_date

 AND v_cbe_lv_rqst.end_date > current_date

 AND v_cbe_lv_rqst.scrty_cnstr_cd = '1'

 --

 -- V_PLCY_DIM

 --

 AND v_plcy_dim.be_id = v_cbe_lv_rqst.case_1_parent

 AND v_plcy_dim.start_date <= current_date

 AND v_plcy_dim.end_date > current_date

 AND v_plcy_dim.scrty_cnstr_cd = '1'

 AND v_plcy_dim.case_code = '807915'

 --

 --

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

65

 AND v_lv_pln_usge_fact.lv_rqst = v_cbe_lv_rqst.object_id

 AND v_lv_pln_usge_fact.lv_pln_usge_dt <=

 To_date('08-aug-2012', 'dd-mon-rrrr');

ATT_LV_TYP (LV_SEG_LV_TYP) Reconstruction Query

SELECT /*+ ORDERED */ Count(*) ROWCOUNT

FROM att_emp_org,

 cbe_emp,

 v_cbe_lv_rqst,

 v_plcy_dim,

 v_lv_pln_usge_fact,

 att_lv_typ lv_seg_lv_typ

WHERE 1 = 1

 --

 -- ATT_EMP_ORG

 --

 AND att_emp_org.start_date <= current_date

 AND att_emp_org.end_date > current_date

 AND Trim(Substr (att_emp_org.emp_org_cd,

 Instr (att_emp_org.emp_org_cd, '-') +

 1))

 IN ('4167781', '4167779', '4167777', '4167783', '4167785')

 --

 -- CBE_EMP

 --

 AND att_emp_org.be_id = cbe_emp.emp_org_parent

 AND cbe_emp.start_date <= current_date

 AND cbe_emp.end_date > current_date

 --

 -- V_CBE_LV_RQST

 --

 AND cbe_emp.object_id = v_cbe_lv_rqst.emp_parent

 AND v_cbe_lv_rqst.start_date <= current_date

 AND v_cbe_lv_rqst.end_date > current_date

 AND v_cbe_lv_rqst.scrty_cnstr_cd = '1'

 --

 -- V_PLCY_DIM

 --

 AND v_plcy_dim.be_id = v_cbe_lv_rqst.case_1_parent

 AND v_plcy_dim.start_date <= current_date

 AND v_plcy_dim.end_date > current_date

 AND v_plcy_dim.scrty_cnstr_cd = '1'

 AND v_plcy_dim.case_code = '807915'

 --

 -- V_LV_PLN_USGE_FACT

 --

 AND v_lv_pln_usge_fact.lv_rqst = v_cbe_lv_rqst.object_id

 AND v_lv_pln_usge_fact.lv_pln_usge_dt <=

 To_date('08-aug-2012', 'dd-mon-rrrr')

 --

 -- ATT_LV_TYP

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

66

 --

 AND lv_seg_lv_typ.be_id = v_lv_pln_usge_fact.lv_typ

 AND lv_seg_lv_typ.start_date <= current_date

 AND lv_seg_lv_typ.end_date > current_date;

ATT_LV_PLN_TYP Reconstruction Query

SELECT /*+ ORDERED */ Count(*) ROWCOUNT

FROM att_emp_org,

 cbe_emp,

 v_cbe_lv_rqst,

 v_plcy_dim,

 v_lv_pln_usge_fact,

 att_lv_typ lv_seg_lv_typ,

 att_lv_pln_typ

WHERE 1 = 1

 --

 -- ATT_EMP_ORG

 --

 AND att_emp_org.start_date <= current_date

 AND att_emp_org.end_date > current_date

 AND Trim(Substr (att_emp_org.emp_org_cd,

 Instr (att_emp_org.emp_org_cd, '-') +

 1))

 IN ('4167781', '4167779', '4167777', '4167783', '4167785')

 --

 -- CBE_EMP

 --

 AND att_emp_org.be_id = cbe_emp.emp_org_parent

 AND cbe_emp.start_date <= current_date

 AND cbe_emp.end_date > current_date

 --

 -- V_CBE_LV_RQST

 --

 AND cbe_emp.object_id = v_cbe_lv_rqst.emp_parent

 AND v_cbe_lv_rqst.start_date <= current_date

 AND v_cbe_lv_rqst.end_date > current_date

 AND v_cbe_lv_rqst.scrty_cnstr_cd = '1'

 --

 -- V_PLCY_DIM

 --

 AND v_plcy_dim.be_id = v_cbe_lv_rqst.case_1_parent

 AND v_plcy_dim.start_date <= current_date

 AND v_plcy_dim.end_date > current_date

 AND v_plcy_dim.scrty_cnstr_cd = '1'

 AND v_plcy_dim.case_code = '807915'

 --

 -- V_LV_PLN_USGE_FACT

 --

 AND v_lv_pln_usge_fact.lv_rqst = v_cbe_lv_rqst.object_id

 AND v_lv_pln_usge_fact.lv_pln_usge_dt <=

 To_date('08-aug-2012', 'dd-mon-rrrr')

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

67

 --

 -- ATT_LV_TYP

 --

 AND lv_seg_lv_typ.be_id = v_lv_pln_usge_fact.lv_typ

 AND lv_seg_lv_typ.start_date <= current_date

 AND lv_seg_lv_typ.end_date > current_date

 --

 -- ATT_LV_PLN_TYP

 --

 AND att_lv_pln_typ.be_id = v_lv_pln_usge_fact.lv_pln_typ

 AND att_lv_pln_typ.start_date <= current_date

 AND att_lv_pln_typ.end_date > current_date;

ATT_LV_PLN Reconstruction Query

SELECT /*+ ORDERED */ Count(*) ROWCOUNT

FROM att_emp_org,

 cbe_emp,

 v_cbe_lv_rqst,

 v_plcy_dim,

 v_lv_pln_usge_fact,

 att_lv_typ lv_seg_lv_typ,

 att_lv_pln_typ,

 att_lv_pln

WHERE 1 = 1

 --

 -- ATT_EMP_ORG

 --

 AND att_emp_org.start_date <= current_date

 AND att_emp_org.end_date > current_date

 AND Trim(Substr (att_emp_org.emp_org_cd,

 Instr (att_emp_org.emp_org_cd, '-') +

 1))

 IN ('4167781', '4167779', '4167777', '4167783', '4167785')

 --

 -- CBE_EMP

 --

 AND att_emp_org.be_id = cbe_emp.emp_org_parent

 AND cbe_emp.start_date <= current_date

 AND cbe_emp.end_date > current_date

 --

 -- V_CBE_LV_RQST

 --

 AND cbe_emp.object_id = v_cbe_lv_rqst.emp_parent

 AND v_cbe_lv_rqst.start_date <= current_date

 AND v_cbe_lv_rqst.end_date > current_date

 AND v_cbe_lv_rqst.scrty_cnstr_cd = '1'

 --

 -- V_PLCY_DIM

 --

 AND v_plcy_dim.be_id = v_cbe_lv_rqst.case_1_parent

 AND v_plcy_dim.start_date <= current_date

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

68

 AND v_plcy_dim.end_date > current_date

 AND v_plcy_dim.scrty_cnstr_cd = '1'

 AND v_plcy_dim.case_code = '807915'

 --

 -- V_LV_PLN_USGE_FACT

 --

 AND v_lv_pln_usge_fact.lv_rqst = v_cbe_lv_rqst.object_id

 AND v_lv_pln_usge_fact.lv_pln_usge_dt <=

 To_date('08-aug-2012', 'dd-mon-rrrr')

 --

 -- ATT_LV_TYP

 --

 AND lv_seg_lv_typ.be_id = v_lv_pln_usge_fact.lv_typ

 AND lv_seg_lv_typ.start_date <= current_date

 AND lv_seg_lv_typ.end_date > current_date

 --

 -- ATT_LV_PLN_TYP

 --

 AND att_lv_pln_typ.be_id = v_lv_pln_usge_fact.lv_pln_typ

 AND att_lv_pln_typ.start_date <= current_date

 AND att_lv_pln_typ.end_date > current_date

 --

 -- ATT_LV_PLN

 --

 AND att_lv_pln.be_id = v_lv_pln_usge_fact.lv_pln

 AND att_lv_pln.start_date <= current_date

 AND att_lv_pln.end_date > current_date;

We run all the reconstruction queries and note the row count

SELECT /*+ ORDERED */

 COUNT(*) ROWCOUNT,'ATT_EMP_ORG' table_name

 FROM

 ATT_EMP_ORG

 WHERE 1 = 1

--

-- ATT_EMP_ORG

--

 AND att_emp_org.start_date <= current_date

 AND att_emp_org.end_date > current_date

 AND Trim(Substr (att_emp_org.emp_org_cd,

 Instr (att_emp_org.emp_org_cd, '-') + 1))

 IN ('4167781', '4167779', '4167777', '4167783', '4167785');

 ROWCOUNT TABLE_NAME

---------- -----------

 5 ATT_EMP_ORG

1 row selected.

For brevity, the rest of the SQL executions have been omitted. We can see results in our spreadsheet. Note
I have included the elapsed seconds as well though this is not usually necessary and is often misleading
because the reconstruction queries are only doing a COUNT(*).

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

69

The column JOIN ROWS tells us that these reconstruction queries are returning row counts after a join is
done, not just based on filtering criteria.

13. Note reconstruction row counts

We have added two additional columns, JOIN ROWS and ELAPSED SECONDS to our FRP spreadsheet.
The later EPLASED SECONDS is how long the reconstruction query took to run. The former (JOIN ROWS)
is the row count returned from the reconstruction query and is thus the row count resulting from filtering criteria
applied to all tables in the reconstruction query plus any row count change resulting from the actual join to
the new table. It is the number of rows after the join to the indicated table.

 INITIAL

 OBJECT FILTERED FILTERED JOIN JOIN ELP

TABLE_NAME ALIAS ROWS ROWS ROWS % ORDER ROWS SEC

------------------ -------------- ------- -------- -------- ------- ---- ---

ATT_EMP_ORG 10875 5 100 1 5 0

CBE_EMP 8079309 657370 92 2 3270 273

V_CBE_LV_RQST 613431 158041 74 3 598 273

V_PLCY_DIM 3657382 5 100 4 598 273

V_LV_PLN_USGE_FACT 4387560 4091046 7 5 8625 418

ATT_LV_TYP LV_SEG_LV_TYPE 8 7 13 6 8625 418

ATT_LV_PLN_TYP 15 15 0 7 8625 418

ATT_LV_PLN 844 841 0 8 8625 418

14. Use CARDINALITY FEEDBACK to adjust join order

CARDINALITY FEEDBACK is the use of the count of rows retained after a join (our JOIN ROWS column) to
determine if a query plan should be changed. For our purposes in FRP, we are interested in knowing if row
counts go down as we progress, and if so, if there is a different join order that would allow us to get to the
reduced number of rows faster. For example, if we were able to access the table on line 3
(V_CBE_LV_RQST) before accessing the table from line 2 (V CBE_EMP), then doing so would likely be a
good idea because the JOIN ROWS for V_CBE_LV_RQST is smaller than that of CBE_EMP. We would
likely see further workload reduction by changing the join order accordingly, assuming the JOIN ROWS
remained 598 (or at least something smaller than 3270) after we made the switch. For this to be possible,
the query diagram has to show a path between tables that makes the alternative join sequence valid.
However, for this problem query, there are no alternative join sequences that are valid and for which we also
see a reduced row count in a later step. Though the JOIN ROWS column suggests possible join sequence
changes, the query diagram for this query clearly indicates that resulting alternatives are not valid join
sequences for this problem query. We will see later another example of where we can make changes based
on cardinality feedback, and what effect doing so can have. So right now we do nothing with CARDINALITY
FEEDBACK except to note what the JOIN ROWS numbers are.

15. Repeat (11) thru (12) once if join order changed

If we had changed the INITIAL JOIN ORDER based on the CARDINALITY FEEDBACK we gained from our
RECONSTRUCTION QUERIES, then we would need to build new RECONSTRUCTION QUERIES to
account for the change in join sequence and run those queries to see if new results beat the results we just
got. But since we are not changing the INITIAL JOIN ORDER, we skip this step and go forward.

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

70

16. Determine if further action is necessary

Further Action? That is a pretty open idea. This could mean anything. This is where you start to think about
what to change to create a fast query. Without going into lots of detail that would distract us from our
discussion of DRIVING TABLE and JOIN ORDER, we can say that we did in fact take further action on this
query based on these numbers. It was determined that new indexes were needed. After adding these new
indexes, we reran the reconstruction queries and got new numbers.

 INITIAL

 FILTERED FILTERED JOIN JOIN ELP E

TABLE_NAME ROWS ROWS ROWS % ORDER ROWS SEC 2

------------------ ------- -------- -------- ------- ---- --- -

ATT_EMP_ORG 10875 5 100 1 5 0 0

CBE_EMP 8079309 657370 92 2 3270 273 0

V_CBE_LV_RQST 613431 158041 74 3 598 273 0

V_PLCY_DIM 3657382 5 100 4 598 273 0

V_LV_PLN_USGE_FACT 4387560 4091046 7 5 8625 418 0

ATT_LV_TYP 8 7 13 6 8625 418 0

ATT_LV_PLN_TYP 15 15 0 7 8625 418 0

ATT_LV_PLN 844 841 0 8 8625 418 0

After our changes we affect the desired effect. Note that we have added a second ELAPSED SECONDS
column to the spreadsheet (E2). Things are looking much better now. But we should keep in mind that all
our reconstruction queries were COUNT (*) queries. We have not run the actual original query (or our version
of it). Even if we make no other changes than to define a DRIVING TABLE and JOIN ORDER for the query,
we always need to take the additional step of running our modified version of the original query.

Fortunately this proves easy to do. We need only take the last reconstruction query and add the original
SELECT list to it and the GROUP BY clause we removed when building our reconstruction queries. We write
a CREATE TABLE query to actually run and save results of this query. This will let us run the actual query
modified by our changes, and retain the answer. This simulates doing something with the results once
collected, and provides opportunity to review the answer for correctness against the original answer. Recall
that some of the columns in the SELECT list were expressions without an alias. To do a CREATE TABLE
command, we will need to name these. You will also see that there are duplicate column names in the select
list. We missed that in our initial evaluation of the query. We add a column alias where necessary for that
too.

Note that we have used the NOLOGGING parameter here. This SQL statement is a test of query
performance. Creating a table is an easy way to ensure that the query runs to completion and may even
allow us to validate results if we have changed the query, but we want to avoid logging overhead if possible.

Note also the use of the ORDERED hint. This chapter is about teaching the importance of DRIVING TABLE
and JOIN ORDER. As such we have followed through here with enforcing the DRIVING TABLE and JOIN
ORDER we determined was best. In the real world however, what we will really be after, is correcting
performance without use of hints if possible. In this case, the hint was actually not necessary once the missing
indexes were put in place. However, this chapter is not about how to index. That comes later. Instead, this
query demonstrates the power of DRIVING TABLE and JOIN ORDER and how to determine them correctly.
In future chapters we will see how to relax the use of the ORDERED hint by correcting issues that prevented
the optimizer from selecting a good DRIVING TABLE and JOIN ORDER. For now, we enforce what we want
with the hint.

CREATE TABLE kevtemp1

nologging AS

 SELECT /*+ ORDERED */ v_cbe_lv_rqst.lv_rqst_cd,

 att_lv_pln.be_name,

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

71

 att_lv_pln.lv_pln_cd,

 att_lv_pln_typ.be_name C3,

 CASE

 WHEN LV_SEG_LV_TYP.lv_typ_cd NOT IN (

 'Not classified at this level'

) THEN

 LV_SEG_LV_TYP.be_name

 END seg_be_name,

 cbe_emp.emp_natl_id,

 SUM (Nvl (v_lv_pln_usge_fact.hrs_used_diff, 0)) C1,

 SUM (Nvl (v_lv_pln_usge_fact.hrs_rmn_diff, 0)) C2

 FROM att_emp_org,

 cbe_emp,

 v_cbe_lv_rqst,

 v_plcy_dim,

 v_lv_pln_usge_fact,

 att_lv_typ lv_seg_lv_typ,

 att_lv_pln_typ,

 att_lv_pln

 WHERE 1 = 1

 --

 -- ATT_EMP_ORG

 --

 AND att_emp_org.start_date <= current_date

 AND att_emp_org.end_date > current_date

 AND Trim(Substr (att_emp_org.emp_org_cd,

 Instr (att_emp_org.emp_org_cd, '-') +

 1))

 IN ('4167781', '4167779', '4167777', '4167783', '4167785')

 --

 -- CBE_EMP

 --

 AND att_emp_org.be_id = cbe_emp.emp_org_parent

 AND cbe_emp.start_date <= current_date

 AND cbe_emp.end_date > current_date

 --

 -- V_CBE_LV_RQST

 --

 AND cbe_emp.object_id = v_cbe_lv_rqst.emp_parent

 AND v_cbe_lv_rqst.start_date <= current_date

 AND v_cbe_lv_rqst.end_date > current_date

 AND v_cbe_lv_rqst.scrty_cnstr_cd = '1'

 --

 -- V_PLCY_DIM

 --

 AND v_plcy_dim.be_id = v_cbe_lv_rqst.case_1_parent

 AND v_plcy_dim.start_date <= current_date

 AND v_plcy_dim.end_date > current_date

 AND v_plcy_dim.scrty_cnstr_cd = '1'

 AND v_plcy_dim.case_code = '807915'

 --

 -- V_LV_PLN_USGE_FACT

 --

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

72

 AND v_lv_pln_usge_fact.lv_rqst = v_cbe_lv_rqst.object_id

 AND v_lv_pln_usge_fact.lv_pln_usge_dt <=

 To_date('08-aug-2012', 'dd-mon-rrrr')

 --

 -- ATT_LV_TYP

 --

 AND lv_seg_lv_typ.be_id = v_lv_pln_usge_fact.lv_typ

 AND lv_seg_lv_typ.start_date <= current_date

 AND lv_seg_lv_typ.end_date > current_date

 --

 -- ATT_LV_PLN_TYP

 --

 AND att_lv_pln_typ.be_id = v_lv_pln_usge_fact.lv_pln_typ

 AND att_lv_pln_typ.start_date <= current_date

 AND att_lv_pln_typ.end_date > current_date

 --

 -- ATT_LV_PLN

 --

 AND att_lv_pln.be_id = v_lv_pln_usge_fact.lv_pln

 AND att_lv_pln.start_date <= current_date

 AND att_lv_pln.end_date > current_date

 --

 GROUP BY v_cbe_lv_rqst.lv_rqst_cd,

 att_lv_pln.be_name,

 att_lv_pln.lv_pln_cd,

 att_lv_pln_typ.be_name,

 CASE

 WHEN LV_SEG_LV_TYP.lv_typ_cd NOT IN (

 'Not classified at this level') THEN

 LV_SEG_LV_TYP.be_name

 END,

 cbe_emp.emp_natl_id;

Table created.

Elapsed: 00:02:55.40

This is 175 ELAPSED SECONDS for the original problem query after our modifications for DRIVING TABLE
and JOIN ORDER and the new indexes. This is a substantial improvement over the original time and the
application team is very happy. Recall we said the original was taking 22 minutes. After our analysis it takes
3 minutes.

We could go even further with this query. We could build more reconstruction queries. We could build
reconstruction queries as CREATE TABLE statements that use SELECT list items in them rather than a
COUNT(*). This would show us how much accessing the actual table data adds to each step of the query.
From this we might be able to deduce if there are other optimizations from a storage perspective that we
could exploit (compression being one obvious choice). However part of tuning is to know when to quit. It is
not necessary for every query to go as fast as possible. It is necessary for your system to meet its Service
Level Agreements. 175 seconds turns out to be good enough to satisfy those who needed satisfying.

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

73

Summary #1
Let us take a moment to reflect upon what we have discussed so far. It is not a coincidence that the query
plan which manipulates the least amount of data executing a query, is also most often the least expensive
query plan for that query. A strategy which seeks to eliminate the most amount of data from consideration
in a query as early as possible, is a strategy that directly aims to reduce the total amount of work done by the
query to its minimum amount. FILTERED ROWS PERCENTAGE method is a method that does this. It
shows us how to select a DRIVING TABLE and a JOIN ORDER which eliminates the maximum number of
rows from consideration as early as possible during query execution. It is thus not a coincidence that FRP
yields efficient query plans.

FRP does not directly address ACCESS METHOD nor JOIN METHOD choices of a query plan (we will
discuss these in later chapters). However, if good choices are made for DRIVING TABLE and JOIN ORDER
for a query, then the CBO will almost always make good choices for ACCESS METHOD and JOIN METHOD
for the tables and joins in the query. This means we rarely need to directly force such decisions with hints to
obtain good choices for ACCESS METHOD and JOIN METHOD, and this is good. Giving the CBO
information so that it can do what it knows how to do is always preferable to forcing the CBO to do what we
want to do. It is true that we did use an ORDERED hint to force the join sequence of the problem query in
this chapter. But the ORDERED hint only affects the join sequence, it does not force other decisions. Thus
the ORDERED hint is far more tolerated by tuning specialists worldwide over most other hints. The
ORDERED hint is a useful tool when used in specific problem queries to help the CBO to overcome its
limitations, or a flaw in your system that you otherwise cannot (or choose not) to correct. LEADING hint would
be used in 11g and 12c.

So far we have seen how to:

 Build a query diagram to give us a visual picture of our query.

 Walk a query diagram to see valid join sequences for our query.

 Build a FRP spreadsheet to reveal DRIVING TABLE and JOIN ORDER for our query.

 Build COUNT QUERIES, FILTER QUERIES, and RECONSTRUCTION QUERIES to
get the row counts for the FRP spreadsheet.

 Make intelligent decisions using the information collected by FRP.

How to use FILTERED ROWS PERCENTAGE
Method
It may seem that we used FRP to find an OPTIMAL JOIN ORDER for a query so that we could force that join
order on the query via an ORDERED hint. This may in fact be necessary for the problem query we are tuning
and we may in the end choose to employ an ORDERED or LEADING hint in our query to get the results we
want. However, this is not the real purpose of FRP. The real purpose of FRP is to assist us as a Tuner to
understand the problem query better so that we can make intelligent conversation about it, and ultimately
figure out what is really wrong so we can fix it.

Consider this question: Given a long running query, how do you know if any given query plan for that query
is a good one? Most people cannot answer this question. But you can, at least half of it anyway. Recall our
discussion of A GOOD QUERY PLAN.

Every fast query plan has decided on four things correctly:

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

74

 A good choice of DRIVING TABLE for the query.

 A good choice of JOIN ORDER for all tables.

 A good choice of ACCESS METHOD for each table.

 A good choice of JOIN METHOD for row-sets being joined.

If this is our measure of a good query plan then these questions must be answerable.

 Does the query plan show a reasonable choice for DRIVING TABLE?

 Does the query plan show a reasonable choice for JOIN ORDER?

 Does the query plan show a reasonable choice for ACCESS METHOD for each
table?

 Does the query plan show a reasonable choice for JOIN METHOD between row
sets?

If you can answer YES or NO to these questions, then you can tell people if a query plan is a good one or not
and why. This is actually quite impressive: to be able to declare that a plan is a good plan or not and to
explain why it is so.

You can answer the first two questions. You can do a FRP analysis of the query and then check the analysis
against the actual query plan being used. If the query plan uses the DRIVING TABLE that FRP recommends
then you know the CBO has made a reasonable choice for DRIVING TABLE. Even if the DRIVING TABLE
is different from that recommended by FRP, you can tell by the various row count columns in your FRP
spreadsheet, if the DRIVING TABLE selected by the CBO is a reasonable alternative to the FRP
recommended DRIVING TABLE.

The same goes for JOIN ORDER. If the CBO uses the JOIN ORDER you determined via FRP then the JOIN
ORDER is a reasonable one. If the JOIN ORDER the CBO chooses is different, you can evaluate if the
difference is significant or not.

In cases where you determine that the CBO choices are likely not reasonable, you can explain why based on
the row count data. You also can have some confidence that a better alternative exists and thus there is the
possibility that the problem query can be made faster. This lets you answer another common question: IS IT
POSSIBLE TO MAKE THIS QUERY GO FASTER? If you can explain why the CBO has made what look like
mistakes, then you can say there is some possibility that the query could go faster. It is your ability to
EXPLAIN WHY that puts you ahead of others in the tuning game.

Backtracking on CARDINALITY FEEDBACK
We skipped over the use of cardinality feedback previously, because the example used did not provide any
opportunity to see how a change in row counts coming out of joins might suggest a better join order. This let
us concentrate on the primary process of FRP. But it sometimes does happen that joins remove rows and
sometimes a significant number of rows. Cardinality Feedback can tells us this and we can use this to select
a different join order to see if it offers better performance by reducing the number of rows held in transit, earlier
in query execution. So for steps 14 and 15, a fictitious example is offered that demonstrates.

14. Use CARDINALITY FEEDBACK to adjust join order

No there is nothing missing here. This step and the next we talk about below together.

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

75

15. Repeat (11) through (12) once if join order changed

Recall that we skipped these two steps in our first example because that example had nothing in it for these
two steps to be useful. Let us look at a different example that actually benefited from a change in join order
which we were able to determine using CARDINALITY FEEDBACK from column JOIN ROWS.

A second query yields this FRP spreadsheet. We omit all the FRP work done to get to this FRP spreadsheet
for brevity. Assume we did all the FRP work needed to get to this point. We see here the INITIAL JOIN
ORDER that FRP recommends. We can also see that the JOIN ROWS column which we get after running
all our reconstruction queries, has some interesting row count reductions that take place late in the query.
Since the goal of FRP is to remove rows during query execution as soon as possible, it would be desirable to
move access to the tables we see at the end of this query, forward in our join order. Assuming this is possible
via some valid join sequence, our aim would be to take advantage of the row count reductions that happen
when we do the related joins. Again, please observe the JOIN ROWS column to see where dramatic changes
occur in a row count after a join is done. Note row 6 (based on initial join order).

 PREFERRED INITIAL

 FILTERED FILTERED JOIN JOIN JOIN

ALIAS ROWS ROWS ROWS % ORDER ORDER ROWS

-------------------- -------- -------- -------- --------- ------- ------

CASE_DIM2 343487 1 100 1 1 1

LOSS_FACT 464685 464865 0 10 2 375650

CLAIM_DIM2 71109681 71109681 0 11 3 242498

POLICY_DIM2 19808250 1714354 91 2 4 237637

CLAIMANT_DIM2 3068589 1054782 66 3 5 232844

PAYMENT_DIM2 4098213 3175871 23 4 6 84855

LOSS_UNIT_DIM2 456097 421442 8 5 7 84855

BENEFIT_CODE_DIM2 322292 312449 3 6 8 84855

LOSS_BENEFIT_PROCESS 296 290 2 7 9 84855

LOSS_CHECK_END 71592 71592 0 8 10 84855

V_PT_MATRIX2 71592 71592 0 9 11 84855

Given any particular join order (in our case the INTIAL JOIN ORDER) it is possible to convert a QUERY
DIAGRAM into a JOIN TREE DIAGRAM. A JOIN TREE DIAGRAM is a simple list of tables that shows by
indentation the join sequence of a set of tables in a query, and the join level each table in the join sequence
sits at. The join tree diagram can be used to evaluate the JOIN ROWS column to see if there might be a
better ordering of tables aside from our INITIAL JOIN ORDER. This is possible because a join operation has
the potential to change the number of rows floated in a query either by increasing that number as the case
would be for a PARENT  CHILD join, or to decrease the number as the case would be for joins where one
or more column values was null or did not match an opposing row in the join. We are looking at our JOIN
ROWS column for either an increase in row count or a decrease in row count (decrease being more likely) as
large changes in row count are an opportunity to further reduce the size of intermediary row-sets being floated
by our problem query during query execution.

We can see from the join tree below (to which we have added our JOIN ROWS column) that indeed there is
a case where changing the join order may result in further reduced workload. Given the join sequence we
see, we note that at three levels in, there is a series of tables that all join back to the same prior table in the
join sequence. This table is LOSS_FACT and it is valid to join to any of the tables we see at the third level of
our join tree from LOSS_FACT. In the query there are joins from LOSS_FACT to each of these tables. In the
query diagram these joins would be readily visible.

We selected the order we see here, because of our FRP analysis and the resultant FILTERED ROWS %
column. But we can see that for table LOSS_UNIT_DIM2, there is a dramatic drop in row count after the join
as compared to the tables before it in the join sequence at its level of indentation.

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

76

It thus makes sense to try and move that table forward in the join order (possibly other tables as well but let
us start with one). If we change the INITIAL JOIN ORDER to be a CARDINALITY FEEDBACK JOIN ORDER,
we can build a new set of reconstruction queries based on this new join order and check the resulting join
cardinalities. So that is what we did here. We moved LOSS_UNIT_DIM2 forward in the join, then built new
reconstruction queries to reflect the new join order and ran these queries. As hoped for, we see in the second
JOIN TREE DIAGRAM, even more reduction in row counts. This means a reduction in intermediary row-set
sizes earlier in the query, because of this new join order based on CARDINALITY FEEDBACK.

 JOIN

JOIN TREE ROWS

-- ------

CASE_DIM_2 1

 LOSS_FACT 375650

 CLAIM_DIM2 242498

 POLICY_DIM2 237637

 CLAIMANT_DIM2 232844

 LOSS_UNIT_DIM2 84855

 PAYMENT_DIM2 84855

 BENEFIT_CODE_DIM2 84855

 LOSS_BENEFIT_PROCESS 84855

 LOSS_CHECK_END 84855

 V_PT_MATRIX 84855

RE-ORDERED JOIN

JOIN TREE ROWS

-- ------

CASE_DIM_2 1

 LOSS_FACT 375650

 LOSS_UNIT_DIM2 89701

 CLAIM_DIM2 86598

 POLICY_DIM2 84855

 CLAIMANT_DIM2 84855

 PAYMENT_DIM2 84855

 BENEFIT_CODE_DIM2 84855

 LOSS_BENEFIT_PROCESS 84855

 LOSS_CHECK_END 84855

 V_PT_MATRIX 84855

The reverse is also possible, though less common. We may see a dramatic increase in row count at which
point we would try to delay access to that table until later. A word of caution: it may come to pass that moving
tables around based on CARDINALITY FEEDBACK does not provide any benefit. Do not be disappointed.
At least you know how to identify the situation and check for any benefit.

Building a join tree is easy; just start with the driving table and follow the joins, indenting one level each for
each new table that does a join. As is observed from the join trees above, joins fall into layers because of the
indentation and sometimes a layer may have many tables in it. Tables in the same layer can be joined to in
any order. Since the FRP method does not take into account rows lost during a join, FRP cannot determine
what the best order to join tables in any single layer would be. It can only go by the initial filtered rows
percentage based on constant test filtering. Thus cardinality feedback based on joins allows us to identify
cases where a different join ordering can result in fewer rows being held in-transit during query execution and
that is exactly what this example shows. Moving table LOSS_UNIT_DIM2 to the front of its layer lets its join
remove more rows earlier in query execution and this affects all subsequent joins. Thus it is more efficient.

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

77

It should be noted that the database query optimizer does try to do these kinds of calculations. However it
can get the answers wrong which is why an understanding of this process provides the knowledge needed to
correct situations when the optimizer has made an error for whatever reason.

It should also be noted that CARDINALITY FEEDBACK JOIN ORDER is really just a minor refinement of the
more important INITIAL JOIN ORDER delivered by FRP. If you don’t do it, that is OK.

The Short Cut (Brain over Brawn)
Even though this chapter is called Driving Table and Join Order, it has really been about the FILTERED
ROWS PERCENTAGE (FRP) spreadsheet and how this leads to an overall analysis of the query plan for
goodness and for determination of a good Driving Table and Join Order. To produce the FRP spreadsheet
requires an understanding of many topics like Query Diagrams, Join Sentences, Join Trees, Count Queries,
Filter Queries, Reconstruction Queries, and so on. The FRP also requires a significant investment of time
and intellectual horse-power to complete.

My experience however has been that people in IT are basically lazy bums who do not like repetition. Indeed
these qualities are positives in the IT field as they prod us forward to invent new things to simplify life and
remove the dull work from our existence. Brain over Brawn is our motto. Fortunately I am as lazy as the next
guy. About half way through this book I got tired of building FRP spreadsheets by hand so I took a detour
into finding a way to get the database to do most of the work with automation, and I had some modest success.
I figured out how to have the database generate a FRP spreadsheet for a query with significantly less work.
I present this to you now with the recognition that this short cut will allow you to make the FRP spreadsheet
one of the main artifacts you use going forward in your tuning adventures, which it should be. It is my main
artifact and part of my SQL Tuning Opening Moves.

During any real world SQL tuning, a query plan is eventually generated using the EXPLAIN PLAN command.
I assume you the reader already knows how to use this command. The EXPLAIN PLAN command as you
should know, records a great deal of information about the parsed query, objects the query needs, optimizer
decisions made, etc. in sufficient detail to allow a report to be produced that shows the expected query plan.
This information is saved by the EXPLAIN PLAN command into the PLAN_TABLE table.

The PLAN_TABLE table is like all other database metadata objects, an object which can be queried with SQL.
Why not use this data for our own purposes? Nothing says we have to be limited by just what Oracle gives
us. Using the information from the PLAN_TABLE, it is possible to write a code generator script that will
produce for us the COUNT QUERIES and FILTER QUERIES needed to construct a FRP spreadsheet. With
more effort this code generator could combine all these mini-queries into one large query that actually
produces the FRP spreadsheet. Here is such a code generator that produces the FRP spreadsheet. It does
have few flaws but they are minor and have easy workarounds should you run into them.

@GENFRPSPREADSHEETCODE411G.SQL is the current version of this generator. This name means
fourth generation of the 11g version. The 11g version works on 10g and 12c as well. There is also a different
version for 9i, necessitated by differences in the PLAN_TABLE table. Here is an example of how it works.
This example is repeated in Chapter 7: Row Counts and Run Times where it is used to demonstrate the
tuning process.

We start with a query. It references a view. No matter, the EXPLAIN PLAN command will analyze the view
and save query plan details which show us the actual tables used and any filtering criteria hidden by the view.
Hmm… already a significant benefit. Automatic View Decomposition is done for us by EXPLAIN PLAN.

SELECT COUNT(*) FROM VW_EMP_LOC_DIM;

We run EXPLAIN PLAN to get all the details.

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

78

08:42:22 SQL> explain plan for SELECT COUNT(*) FROM VW_EMP_LOC_DIM;

Explained.

After execution of this command, the PLAN_TABLE table has the query plan in it, including all the tables
referenced, all the joins between tables, and all the filtering predicates used, parsed out into separate
columns. We can view the query plan and predicate info by dumping the plan. Note how the query plan
shows all table accesses, not simply a view access. The EXPLAIN PLAN command has parsed the query
into the PLAN_TABLE table with all sorts of query plan details.

@SHOWPLAN11GSHORT.SQL

Plan hash value: 1232802935

| Id | Operation | Name | Rows |

| 0 | SELECT STATEMENT | | 1 |

| 1 | SORT AGGREGATE | | 1 |

| 2 | VIEW | VW_EMP_LOC_DIM | 198M|

| 3 | UNION-ALL | | |

|* 4 | HASH JOIN | | 296K|

|* 5 | VIEW | | 240K|

|* 6 | WINDOW SORT PUSHED RANK | | 240K|

|* 7 | FILTER | | |

|* 8 | TABLE ACCESS STORAGE FULL | EMP_DIM | 240K|

|* 9 | TABLE ACCESS STORAGE FULL | EMP_LOC_DIM | 296K|

| 10 | COUNT | | |

|* 11 | HASH JOIN | | 152M|

| 12 | VIEW | | 8874 |

| 13 | HASH UNIQUE | | 8874 |

|* 14 | FILTER | | |

|* 15 | TABLE ACCESS STORAGE FULL| EMPLR_LOC_DIM | 8874 |

| 16 | VIEW | | 240K|

| 17 | MINUS | | |

| 18 | SORT UNIQUE | | 240K|

|* 19 | TABLE ACCESS STORAGE FULL| EMP_DIM | 240K|

| 20 | SORT UNIQUE | | 251K|

|* 21 | TABLE ACCESS STORAGE FULL| EMP_LOC_DIM | 251K|

Predicate Information (identified by operation id):

 4 - access("EMP_GID"="EL"."EMP_LOC_GID")

 5 - filter("PRTY_REF_ID_RNK"=1)

 6 - filter(RANK() OVER (PARTITION BY "GRP_BEN_CASE_ID","PRTY_REF_ID" ORDER

BY CASE

 "EE"."EMPLMT_STAT_CD" WHEN 'T' THEN 2 WHEN 'R' THEN 2 WHEN 'D'

THEN 2 WHEN 'I' THEN 2 ELSE 1 END

 ,INTERNAL_FUNCTION("EE"."SRCE_EFF_START_TMSP") DESC

,INTERNAL_FUNCTION("EE"."EMP_PK_ID") DESC)<=1)

 7 - filter(SYS_CONTEXT('APP1','CURRENT_SCHEMA')='CLDW_THPA_DLV1')

 8 - storage("EE"."SRCE_EFF_END_TMSP"=TIMESTAMP' 9999-12-31 00:00:00' AND

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

79

 "EE"."SRCE_APP_SYS_CD"='ELIG')

 filter("EE"."SRCE_EFF_END_TMSP"=TIMESTAMP' 9999-12-31 00:00:00' AND

 "EE"."SRCE_APP_SYS_CD"='ELIG')

 9 - storage("EL"."POPULATION_STATUS_CD"<>'D')

 filter("EL"."POPULATION_STATUS_CD"<>'D')

 11 - access("A"."GRP_BEN_CASE_ID"="B"."GRP_BEN_CASE_ID")

 14 - filter(SYS_CONTEXT('APP1','CURRENT_SCHEMA')='CLDW_THPA_DLV1')

 15 - storage("E"."EMPLR_LOC_PK_ID"<>(-1) AND "E"."EMPLR_LOC_PK_ID"<>(-2) AND

 "E"."SRCE_EFF_END_TMSP"=TIMESTAMP' 9999-12-31 00:00:00')

 filter("E"."EMPLR_LOC_PK_ID"<>(-1) AND "E"."EMPLR_LOC_PK_ID"<>(-2) AND

 "E"."SRCE_EFF_END_TMSP"=TIMESTAMP' 9999-12-31 00:00:00')

 19 - storage("EE"."SRCE_EFF_END_TMSP"=TIMESTAMP' 9999-12-31 00:00:00' AND

 "EE"."POPULATION_STATUS_CD"<>'D' AND "EE"."EMP_PK_ID"<>(-1) AND

"EE"."EMP_PK_ID"<>(-2))

 filter("EE"."SRCE_EFF_END_TMSP"=TIMESTAMP' 9999-12-31 00:00:00' AND

 "EE"."POPULATION_STATUS_CD"<>'D' AND "EE"."EMP_PK_ID"<>(-1) AND

"EE"."EMP_PK_ID"<>(-2))

 21 - storage("EL"."SRCE_EFF_END_TMSP"=TIMESTAMP' 9999-12-31 00:00:00' AND

 "EL"."POPULATION_STATUS_CD"<>'D')

 filter("EL"."SRCE_EFF_END_TMSP"=TIMESTAMP' 9999-12-31 00:00:00' AND

 "EL"."POPULATION_STATUS_CD"<>'D')

Note

 - dynamic sampling used for this statement (level=4)

 - automatic DOP: Computed Degree of Parallelism is 1

Once the query has been explained and the query plan has been saved to the PLAN_TABLE table, we can
use the code generator to generate a FRP spreadsheet query.

08:45:24 SQL> @genfrpspreadsheetcode411g.sql

SQLTEXT

with

 frp_data as (

 select ' 15' id, 'SCOTT' table_owner,'EMPLR_LOC_DIM'

table_name,'E' table_alias,8874 NUM_ROWS,count(*) rowcount,8874

cardinality,count(case when "E"."EMPLR_LOC_PK_ID"<>(-1) AND

"E"."EMPLR_LOC_PK_ID"<>(-2) AND "E"."SRCE_EFF_END_TMSP"=TIMESTAMP' 9999-12-31

00:00:00' then 1 end) filtered_cardinality from EMPLR_LOC_DIM E union all

 select ' 9' id, 'SCOTT' table_owner,'EMP_LOC_DIM'

table_name,'EL' table_alias,329699 NUM_ROWS,count(*) rowcount,296337

cardinality,count(case when "EL"."POPULATION_STATUS_CD"<>'D' then 1 end)

filtered_cardinality from EMP_LOC_DIM EL union all

 select ' 8' id, 'SCOTT' table_owner,'EMP_DIM'

table_name,'EE' table_alias,6243035 NUM_ROWS,count(*) rowcount,240117

cardinality,count(case when "EE"."SRCE_EFF_END_TMSP"=TIMESTAMP' 9999-12-31

00:00:00' AND "EE"."SRCE_APP_SYS_CD"='ELIG' then 1 end) filtered_cardinality

from EMP_DIM EE union all

 select ' 19' id, 'SCOTT' table_owner,'EMP_DIM'

table_name,'EE' table_alias,6243035 NUM_ROWS,count(*) rowcount,240117

cardinality,count(case when "EE"."SRCE_EFF_END_TMSP"=TIMESTAMP' 9999-12-31

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

80

00:00:00' AND "EE"."POPULATION_STATUS_CD"<>'D' AND "EE"."EMP_PK_ID"<>(-1) AND

"EE"."EMP_PK_ID"<>(-2) then 1 end) filtered_cardinality from EMP_DIM EE union

all

 select ' 21' id, 'SCOTT' table_owner,'EMP_LOC_DIM'

table_name,'EL' table_alias,329699 NUM_ROWS,count(*) rowcount,251761

cardinality,count(case when "EL"."SRCE_EFF_END_TMSP"=TIMESTAMP' 9999-12-31

00:00:00' AND "EL"."POPULATION_STATUS_CD"<>'D' then 1 end) filtered_cardinality

from EMP_LOC_DIM EL union all

 select null,null,null,null,null,null,null,null from dual

)

select frp_data.*,round(frp_data.filtered_cardinality/case when

frp_data.rowcount = 0 then cast(null as number) else frp_data.rowcount

end*100,1) actual_frp,decode(frp_data.filtered_cardinality,null,cast(null as

number),round(frp_data.cardinality/case when frp_data.NUM_ROWS = 0 then

cast(null as number) else frp_data.NUM_ROWS end*100,1)) plan_frp

from frp_data

where id is not null

order by frp_data.id

/

19 rows selected.

Executing the query generated by the code generator will generate the FRP spreadsheet as a simple report.
Running the query, results in scanning all rows in all tables of the query but that is what COUNT QUERIES
and FILTER QUERIES do. Waiting for information to be collected is a significant part of the SQL tuning
experience so be patient please.

Using this script is way faster than all those time consuming steps used in this chapter to show what FRP is
and how it is constructed. Using this script means changing focus slightly in tuning a problem SQL query.
The focus turns slightly from trying to determine the best Driving Table and Join Order to a validation of the
query plan in general. More specifically we seek to know if the query plan accurately estimated its initial
workload, and if it did, if the Driving Table and Join Order selected make sense as well as the specific access
methods used to access each table given consideration of the 2% RULE. We introduce the 2% RULE in
Chapter 4: Joins.

Is it beautiful or what?

 Plan Filtered Actual

ID TABLE_NAME NUM_ROWS ROWCOUNT Cardinality Cardinality FRP

----- ------------- ---------- ---------- ----------- ----------- ------

 8 EMP_DIM 6243035 6243035 240117 215414 3.5

 9 EMP_LOC_DIM 329699 329699 296337 329699 100.0

 15 EMPLR_LOC_DIM 8874 8874 8874 8872 100.0

 19 EMP_DIM 6243035 6243035 240117 236469 3.8

 21 EMP_LOC_DIM 329699 329699 251761 212993 64.6

5 rows selected.

Notice all the information provided. In particular, there are four types of row counts along with the Actual FRP
based on filtered cardinality. Also shown is plan ID from the query plan for each table reference we are
interested in, so that if necessary all this information can be related back to the query plan.

These are the metrics of the generated FRP.

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

81

 NUM_ROWS = DBA_TABLES.NUM_ROWS which is what the database thinks is the
number of rows in the table.

 ROW COUNT = the actual number of rows in the table obtained using a COUNT
QUERY.

 Plan Cardinality = the optimizer's guess at filtered cardinality for this plan step. This
is taken directly from the PLAN_TABLE table for the explained query.

 Filtered Cardinality = true cardinality obtained using a FILTER QUERY.

 Actual FRP = round (Filtered Cardinality / ROWCOUNT*100, 1) and tells us the
percentage of rows that remain after filtering. THIS IS DIFFERENT FROM WHAT
WE LEARNED. Again it is the percentage of rows that remain after filtering. So
instead of seeking 100 as best, we seek 0 as best. Or said another way, this is the
percentage of rows that feed into the query from this plan step. This is a new column
and is one of the destinations of the FRP spreadsheet.

You can see some serious sophistication here. This FRP spreadsheet is powerful because it combines data
from three different places and relates these metrics to each other. It has data taken from database metadata
objects, data taken from the table data directly, and data taken from the plan table for the explained plan of
our problem query. You will see all this again in Chapter 7: Row Counts and Run Times. That chapter will
use this example to work through a real life tuning episode to show how the FRP spreadsheet is used and
how it fits in relation to other tuning artifacts. This code generator and the reporting SQL to create the FRP
spreadsheet generated are wicked time savers and make it much easier to use FRP in your analysis of a
problem SQL statement.

As an example of the initial way to use this information, evaluate the first line of the spreadsheet.

 Plan Filtered Actual

ID TABLE_NAME NUM_ROWS ROWCOUNT Cardinality Cardinality FRP

----- ------------- ---------- ---------- ----------- ----------- ------

 8 EMP_DIM 6243035 6243035 240117 215414 3.5

Consider these points and questions.

 NUM_ROWS exactly matches ROWCOUNT. What does this suggest to you?

 Plan Cardinality is very close to Filtered Cardinality. What does this suggest to you?

 Actual FRP is 3.5%. What does this suggest to you?

 And across all lines of the FRP Spreadsheet, what looks like a good DRIVING
TABLE?

These should suggest the following.

 Statistics are likely up-to-date.

 The CBO accurately estimated the workload feeding into the query for this plan step.

 A full table scan looks good for EMP_DIM which suggests HASH JOIN when joining
to it from this plan step. This is based on the 2% RULE (a guideline) which you have
not learned yet.

 Given that this is the lowest FRP of all tables in the query, EMP_DIM might make a
good DRIVING TABLE for this query too since it removes the highest percentage of
rows for any table in the query (only 3.5% remain after filtering).

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

82

Examining the relevant portion of the query plan, we see that things match our expectations. A FULL TABLE
SCAN has indeed been used to access the table EMP_DIM at ID=8, and results of this plan step feed into a
HASH JOIN at ID=4.

|* 4 | HASH JOIN | | 296K|

|* 5 | VIEW | | 240K|

|* 6 | WINDOW SORT PUSHED RANK | | 240K|

|* 7 | FILTER | | |

|* 8 | TABLE ACCESS STORAGE FULL | EMP_DIM | 240K|

|* 9 | TABLE ACCESS STORAGE FULL | EMP_LOC_DIM | 296K|

A reasonable conclusion from this is that the CBO has correctly dealt with WORKLOAD ESTIMATE / ACCESS
METHOD / JOIN METHOD for ID=8. The CBO has:

 Accurately estimated the initial workload for the plan step ID=8.

 Used a reasonable access method to get rows from the table at plan step ID=8.

 Used a reasonable join method to join results from ID=8 to another row source in the
plan.

The same analysis can be done for all rows of the FRP spreadsheet. Do this now for yourself please so that
you can gain actual experience in the method of FRP.

This space intentionally left blank so you can think.

If you worked through the rest of the rows in FRP, you would see that the same is true for all plan steps shown
by the FRP spreadsheet. They have all correctly dealt with WORKLOAD ESTIMATE / ACCESS METHOD /
JOIN METHOD for their respective table. A query plan which has good workload estimates and which
accesses data and joins data using reasonable choices is likely a very good plan.

Of course this still does not tell us if the CBO has made reasonable choices for Driving Table and Join Order.
To learn this we need to follow up with a join tree of some kind. Here is one possible join tree using the query
plan data. Because the actual query is hidden behind at least one view, we cannot construct a query diagram
for the underlying query without looking at the view text. This is something we should do but in the meantime
here is a join tree created using only information provided by the query plan. In actuality, over time we will
prefer using the data in explain plan rather than going to the view text.

PLAN_STEP TABLE JOINS ROWS

--------- ------------------------------- ----

19 EMP_DIM 240K

17 EMP_LOC_DIM 240K

11 (EMPLYR_LOC_DIM) 152M

 3 (EMP_DIM/EMP_LOC_DIM) 198M

ROWS is the cardinality estimate of the CBO for the plan step. Please note that given the nature of the query
plan we have chosen to combine some of the steps to more readily see the overall join sequence. The
increasing values in the ROWS column shows us why the CBO may have selected this specific join order. It
keeps row counts smallest going forward.

But as we know, these are estimates. We want to know if these join cardinality estimates are accurate so
that we can evaluate the goodness of fit of the CBO choices for Driving Table and Join Order. Driving table
here is EMP_DIM at line 19 and Join Order is as seen in the sequence of rows. Refer back to the query plan

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

83

previously shown to see these lines. To validate these we need to build RECONSTRUCTION QUERIES
(also presented in this chapter). Sadly, I do not yet have a code generator for this. I leave that to you as an
exercise should you care to have a go at it.

Scripts used in the Chapter
There are about two dozen scripts that go with this book. They are all intended to reduce time needed to
tune and to provide unique insights about your query, its query plan, and its runtime environment. There is
in fact a script for almost every artifact described in this book as part of the FRP method. You will see them
as you progress through the book, and especially in the LAB. Here are the scripts used in this chapter.

SHOWOWNER

SHOWPLAN11G

SHOWPLAN11GSHORT

SHOWPLANFRPSPREADSHEETCODE11G (formerly genfrpspreadsheetcode411g)

Chapter Summary
It was only forty seven pages, but this chapter has introduced you to the idea that the fastest query plan is
almost always the query plan that removes the largest percentage of rows as early as possible in query
execution. It has shown you how this is determined by using a CARDINALITY BASED ANALYSIS called
FILTER ROWS PERCENTAGE. Additionally, you have been given a script that does most of the work needed
to acquire and present the necessary information for this analysis. You are expected to use this script in your
future tuning travels.

Consider for a moment what this chapter has taught you; do these terms mean anything to you? They should.
If you are hazy or drawing a blank from any of these terms, maybe you should go back to the relevant portion
of this chapter and review it. This is the stuff you were supposed to remember from this chapter.

 Join Sentence

 Query Diagram

 Driving Table

 Join Order

 Preferred Join Order

 Initial Join Order

 Cardinality Feedback Join Order

 Count Query

 Filter Query

 Reconstruction Query

 Initial Query Workload

 FILTERED ROWS PERCENTAGE

It’s all about the Cardinalities Chapter 1: DRIVING TABLE and JOIN ORDER

84

 Magic Script that does the work

https://www.createspace.com/4760254

K5G7AJFG Percentage Off 50%

Use the above website and coupon code for 50%
off list. This would be 35$ plus shipping vs. 55$
w/free shipping from amazon.

Also, please visit the message board on
www.orafaq.com and search for the book title
Oracle SQL Performance Tuning and
Optimization in order to download a .rar file with
the scripts. They are free even if you don’t buy
the book.

Enjoy. Kevin Meade

http://www.orafaq.com/

