Oracle FAQ Your Portal to the Oracle Knowledge Grid
HOME | ASK QUESTION | ADD INFO | SEARCH | E-MAIL US
 

Home -> Community -> Usenet -> comp.databases.theory -> Re: Relational lattice

Re: Relational lattice

From: Jan Hidders <jan.hidders_at_REMOVETHIS.pandora.be>
Date: Thu, 10 Mar 2005 21:13:15 GMT
Message-ID: <LL2Yd.34677$f73.3168353@phobos.telenet-ops.be>


Vadim Tropashko wrote:
>
> Is it possible to express transitive closure in a finite set of
> equations as well?

Good question. Very good question. I suspect not, but I'm not sure and certainly have no proof. I do know that you can if you use the nested relational algebra.

By the way, I just ran into a somewhat related paper. It's probably not exactly what you are looking for, but you might be interested in it:

"Solving equations in the relational algebra"

http://arxiv.org/abs/cs.LO/0106034

> BTW, I just came across
> http://c2.com/cgi/wiki?RelationalAlgebra
> describing the "simplified algebra in the Third Manifesto". (I confess
> that I don't have a copy of any manifesto book:-).

I won't tell. :-)

> The AND operator is
> a natural join, but the OR is defined differently! It is immediate,
> that the Third Manifesto definition doesn't respect the absorption law:
> A OR (A AND B) header should be the union of the A and B headers,
> therefore the result can't be A. Without absorption law the structure
> is merely a semilattice, where the order induced by the meet operation
> -- OR -- is different from the order induced by the join. The nice
> feature of the manifesto algebra is that it respects distributive law.

So, how about the cylindric set algebras? For a short description look for "Applications of Alfred Tarski's Ideas in Database Theory".

Received on Thu Mar 10 2005 - 15:13:15 CST

Original text of this message

HOME | ASK QUESTION | ADD INFO | SEARCH | E-MAIL US