01/19/98

Oracle Database Object Naming Conventions

The purpose of this document is to set forth the rules and guidelines for naming Oracle Database objects.

A database object is any entity created and stored in an Oracle instance that is referenced either directly (table, stored procedure, view, package) or indirectly (index, integrity constraint).

In order for developers and maintainers to effectively communicate and identify relationships between database objects and to minimize the time to identify object relationships, it is imperative to follow strict rules and guidelines.

The database objects covered in this document include the following:

· Clusters

· Columns

· Database links

· Foreign Key Constraint Names

· Indexes

1. Primary Keys

2. Indexes

3. Alternate Indexes (supporting foreign keys)

· Package Specifications

· Package Bodies

· Triggers

· Sequences

· Stored Procedures and Functions

· Synonyms

· Tables

· Tablespaces

· Views

· Roles

In order to apply naming conventions to indexes, alternate indexes, foreign key constraints and other objects involving multiple objects (joins or relationships) it will be necessary to setup a table or document to record the alias used to identify the table in short form. This alias should be used in all FROM clauses after the table (or view) and as a prefix to the column names in the SELECT, WHERE, ORDER BY, etc. clauses. This strategy will make it easier to identify where columns originated. The strategy for determining aliases should be to first use the first letter of each word of the entity name (e.g. for GL_JE_LINES the alias would be JL).

Tables:

Tables are those repositories where the actual business data is stored. These entities should clearly reflect the name of the object instances stored therein. The name of the table should be the plural of the object being stored. Each table in a “system” should be prefixed by a 3 to 5 letter token followed by an underscore identifying the system (CDS_, EFSP_, EFSP2_, etc.).

CDS will be defined here as Cash Disbursement System as an example throughout this paper.

As an example, if the system was CDS and the object was a site record, then the name of the table would be CDS_SITE_RECORDS.

All table definitions should contain the appropriate storage clause to ensure that the data is not stored in the same tablespace as the indexes (for performance reasons) and the initial and next extents are large enough to store reasonable production data quantities without splitting excessively (less than 50 extents).

Temporary Tables:

Temporary tables are those repositories where temporary or transient data is stored. This data is usually created from uploads to populate the permanent production tables. These entities should clearly reflect the name of the object instances stored therein. The name of the table should be the plural of the object being stored. Each table in a “system” should be prefixed by a 3 to 5 letter token followed by an underscore identifying the system (CDS_, SUSP_, PO_, etc.) followed by TEMP_ followed by a description of the entity.

As an example, if the system was CDS and the object was a temporary customer list, then the name of the table would be CDS_TEMP_CUSTOMERS.

All table definitions should contain the appropriate storage clause to ensure that the data is stored in the xxx_TEMP tablespace (see tablespaces) and the indexes (for performance reasons) and the initial and next extents are large enough to store reasonable production data quantities without splitting excessively (less than 50 extents).

Primary Keys:

Primary keys are set up to uniquely identify a specific object instance in a table. A primary key (or unique index) must be created before foreign key references can be setup for referential integrity. The name of the primary key will be returned by Oracle in the situation where an attempt is made to insert a duplicate record. All primary keys should be named PK_ (or PK2_ if it is a second version system) and the name of the collection of objects, that is if the name of the table is CDS_SITE_RECORDS, the name of the primary key constraint would be PK2_SITE_RECORDS.

All primary key clauses should contain the appropriate storage clause to ensure that the index is not stored in the same tablespace as the data (for performance reasons) and the initial and next extents are large enough to store reasonable production data quantities without splitting excessively (less than 50 extents).

Indexes:

Indexes may be unique or non-unique. Unique indexes are sometimes used to support referential integrity (primary keys should be used for referential integrity as a standard). Index names should be prefixed by I_ (or I2_ if it is a second generation system such as CDS/2) and then the base table name followed by and underscore and the first letters of the fields comprising the index in the order that they occur. As an example, an index in the CDS2_EMPLOYEES table on the fields BUSINESS_SEGMENT and INITIALS would yield the index name I2_EMPLOYEES_BSI. The data definition language for the index creation should always contain the tablespace clause and the storage clause. The storage clause should follow the same rules as those for primary key indexes.

Alternate/Foreign Key Indexes:
Alternate indexes are used to index those fields used in REFERENCES clauses for declarative referential integrity constraints. These indexes support the performance issues raised when using referential integrity, that is, when the database checks for field(s) usage before update or deletion, these indexes make the access much quicker than a full table scan (for large tables). Index names should be prefixed by AK_ (or AK2_ if it is a second generation system such as CDS/2) and then the alias assigned to the base table followed by an underscore and the alias of the primary key table. As an example, an alternate key index on the CDS_PRODUCT_CODES table on the table CDS_MAJOR_CLASS_CODES (BUSINESS_SEGMENT, MAJOR_CLASS_CODE) would yield the index name AK2_PC_O_MCC, where PC_O is the alias for the CDS_PRODUCT_CODES table and MCC is the alias for the CDS_MAJOR_CLASS_CODES table. The data definition language for the index creation should always contain the tablespace clause and the storage clause. The storage clause should follow the same rules as those for primary key indexes.

Foreign Key Constraint Names:

Foreign key constraint names are used to identify the foreign key references on tables that support declarative referential integrity. Without the constraint name, Oracle generates a name based on a sequence (this name is meaningless). The name you give the foreign key reference will be shown in all Oracle error messages where the constraint is violated. This will allow the support team and the maintenance programmers to quickly identify the offending event.

Foreign key constraint names should be prefixed by FK_ (or FK2_ if it is a second generation system such as CDS/2) and then the alias assigned to the base table followed by an underscore and the alias of the primary key table. As an example, a foreign key constraint on the CDS_PRODUCT_CODES table on the table CDS_MAJOR_CLASS_CODES (BUSINESS_SEGMENT, MAJOR_CLASS_CODE) would yield the index name FK2_PC_O_MCC, where PC_O is the alias for the CDS_PRODUCT_CODES table and MCC is the alias for the CDS_MAJOR_CLASS_CODES table.

NOT NULL Constraint Names:

Do not use constraint names for NOT NULL columns.

CHECK Constraint Names:

Check constraint names should be formed by prefixing the name by CK_ (or CK2_ for a second generation system) followed by the table alias/abbreviation, an underscore, the name of the field, and an abbreviation for the type of check being performed (e.g. _YN for Yes/No, R1 for range 1, R2 for range2, L1 for list 1, L2 for list 2,etc.). If the name of the field makes the name over 30 characters, then abbreviate the name portion but, be consistent when the field name occurs in several tables. Examples are as follows:

CK2_SC_DELETE_FLAG_YN is the check constraint name in the following code for the DELETE_FLAG field of the CDS_SHOP_CODES table:

,DELETE_FLAG VARCHAR2(1) NOT NULL

 CONSTRAINT CK2_SC_DELETE_FLAG_YN

 CHECK (DELETE_FLAG IN ('Y','N'))

Tablespace Names:

Tablespace names should reflect the system id (CDS) followed by the word DATA or INDEX to identify the type of information stored. Some systems may be of sufficient size to require multiple data and/or index tablespaces for performance reasons, these name may in turn be followed by a suffix to denote the size of the tables/indexes stored therein (i.e. CDS_DATA_S, CDS_INDEX_S for small code tables, CDS_DATA_M, CDS_INDEX_M for medium size header tables, CDS_DATA_L, CDS_INDEX_L for large detail tables).

Columns:

Column names should be descriptive of the data they contain. Since Oracle is not case sensitive, the words describing the column should be separated by underscores. The words describing the data contained in the column should not be abbreviated unless name length becomes a problem. Certain consistent rules should be followed for the modifiers used to describe the type of data stored. As an example, the following list shows some common modifiers:

_NO

number

_DATE

date

_DESC

description

_TEXT

general text

_QTY

quantity

_AMT

amount

TOT_

total

Database Links:

Database links should be named as follows: database acronym + instance type. An examples would be the following:

CDSPROD
Check Disbursement System - Production Version

CDSMODEL
Check Disbursement System - Model Version

CDSTEST
Check Disbursement System - Test Version

Package Specifications:

Packages specific to a system should be prefixed by the system acronym followed by an underscore followed by the subject area covered by the package. If a package encapsulates data and methods specific to a particular table, the alias/abbreviation for the table should follow the underscore. If the package includes procedures and functions particular to a subsystem, then the subsystem name should be used. Packages containing procedures and functions of a purely general data processing nature should not contain the system acronym as they may be used in several systems and be maintained in a central repository database. Examples of the above are as follows:

CDS_WIP

CDS functions and procedures specific to the

CDS_WORK_IN_PROCESS table.

CDS_QUALITY

functions and procedures particular to the quality assurance

sub-system.

MATH

General mathematical routines such as random number generators, etc.

UTIL

General utilities

It should be noted that the functions, procedures, and package variables specified within the package specification do not need to and should not contain the name of a table or subsystem since that has been done by the package name.

Package Bodies:

Package bodies contain the public and private functions and procedures of a package. The functions, procedures, and local variables specified within the package body do not need and should not contain the name of a table or subsystem since that has been done by the package name. Packages contain two types of routines: procedures and functions. The naming conventions for procedures is that the name should be of the form VERB_NOUN and the name of a function should be simply NOUN. Examples are as follows:

GET_STATE_NAME(STATE_CODE)

- procedure to get the name of a state from a STATE_CODES table.

TOTAL_REVENUE(BEGIN_DATE, END_DATE)

- function to return the total revenue for a period.

Note: The area of programming style is outside of the scope of this document but is no less important that naming conventions for database objects!
Stored Procedures and Functions:

Stored procedure and function names follow the same rules as those procedures and functions contained within packages. Since the system acronym is not contained in the package procedures it will be necessary for separate packages and functions. An example is as follows:

CDS_REMAP_CUSTOMERS

- procedure to re-map customers within the CDS system.

As can be seen, it is very beneficial to use packages whenever possible to group procedures and functions so that the system name is contained only within the package name. Also there are performance benefits to using packages over separate routines and the ability to use persistent variables which survive the user’s session.
Sequences:

The names of sequences, used to generate unique numeric ids for records, should parallel the names of the tables they service followed by _SEQ. The exception to this rule is any general sequence used to generate generic document ids or generic transaction ids. Examples are as follows:

CDS_CUST_PURCHASE_ORDERS_SEQ
-
Customer purchase order sequencing.

CDS_DOCUMENTS_SEQ

-
General document sequencing.

CDS_SHIPPING_NOTICES_SEQ

-
Shipping notice header sequence.

CDS_WORK_IN_PROCESS_SEQ

-
Work In Process sequencing.

CDS_TRANSACTIONS_SEQ

-
General transaction number sequence.

Views:

The names of views are similar to the names of tables with the exception that the view name contains the characters _V_ between the system acronym and the entity name. Examples of view names are as follows:

CDS_V_BUS_YEARLY_BILLING

CDS_V_BUS_MONTHLY_BILLING

CDS_V_BUS_WEEKLY_BILLING

CDS_V_BUS_DAILY_BILLING

CDS_V_CUST_ASSET_SUMMARY

As can be seen above, the use of consistent abbreviations (BUS for BUSINESS, CUST for CUSTOMER, and WIP for WORK_IN_PROCESS) make it easy to sort the related views into areas of interest.

Synonyms:

Synonyms should follow the same rules as the tables or views they point to. Synonyms should only be used to point to remote objects to mask the database link used to locate the object. Examples are as follows:

CDS_CUST_ASSETS would be a synonym in the EFSP database for the CDS_CUST_ASSETS table in the CDS database. The value of the synonym would be CDS_CUST_ASSETS@CDS.
Triggers:

Database trigger names should be formed by concatenating the system acronym + the type of trigger acronym + the table alias/abbreviation. Each component of the name should be separated by an underscore. The types of trigger acronyms are as follows:

TBS
- Trigger Before Statement

TAS
- Trigger After Statement

TBR
- Trigger Before Row

TAR
- Trigger After Row

Examples of some triggers on the Employees table, alias E, are as follows:

CREATE OR REPLACE TRIGGER CDS_TBS_E

 BEFORE UPDATE OR DELETE ON CDS_EMPLOYEES

CREATE OR REPLACE TRIGGER CDS_TBS_E

 AFTER UPDATE OR DELETE ON CDS_EMPLOYEES

CREATE OR REPLACE TRIGGER CDS_TBR_E

 BEFORE INSERT OR UPDATE OR DELETE ON CDS_EMPLOYEES

 FOR EACH ROW

CREATE OR REPLACE TRIGGER CDS_TAR_E

 AFTER UPDATE OR DELETE ON CDS_EMPLOYEES

 FOR EACH ROW

Clusters:

A cluster is a schema object that contains one or more tables that all have one or more columns in common. Cluster names are used to identify the database clusters.

Cluster should be prefixed by the system acronym (e.g. CDS, EFSP, EFSP2) followed by _C_ followed by the list of table aliases the are contained in the cluster. As an example, a cluster on the CDS_BUSINESS_SEGMENTS and CDS_PURCHASE_ORDERS tables would be CDS_C_BS_PO.

Roles:

Role names are formed by prefixing the role name with the system acronym. Examples of database roles are as follows:

CS_PM

- Production Management

CS_HQ_SALES
- Headquarters Sales

CS_HQ_MKTG
- Headquarters Marketing

Oracle DDL Script File Naming Conventions
The purpose of this document is to set forth the rules and guidelines for naming Oracle DDL (Data Definition Language) script files in the operating system.

The script files are those files that contain the Oracle commands to create, drop, or alter database objects.

In order for developers and maintainers to manage the scripts, they need to conform to standard naming conventions.

The database script types covered in this document include the following:

· Foreign Key Constraints (Declarative Referential Integrity)

· Indexes

· Alternate Indexes (supporting foreign keys)

· Package Specifications and Bodies

· Triggers

· Sequences

· Stored Procedures and Functions

· Synonyms

· Tables

· Views

· Roles

General Rules and Guidelines:

File extensions are a very important aspect of script file naming conventions. The extensions make the job of determining the type of DDL contained in the file easier and also make the job of files searches simpler.

Oracle assumes that the extension of script file is .SQL if no extension is given. This ease of use feature will not be used for Packages, Stored Procedures, and Functions but will be used for schema generation DDL scripts and for naming SQL*Plus reports which are the lion’s share of the script files created by developers and users.

In order to arrive at a sensible naming convention scheme, we need to consider the process of building a database schema. The first product of the design process is the logical database design. The logical design process consists several steps the first of which is the determination of the table layouts and primary key identification. The table layouts should contain commentary to describe the purpose of the tables and the definition of each field. The normalization process identifies the referential links between the tables. The process of identifying the foreign keys (referential integrity) also helps us identify the alternate key indexes necessary to achieve the performance we expect. During the application design process, we identified various screens, reports, and background processes that used several access paths into the database. These access paths suggested special indexes necessary to achieve the desired performance expectations. This is the time to define those indexes and review the list for redundancy. In order to make the tables accessible to the users, the public synonyms need to be defined, the roles defined, and the grants created.

Ongoing tasks are the definition of views to simplify access and the continuing process of performance tuning.

In order to build (and rebuild) the database, it is necessary to build the DDL scripts and execute them. Several approaches exist, the least of which is to build one giant script to do it all. This is a bad approach. The first reason is that the scripts get so large they are extremely hard to debug. The second is that if referential integrity is used, the dropping process becomes complicated by having to drop the constraints first or creating a script to drop the tables in reverse order. A suggested approach for the DDL division is to separate files containing the following:

· Create table definitions with primary keys defined

· Table and column comments

· Create view definitions

· Alters to create referential integrity constraints

· Alternate key index creates to support referential integrity

· Index creates to support application performance

· Public synonyms

· Roles (optional)

· Grants

· Sequences

· Triggers

DDL Script Names for Schema Maintenance:

The file names for the entire schema creation should be formed as follows:

CRE_ + system acronym + _ + DDL type + .SQL

As an example, the file list to create the schema for CDS should be the following:

· CRE_CDS_TABLES.SQL - Create table definitions with primary keys defined

· CRE_CDS_COMMENTS.SQL - Table and column comments

· CRE_CDS_VIEWS.SQL - Create view definitions

· CRE_CDS_FOREIGN_KEYS.SQL - Alters to create referential integrity constraints

· CRE_CDS_ALT_INDEXES.SQL - Alternate key index creates to support referential integrity

· CRE_CDS_INDEXES.SQL - Index creates to support application performance

· CRE_CDS_SYNONYMS.SQL - Public synonyms

· CRE_CDS_ROLES.SQL - Roles (optional)

· CRE_CDS_GRANTS.SQL - Grants

· CRE_CDS_SEQUENCES.SQL - Sequences

· CRE_CDS_TRIGGERS.SQL - Triggers

The file names to drop the database objects should be named as above with the exception that CRE_ is replaced by DRP_.

All files should contain the latest DDL language. If tables are altered, indexes created, etc. after the initial files are run then the original files must be edited to reflect the latest structure. The individual incremental files should be named as follows:

ALT_+ system acronym +_yymmdd + _ + DDL type + .SQL.
Package Specifications and Bodies:

Packages, according to the database object naming conventions, inherently include the system acronym. Therefore, we should use file extensions to separate the specification from the body. The main reasons to separate the files are that the specification can be created without the body thus facilitating the development of downstream processes before the actual package procedures are coded. The package bodies are usually the portion of the code requiring the most changes (especially during development) and by separating the specification and body we are able to preserve the specification for other developers.

The file extensions are as follows:

.PS - Package specification

.PB - Package body
Stored Procedures and Functions:

Stored procedures and functions outside of packages should use the following extensions:

.SP - Stored procedure

.SF - Stored function

4

