
Oracle System Performance Group Technical Paper, September 24, 1995

The OFA Standard�Oracle7 for Open Systems

Cary V. Millsap
Oracle Corporation

September 24, 1995

The OFA Standard is a set of configuration guidelines that will give you faster, more reliable Ora-
cle databases that require less work to maintain. The OFA Standard is written by the founder of
the Oracle team responsible for installing, tuning, and upgrading several hundreds of sites
worldwide since 1990�this paper is based on the best practices of those hundreds of sites. Today
the �Optimal Flexible Architecture�� described in the OFA Standard is built into the Oracle7 con-
figuration tools and documentation on all open systems ports.

This paper formally defines the OFA Standard for configuring complex Oracle systems at sites
demanding high performance with low maintenance under continually evolving requirements. It
also details how the OFA is derived from requirements essential to successful implementation of
complicated software on any system. Along with the definition of the OFA, this paper will also
reveal the strategy and analysis that motivate the individual recommendations of Oracle Services�
Optimal Flexible Architecture. By reading this paper, you will more fully understand the chal-
lenges that confront the Oracle Server configuration planner.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the Oracle Corporation copyright notice and the title of the publication
and its data appear, and notice is given that copying is by permission of Oracle Corporation. To copy otherwise, or
to republish, requires a fee and/or specific permission.

 1993, 1996 Oracle Corporation. Oracle part number A19308-1

2 • Cary V. Millsap

Oracle System Performance Group Technical Paper, September 24, 1995

Contents
1. OPERATING SYSTEM CONFIGURATION

1.1 Mount Points
1.2 Login Home Directories
1.3 User Profiles
1.4 Zero Maintenance Administration

2. ORACLE FILES
2.1 Oracle Software and Administrative Data
2.2 Oracle Database Files
2.3 Exploiting the OFA Structure for Oracle Files

3. ORACLE TABLESPACES
4. RAW DEVICES VS. BUFFERED I/O
5. ORACLE PARALLEL SERVER ADMINISTRATIVE
FILES
6. MOUNT POINTS FOR VLDB SITES
7. QUICK REFERENCE SUMMARY

7.1 System Requirements
7.2 OFA Standard Recommendations

8. REFERENCES
9. UNIX UTILITIES

Introduction

At the 1991 International Oracle User Week in
Miami, Oracle Services presented a paper de-
scribing a low maintenance way to configure
high performance, growing Oracle data-
bases [Millsap 1993]. The Optimal Flexible
Architecture (OFA) described at that presenta-
tion had already helped solve devastating
problems at several production Oracle sites.
outlines some of the problems that motivated
the original OFA work. The promise of the OFA
was that an entire class of problems could be
avoided by applying tested knowledge of how
to optimize Oracle�s relationship with its host
operating system (Figure 1).

A large worldwide audience welcomed the
OFA because it delivered on its promise. Exist-
ing installations adopted it because their
configuration problems were taking money
from their bottom lines. New customers wel-
comed the OFA because it filled a desperate
need for knowledge in areas that only a handful
of specialists in the world knew anything about.
Oracle Services� Optimal Flexible Architecture
was the first widely published document that
made specific configuration recommendations
based on actual field experience. The OFA has
since become the world�s most popular specifi-
cation for configuring high performance, low
maintenance Oracle database systems.

The original OFA paper described how to ex-
ploit the capacity of modern operating systems
to organize massive amounts of data and, gen-
erally, how to make configuration decisions
that minimize the cost of administering a data-
base. In 1992, Oracle Services published a
comprehensive technical OFA Standard for
UNIX that addressed a broad range of configu-
ration issues including: naming standards, file
protections, UNIX logins, raw devices, revision
management, storage parameters, resource
privileges, and rollback segments. This docu-
ment was distributed only to a few
configuration specialists, but the work moti-
vated several Oracle product and
documentation refinements. By early 1993 Ora-
cle had integrated the OFA Standard into
Oracle7.

A good standard should act as a strong floor,
without becoming a ceiling that inhibits
�creative magic.� Creating a useful standard
requires its author to master the precarious bal-
ance between appropriate flexibility and actual
usefulness to people who just want to know
what to type. In an attempt to achieve this bal-
ance, The OFA Standard�Oracle7 for Open

Systems identifies universal requirements to
motivate a generic standard, which is then illus-
trated with a specific example. The resulting
document is intended to be useful both as a
configuration requirements definition for sites

 • Attempting to organize large amounts of
complicated software and data on disk
leads to device bottlenecks and poor per-
formance.

 • Routine administrative tasks like software
and data backup are performed incorrectly
or inefficiently, causing vulnerability to cor-
ruptive influences.

 • Attempting to switch among multiple Ora-
cle databases results in corruption of
production data.

 • Inability to adequately administer database
segment growth results in recurrent appli-
cation failures.

 Figure 1. These configuration problems motivated
the original OFA.

OFA Standard • 3

Oracle System Performance Group Technical Paper, September 24, 1995

of all sizes and as the formal definition of the
OFA Standard.

This paper does not address all the questions
you will encounter as you plan your configura-
tion. However, we hope that by studying the
OFA Standard, you will understand the impor-
tance of investing care into the optimal and
flexible configuration of the system to which
you will entrust your strategic data. We hope
also that you will want to keep learning after
having read this monograph, and that you will
give our team the opportunity to execute our
mission: To help you make the most efficient
use of the resources you pay for by sharing
knowledge with you at your own site.

1. Operating System Configuration

If you are interested in installing a relational
database management system, it is likely that
you will be installing the largest application
your computer is capable of supporting. Before
your system can serve your Oracle application,
you must connect and configure peripherals,
configure disks for swap space and data storage,
name your file systems, configure your net-
work, prepare your UNIX kernel for the specific
demands your new applications will have, and
create logins [Frisch 1991, Loukides 1991, Ne-
meth et al 1989]. The following sections will
assist you and your systems engineer to under-
stand some of the issues your Oracle
configuration planner must consider.

1.1 Mount Points

One of the first tasks undertaken to perma-
nently configure a UNIX system is to select
sizes and names for file system mount points. A
mount point is a directory name denoting where
the file subsystem for a single disk slice will be
linked into an existing UNIX file system. The
sample /etc/vfstab excerpt from a Solaris system
in Figure 2 shows the mapping of two mount
points, / and /usr, to two disk slices. Although
physically the contents of these two directories

live in parallel slices on one disk, a UNIX user
regards usr hierarchically as a subdirectory of /.

Regardless of whether you use �raw devices��
for Oracle data (sec. 4), you will have to choose
mount point names for slices containing users�
files and software. The file system makes UNIX
easier to administer by hiding device details,
and selection of mount point names sets the
stage for exactly how easy it will be. In selecting
names, the configuration planner must find an
appropriate balance among these important
requirements:

Requirement 1. The file system must be
organized so that it is easy to adminis-
ter growth from: adding data into
existing databases, adding users, creat-
ing databases, and adding hardware.

Requirement 2. It must be possible to dis-
tribute I/O load across sufficiently
many disk drives to prevent a perform-
ance bottleneck.

Requirement 3. It may be necessary to
minimize hardware cost.

Requirement 4. It may be necessary to
isolate the impact of drive failure across
as few applications as possible.

The way to balance requirements 2 and 3 is to
name every one of your UNIX mount points in
such a manner that it is possible to lay a file
from any database there without violating re-
quirement 1. The following rule accomplishes
this balance.

OFA 1 Name all mount points that will hold site-

specific data to match the pattern /pm where p is a

string constant chosen not to misrepresent the con-

tents of any mount point, and m is a unique fixed-

length key that distinguishes one mount point from

another.

If files from two or more applications will live
together in a mount point subtree, it is impor-
tant that the mount point name not denote the

#device device mount FS fsck mount mount
#to mount to fsck point type pass atboot options
/dev/dsk/c0t3d0s0 /dev/rdsk/c0t3d0s0 / ufs 1 yes -
/dev/dsk/c0t3d0s6 /dev/rdsk/c0t3d0s6 /usr ufs 2 yes -

Figure 2. This Solaris /etc/vfstab excerpt shows the mapping of mount point names to device names. Each
row in this file represents one disk slice.

4 • Cary V. Millsap

Oracle System Performance Group Technical Paper, September 24, 1995

presence of one application to the exclusion of
another. For example, consider a situation in
which you would like to balance I/O load by
storing both an Oracle database file and an on-
line backup of some other data within a single
disk slice. You shouldn�t call that disk slice�s
mount point /oracle because that would put a
misleading name in the path of the non-Oracle
files stored there. And you shouldn�t call the
mount point /backup because you wouldn�t
want to keep Oracle database files in a directory
that looks like it has been made exclusively for
storage of backed up files.

Mount points that contain files from multiple
applications are given names only to distin-
guish one mount point from another, like /u01
and /u02, or even /ulna/disk01 and
/ulna/disk02. Using zeros to pad distinguishing
keys to a fixed length makes sorted lists of
mount point names come out right, like

 � /u1
/u08 /u10
/u09 instead of /u11
/u10 /u2
 � �

Unfortunately, storing files from two or more
databases on the same drive contradicts re-
quirement 4. The only way to satisfy
requirements 2 and 4 simultaneously is to buy
more disk drives than your initial sizing esti-
mates probably showed. Administrators with
tight hardware budget constraints normally
sacrifice maximal fault resilience (req. 4), be-
cause performance (req. 2) is almost always
more important. So, the degree to which you
are willing to solve this conflict with hardware
quantity determines the strategy you should
take for naming your mount points. An alter-
native strategy for the small percentage of
Oracle sites that can pursue fault resilience
without sacrificing performance is given in sec-
tion 6 in this paper.

Resist the temptation to encode controller or
disk identification characters into a mount
point name. Putting specific hardware configu-
ration detail into directory names causes exactly
the types of problems that mount point names
were designed to avoid. Mount point names
allow us to �abstract away�� the details of
hardware implementation that are irrelevant to
the challenges that a system�s users face.

Administrators can be tempted to match mount
point names with device names because, to bal-
ance I/O load, they have to make decisions
about directory contents based on I/O statistics
printed for devices. However, denoting hard-
ware information within a mount point name
causes trouble if you ever upgrade your disk
hardware. New hardware that uses different
device names than you had before (consider the
case of exchanging a SCSI drive for an IPI drive)
will require you to invest time into changing
path names in your applications if you intend to
follow your own hardware-bound naming tra-
dition. Your best mount point naming decision
is to use names unrelated to your hardware
device names and to examine system files (or
write a program to do it for you) on the rare
occasion when you need to balance your sys-
tem�s I/O load.1

1.2 Login Home Directories

On very old UNIX systems, home directories
were placed in /usr. That worked well enough
for single-user systems, but having home direc-
tories in /usr did cause unnecessary challenges.
For example, having directories in /usr increases
risk of accidental file loss at upgrade time when
the entire /usr subtree is replaced; also, if the
/usr file system fills, UNIX will crash. UNIX
books today usually recommend that login
home directories be placed in a directory called
/u or /home. Using /u or /home works fine for
sites with average data volume. However, a
challenge arises if the set of files to be contained
within a single home directory is too large to fit
on any single disk slice. For example, Oracle
Financials and Manufacturing software con-
sumes almost a gigabyte, all of which is
supposed to reside in some directory called
applmgr, but no single disk slice on your system
is big enough to hold all of it. Hence, the fol-
lowing requirement:

Requirement 5. It must be possible to dis-
tribute across two or more disk drives
both (a) the collection of home directo-
ries and (b) the contents of an
individual home directory.

1 The requirement implicit here is very similar to re-
quirement 6 (to which you will be introduced
shortly): It must be possible to exchange hardware
components without having to revise programs that
refer to them.

OFA Standard • 5

Oracle System Performance Group Technical Paper, September 24, 1995

The following rule offers an elegant solution to
requirement 5:

OFA 2 Name home directories matching the pattern

/pm/h/u, where pm is a mount point name, h is se-

lected from a small set of standard directory names,

and u is the name of the owner of the directory.

Placing all home directories at the same level in
the UNIX file system means that we can put
home directories on different mount points, yet
still be able to refer to the collection of login
homes with a single pattern. We meet require-
ment 5.a without violating requirement 1 by
placing two large home subtrees at the same
level on separate mount points. For example,
the Oracle Server software owner home direc-
tory might be /u01/app/oracle, and the Oracle
Applications software owner home directory
might be /u02/app/applmgr. Even though two
enormous subtrees are on different disk slices,
we can still use a single pattern�in this exam-
ple, /*/app/*�to refer to all applications owner
login home directories on the system.

To illustrate requirement 5.b, consider the Ora-
cle Financial and Manufacturing Applications
software owner, typically named applmgr,
which can own more than a gigabyte of UNIX
files on a system whose largest disk slice is
600 megabytes. A simple solution is to use sym-
bolic links to make directories appear in a single
subtree, even though they physically reside on
different mount points. Figure 3 shows the
symbolic link required to enable the Oracle
General Ledger software to live on a separate
mount point from the other applications soft-
ware, yet appear to live in /u02/app/applmgr.
All applmgr files are still identifiable as resi-
dents of subtrees whose names match the
pattern /*/app/applmgr.

Different values of h in rule OFA 2 enable sys-
tem administrators to simplify their backup
procedures by using different home directory
roots for different types of users. For example,
Oracle Server software files might be owned by
a UNIX login called oracle, just like the file ré-
sumé.tex might be owned by a login called
cmillsap. However, the administrator of the
UNIX system housing both users may wish to
back up the two types of files represented here
on different tapes or different schedules. To
partition a system�s users into the two classes
(1) applications owners and (2) interactive log-
ins, the administrator could choose home
directory subtree names with, for example,
h chosen from the list {app, home}. For exam-
ple, you might use the following UNIX
command to back up your applications software
directories:

find /*/app/* -print | \
bar cvf /dev/rst0

�And this UNIX command to back up your
login user home directories:

find /*/home/* -print | \
bar cvf /dev/rst0

1.3 User Profiles

Oracle Server is designed well to enable users to
choose which of several simultaneously active
versions of server software to run against any of
several databases, without sophisticated pro-
gramming and without complicated user
profiles. An Oracle database user�s profile
should (1) assign a UNIX path value so that the
user�s shell can execute Oracle�s programs for
setting up the environment; (2) define an in-
stance name (SID) for planned database
connections; and (3) execute the program that
sets the UNIX path for running Oracle software.

$ ln -s /u03/app/applmgr/gl /u02/app/applmgr/gl
$ ls -l /u02/app/applmgr
-rw-r--r-- 1 applmgr 1119 Jul 5 01:16 AOL.env
drwxrwxr-x 2 applmgr 2048 Jul 5 01:16 alr
drwxrwxr-x 2 applmgr 2048 Jul 5 01:16 fnd
lrwxrwxrwx 1 applmgr 5 Jul 5 01:16 gl -> /u03/app/applmgr/gl
...
$ ls -l /u03/app/applmgr
drwxrwxr-x 1 applmgr 2048 Jul 5 01:16 gl

Figure 3. In this figure, we use a symbolic link to distribute the applmgr login�s files across disks. The gl
directory in /u02/app/applmgr is actually a named (symbolic) link referring to a directory subtree that is
physically located on the /u03 mount point. Thus we can treat the gl directory as if it were a part of /u02 in
our administrative programming.

6 • Cary V. Millsap

Oracle System Performance Group Technical Paper, September 24, 1995

Insert the following lines into your users�
.profile to accomplish these tasks:2

set UNIX path
PATH=/bin:/usr/bin:/var/opt/bin

set default instance
ORACLE_SID=sab

set ORACLE_SID, ORACLE_HOME,
and PATH without asking
ORAENV_ASK=NO
. oraenv
ORAENV_ASK=

By ensuring that oraenv, coraenv, and dbhome
reside in /var/opt/bin,3 independent of any
Oracle software home directory, you remove all
dependence on Oracle versions from your login
profiles.

The steps shown here should be executed for
each user connecting to an Oracle Server in-
stance. A user may want to perform additional
setup steps in the profile, such as assigning
terminal settings, inserting additional software
directories in the UNIX path, assigning ORA-
CLE_PATH and additional environment
variables, or selecting among various instances
for connection.

1.4 Zero Maintenance Administration

Oracle Services still occasionally visits an unfor-
tunate client whose backup programs didn�t
keep pace with the file system changes made
when someone cured an I/O bottleneck or fer-
reted out free space to feed a growing
application. We have been asked to visit several
sites at which a routine I/O balancing exercise
that should have consumed ten minutes actu-
ally consumed hours of database downtime
because administrative programs contained
hard-coded references to path names that were
no longer valid after the surgery. These kinds of
problems motivate the following requirement.

Requirement 6. It must be possible to add
or move login home directories without
having to revise programs that refer to
them.

2 The example shown here is what you will need for
Bourne shell or KornShell users. For C Shell users,
you will need to make functionally equivalent entries
into the .cshrc file for each user.
3 The standard directory for site local programs is
called /usr/local/bin or /usr/lbin on most systems
before UNIX System V Release 4.

Conforming to the following rule satisfies re-
quirement 6.

OFA 3 Refer to explicit path names only in files

designed specifically to store them, such as the

UNIX /etc/passwd file and the Oracle oratab file;

refer to group memberships only in /etc/group.

Hard-coded references to a file�s path name
must be systematically identified and modified
if it ever becomes necessary to relocate that file
to a new directory. Fortunately, it is completely
unnecessary to record a path name in any file
other than a central reference file, because a
user�s home directory name can be derived.
C Shell and KornShell users can use ~login to
refer to the home directory for login; and al-
though the Bourne shell has no built-in ability
to calculate home directory names, it is easy to
construct a program to do it. Such a program is
given later in this document (lhd, section 9).

Similarly, group memberships should never be
recorded in an administrative program, because
group member names can be computed from
/etc/group, as is also shown later (grpx, sec-
tion 9). By always using programs like lhd (or ~)
and grpx instead of explicit references, your
administrative tools will not require modifica-
tion when you move user home directories or
change group memberships.

OFA Standard • 7

Oracle System Performance Group Technical Paper, September 24, 1995

Figure 4 illustrates programming that exploits
the ability to refer to classes of objects with
simple patterns that remain constant when you
add data, users, databases, or disks; even when
you move files around your system. Consider
the change you would have to make to the one-
line backup program shown here if you were to
change the physical location of the applmgr
user�s login home directory. How would adding
a new user to the dba or clerk group affect the
behavior of the second or third example? The
OFA Standard ensures that no maintenance on
these programs would be required to accom-
modate these changes. You will see later
(Figure 7) that using the OFA also gives a zero
maintenance way to manipulate all the files
associated with a given Oracle database as a
unit, even though the files might be distributed
uniformly across many disks.

2. Oracle Files

Before the original OFA recommendations were
published, many people placed database files in
$ORACLE_HOME/dbs [Millsap 1993]. How-
ever, putting control files, redo log files, or data
files in a subtree of the directory holding Oracle
software caused problems: having all database
files on a single disk bottlenecked the server;
and having long-term database data in the
Oracle software subtree made upgrades unnec-
essarily difficult because administrators had to
spend time and money to carefully preserve
and move the data. A goal of the original OFA
was to solve these difficult problems with a
flexible set of recommendations that allowed
files to be distributed across multiple disk
drives without disorganization, yet prevented

software and data from interfering with each
other during software upgrades. The separation
of data from software is just one specific case of
a broader requirement:

Requirement 7. Categories of files must
be separated into independent direc-
tory subtrees so that files in one
category are minimally affected by op-
erations upon files in the other
categories.

The following classification of Oracle files en-
ables us to build a standard that meets this
requirement:

 • Product files consist of Oracle Server soft-
ware and tools that are supplied on the
Oracle Corporation distribution media.

 • Administrative files are files containing data
about the database or instance, including
archived redo log files, server process diag-
nostic output, database creation scripts,
online exports, instance parameter files, etc.

 • Local software is software used with Oracle
that is written on site or purchased sepa-
rately from the Oracle distribution
software.

 • Database files consist of control files, redo
log files, and data files.

This classification partitions Oracle files along
the boundaries of different lifespans, mainte-
nance schedules, and security privileges. The
following sections describe a model that fulfills
requirement 7 by placing each of these four
types of files in subtrees independent of the
other types.

Back up all files in login home subtrees of the ‘applmgr’ user
find /*/app/applmgr -print | tar cvf /dev/rst0

Propagate a centrally administered .profile to ‘clerk’ users
for user in `grpx clerk` ; do
 f=`lhd $user`/.profile
 ln -s `lhd applmgr`/.profile.clerk $f
 chown applmgr $f ; chgrp oaa $f ; chmod 644 $f
done

Figure 4. This figure shows an example of zero maintenance programming. Regardless of the
physical location of the applmgr subtrees on the system, the first find command will find them
because of the wildcard in the mount point directory name component of the path. The second
UNIX command will create a properly protected file into each member of the clerk group. Neither
of these programs require modification if login home directories are added, moved, or deleted.
(Source code for the grpx and lhd programs used here is supplied later in this paper.)

8 • Cary V. Millsap

Oracle System Performance Group Technical Paper, September 24, 1995

2.1 Oracle Software and Administrative Data

Figure 5 is a graphical representation of the
OFA Standards that will be detailed below for
storing Oracle product, administrative, and lo-
cal software files. All Oracle software and
administrative data reside in subtrees of the
Oracle Server owner�s login home directory.
The name of this directory is the value to which
Oracle advises that you set the environment
variable ORACLE_BASE.

Product Files Mature production sites require
means to test a new version of Oracle software
without impacting daily operations. Staging
upgrades has been a difficult challenge for
many Oracle sites because the focus of a default
installation is that there is exactly one central
repository of Oracle software. An inexperienced
technician trying to complete an Oracle instal-
lation will rarely consider the requirements of
an upgrade that isn�t even planned yet. Build-
ing a structure to make upgrades easy is simple
work, but it requires foresight and a complete
understanding of the Oracle version switching
mechanism discussed briefly in section 1.3.

Requirement 8. It must be possible to
execute multiple versions of applica-
tions software simultaneously. Cutover
after upgrade must be as simple for the
administrator and as transparent for the
user community as possible.

Conforming to the following rule yields a struc-
ture that helps fulfill requirement 8:

OFA 4 Store each version of Oracle Server distri-

bution software in a directory matching the pattern

h/product/v, where h is the login home directory of

the Oracle software owner, and v represents the

version of the software.

Most OFA for UNIX implementations use val-
ues of v like 7.0.16. Oracle Server patches
involving changes only to version numbers
right of the third decimal point (e.g., from
6.0.36.3 to 6.0.36.5) usually take place without
elaborate staging, and thus most sites do not use
values of v significant beyond the third decimal
point.

An Oracle upgrade at an OFA compliant site
then undertakes the following steps: (1) a new
version directory is created in product; (2) the
new Oracle Server version is installed in that
directory; (3) a test database is created for con-
firmation of the new software; (4) after
confirmation, the home directory column of
oratab is updated for the row associated with
the production instance; and (5) to cut over to
the new version, all users exit and re-enter
UNIX. Executing a fresh login (normally ac-
complished by leaving work one afternoon to
return the next morning) causes the oraenv call
in a user�s .profile4 to set the UNIX environ-
ment properly for operation with the newly
validated software.

After an upgrade is judged successful, the next
step becomes removal of the old version sub-
tree, so that the space it consumes can be
reclaimed. The safety with which the old ver-
sion directory can be removed varies inversely
with the amount of custom material stored
there. The Oracle administrator should ensure
that the only files permitted to reside within
the product subtree either are either copied or

4 �Or a coraenv call in a C shell user�s .cshrc.

/u01/app/oracle

product admin local

7.0.16 TAR sab sabt6.0.37 aps6intl aps7

Figure 5. This is a graphical representation of the Oracle software owner's home directory structure. In this
example, ORACLE_BASE would be set to the value /u01/app/oracle, and ORACLE_HOME would be set
to either /u01/app/oracle/product/6.0.37 or /u01/app/oracle/product/7.0.16.

OFA Standard • 9

Oracle System Performance Group Technical Paper, September 24, 1995

mechanically derived from the Oracle distribu-
tion media (such as executables created by
linking distributed object files). Following this
policy greatly simplifies upgrade cutover and
cleanup by eliminating the need for intricate
file-copy surgery to preserve original work. The
lifespan of the product/v subtree matches the
lifespan of a version of Oracle. Don�t put files
there if they will outlive version v of the soft-
ware.

Administrative Files A key Oracle administra-
tor skill is the ability to manage large amounts
of data about an Oracle system. In the normal
course of operation, for example, installers store
programs that create databases; Oracle Server
itself produces trace files; and administrators
save structural records, instance parameters,
performance statistics, backups, archives, and
general logbook entries on each database. The
volume of data to be administered increases as
the number of databases on the system in-
creases. These facts motivate the following
requirement:

Requirement 9. Administrative informa-
tion about one database must be
separated from that of others; there
must be a reasonable structure for or-
ganization and storage of
administrative data.

In exclusive mode environments,5 conforming
to the following rule fulfills requirement 9.

OFA 5 For each database with db_name=d, store

database administration files in the following subdi-

rectories of h/admin/d:

 • adhoc�ad hoc SQL scripts for a given database

 • adump�audit trail trace files

 • arch�archived redo log files

 • bdump�background process trace files

 • cdump�core dump files

 • create�programs used to create the database

 • exp�database export files

 • logbook�files recording the status and history

of the database

 • pfile�instance parameter files

 • udump�user SQL trace files

5 For sites using Oracle Parallel Server, see section 5.

where h is the Oracle software owner�s login home

directory.

Figure 5 shows the h/admin/d directories for
three databases in a sample system; because
space is limited, the picture does not show the
adhoc, adump, etc. directories that reside be-
neath each named database directory.6 The
simple classification named here gives the ad-
ministrator sufficiently many �file folders�� to
store the necessary data about a given database.
By keeping all original work pertinent to a spe-
cific database in the administrative subtree
instead of in the product subtree, as so many
people have implicitly done in the past by
storing files in the dbs or rdbms/admin subtrees
of $ORACLE_HOME, the administrator ac-
complishes the goal of keeping the product
subtree free from files that must be carefully
preserved at Oracle upgrade time.

Some administrative directories, such as arch
and exp, are typically too large to store on the
disk slice housing the Oracle owner�s login
home directory. These directories can be con-
nected easily into the administrative subtree
with symbolic links similar to the one shown
earlier in Figure 3. Using symlinks gives a sim-
ple mechanism for storing a file anywhere you
need without sacrificing the organization of
your file system to physical size constraints.

Local Software UNIX is an especially open
environment designed to enable addition of
new capabilities into the operating system.
General purpose administrative utilities like
those listed in section 9 are typically executed
from a directory created exclusively for site-
specific utilities, such as /var/opt/bin. The OFA
Standard similarly enables the Oracle adminis-
trator to add site-specific Oracle capabilities
into the system in the local subtree of the Ora-
cle owner�s login home directory. During Core
Technologies on-site engagements, for example,
an Oracle consultant will populate this subtree
with administrative utilities.

6 The TAR directory shown in Figure 5 is created at
some sites to enable site staff to record information
about technical assistance requests (TARs) logged
with Oracle Worldwide Support. The upper-case
name distinguishes this directory from that of a data-
base named �tar,� if one were to exist.

10 • Cary V. Millsap

Oracle System Performance Group Technical Paper, September 24, 1995

2.2 Oracle Database Files

Intuition tells most installers that Oracle data-
base files should be separated from other files
on a system. There are concrete reasons for do-
ing so, among which: database files� lifespans
differ from all other files on your system; and
database files will require a different backup
strategy than the other files on your system. A
thoughtful naming strategy for database files
eliminates a whole class of administrative
problems. Experience yields the following re-
quirement:

Requirement 10. Database files should be
named so that (a) database files are eas-
ily distinguishable from other files;
(b) files of one database are easily dis-
tinguishable from files of another;
(c) control files, redo log files, and data
files are easily distinguishable from one
another; and (d) the association of data
file to tablespace is easily identifiable.

The following rule meets requirement 10:

OFA 6 Name Oracle database files using the follow-

ing patterns:

 • /pm/q/d/control.ctl�control files

 • /pm/q/d/redon.log�redo log files

 • /pm/q/d/tn.dbf�data files

where pm is a mount point name, q is a string de-

noting the separation of Oracle data from all other

files, d is the db_name of the database, n is a distin-

guishing key that is fixed-length for a given file

type, and t is an Oracle tablespace name. Never

store any file other than a control, redo log, or data

file associated with database d in /pm/q/d.

In section 1.1 we discussed selection of mount
point names, to which we refer here as /pm. The
two directory layers beneath the mount point
level are valuable agents of organization. The
q layer fulfills requirement 10.a. It is homolo-
gous to the home layer discussed in section 1.2,
as it serves the same purpose of enabling an
administrator to refer to a collection of I/O bal-
anced files as a unit, in a zero maintenance way.
Many people will choose q=ORACLE, as in the
original OFA paper [Millsap 1993], or other ob-
vious values like q=oradata. The d layer satisfies
requirement 10.b. It eliminates confusion about
the database association of a given file, because
the name of the database will always be a com-

ponent of the fully qualified path name of the
file. For example, it is easy to see to which data-
base /u03/oradata/sab/system01.dbf belongs.

Figure 6 is a graphical representation of a sam-
ple OFA compliant directory structure for
storing I/O balanced database files that are in-
dependent of the Oracle software and
administrative files. In this example, q=oradata
on a system with three databases. The figure
shows only the specific mount points /u08, /u09,
and /u10, but the OFA administrator replicates
this structure on every /u[0-9][0-9] mount point
in the file system. It is a good idea to build the
q/d structure for every database and every
mount point, even if you do not intend to put
database files on every mount point. The cost is
only a few inodes,7 and the benefit is that in an
emergency, any free disk space on your system
will be ready to house a file from any database
that could require more space.

This structure makes it easy to distinguish Ora-
cle database files of one database from Oracle
database files of another. Using distinct suffixes
for different types of database files makes it
easy to distinguish one type of file from an-
other, fulfilling requirement 10.c.

7 The cost is n(k+1) inodes, where n is the number of
user data mount points on your system, and k is the
number of databases on your system.

OFA Standard • 11

Oracle System Performance Group Technical Paper, September 24, 1995

Control Files Oracle control files contain struc-
tural information about the database, including
relatively static data such as UNIX file names,
and more dynamic data like the current redo
log sequence number. For safety�s sake, it is es-
sential that the administrator create at least two
control files on two different disks. Having
three control file copies ensures that even if one
file is lost, there remains a safe duplication. Be-
cause control file copies are always stored on
different disks, they can have identical ba-
senames; the /pm component distinguishes one
control file from the others.

Redo Log Files Oracle redo log files record in-
formation necessary to roll forward a database
in case of CPU or disk failure. Redo log files are
written sequentially during transaction process-
ing, and they are read only during archiving
and recovery. Since redo log files for a database
may all exist on a single drive, it is necessary to
encode a distinguishing key into the basename
of the file. This key n for redo log files is nor-
mally a three- or four-digit string denoting the
redo log file�s group and sequence within that
group. For example, you might use a name like
redo0201.log or redo01b.log to denote redo log
member 1 of group 2.

Data Files Oracle data files are the physical
manifestation of tablespaces. The OFA Standard
meets requirement 10.d by using the tablespace
name as the root of the data file�s basename.
Because two or more files from a given ta-
blespace can reside within the same directory, it
is necessary to encode a distinguishing key into

the basename of each data file. The length of
the key n is an almost universally accepted two.
Numerals alone generate 100 unique keys in the
range 00, 01, �, 99. Most databases use far fewer
than 100 files per tablespace. Common data file
names are system01.dbf, glx04.dbf, and so on.
However, if having 100 files per tablespace is
not enough, then using two-digit alphanumeric
lower-case keys from the set [0-9a-z][0-9a-z], for
example, yields (10+26)2, or 1,296, unique val-
ues.

Personal Preferences Enthusiasts of the origi-
nal OFA [Millsap 1993] may reel in algebraic
anaphylaxis upon seeing the familiar
/un/ORACLE/d changed into the symbolic
/pm/q/d. The early OFA paper was designed to
supply a simple, specific standard that installers
could use straight out of the wrapper. However,
when the material proved to be popular enough
that administrators began to construct site stan-
dards around the OFA recommendations, the
simple way of expressing a directory name rec-
ommendation proved to be inadequate.

Several rounds of discussion with our custom-
ers have made it clear that not all sites have
exactly the same tastes in naming, and that the
existence of two different preferences doesn�t
necessarily mean that someone is wrong. So
there is no single correct answer to whether
Oracle data directories are best named ORA-
CLE or oradata or something else, and science
does not dictate whether database files are best
kept four layers deep in the file tree or six.
However, the requirements listed in this paper

/u08

oradata

sab sabt intl

......

/u10

oradata

sab sabt intl

......

/u09

oradata

sab sabt intl

......

Figure 6. This figure shows the OFA structure for storing Oracle database files. Each mount point on the
system contains a directory for holding Oracle data, oradata in this particular example. Other directories
residing at this level might include subtrees named home, app, and so on. Beneath the Oracle data direc-
tory is a level separating the files of the various Oracle databases on the system. This example shows
directories for three databases: sab, sabt, and intl. Note that in this structure, files from each database may
be spread across as many disk drives as needed for I/O load balancing. Each mount point is equally well
suited for storage of any database file.

12 • Cary V. Millsap

Oracle System Performance Group Technical Paper, September 24, 1995

appear generally indisputable, and there seems
to be unanimous agreement among thinkers
about two assertions on storing Oracle data:

 • The directory�s actual name doesn�t matter,
as long as it is both (a) consistent with the
names of other similar directories, and
(b) chosen carefully to not misrepresent the
contents of the directory.

 • The level at which any type of I/O balanced
files are stored doesn�t matter, as long as it�s
the same level on every mount point.

The OFA Standard uses an algebraic-looking
regular expression notation in the database file
naming recommendation so that administrators
are free to exploit the freedom of individual
tastes, as long as the two underlying basis
points expressed above are honored. Today, the
site naming standards represented by the fol-
lowing names lie completely within the
boundaries of OFA compliance:

/u01/ORACLE/sab/gld01.dbf
/disk04/oradata/pdnt/gld01.dbf
/db016/ora/mail/gld01.dbf
/mars/data/disk31/bnr1/gld01.dbf
/u08/app/oracle/data/pfin/gld01.dbf

Other standards are also appropriate in special
circumstances. Responsible site administrators
must consider the important points outlined in
section 4 before deciding to implement Oracle
on UNIX �raw devices.�� Section 6 addresses
naming standards appropriate for consideration
by very large database sites.

2.3 Exploiting the OFA Structure for Oracle
Files

Figure 7 shows several useful UNIX patterns
identifying classes of files that can be manipu-

lated by a find command like the ones shown
earlier in Figure 4. Figure 8 is a complete pic-
ture of the relationships among the Oracle for
UNIX files in our familiar sample three-
database system. In this example, the Oracle
owner�s login home directory is in /u01/app,
and the files for this system�s three databases
are I/O balanced throughout subtrees named
/*/oradata.

/u[0-9][0-9] user-data directories
/*/home/* user home directories
/*/app/* user application software directories
/*/app/applmgr Oracle apps software subtrees
/*/app/oracle/product Oracle Server software subtrees
/*/app/oracle/product/6.0.37 Oracle Server 6.0.37 distribution files
/*/app/oracle/admin/sab sab database administrative subtrees
/*/app/oracle/admin/sab/arch/* sab database archived log files
/*/oradata Oracle database directories
/*/oradata/sab/* sab database files
/*/oradata/sab/*.log sab database redo log files

Figure 7. These file name patterns are useful in an OFA compliant environment.

OFA Standard • 13

Oracle System Performance Group Technical Paper, September 24, 1995

3. Oracle Tablespaces

Tablespace is a name that was introduced in
Oracle Version 6 for an entity that relates mul-
tiple database segments to multiple operating
system files.

Segment Partitioning The tablespace forms the
interface through which the logical database
can be partitioned into different physical files in
the operating system. Factors that affect deci-
sions about separating Oracle segments into
different tablespaces include:

/ root mount point
 u01/ �user data� mount point #1
 app/ subtree for application software
 oracle/ login home for the Oracle Server software owner
 admin/ subtree for database administrative files
 TAR/ subtree for Support logs
 intl/ administrative subtree for �intl� database
 sab/ administrative subtree for �sab� database
 sabt/ administrative subtree for �sabt� database
 local/ subtree for local Oracle software
 aps6/ an Oracle6 admin istrative software package
 aps7/ an Oracle7 administrative software package
 product/ Oracle Server distribution files
 6.0.37/ ORACLE_HOME for 6.0.37 instances
 7.0.16/ ORACLE_HOME for 7.0.16 instances
 home/ subtree for login home directories
 sbm/ home for a user
 oradata/ subtree for Oracle data
 intl/ subtree for �intl� database files
 sab/ subtree for �sab� database files
 sabt/ subtree for �sabt� database files
 u02/ �user data� mount point #2
 app/ subtree for app software
 applmgr/ home for the Oracle Applications owner
 alr/ Oracle Alert
 fnd/ Application Object Library
 gl/ -> /u03/app/applmgr/gl symbolic link to General Ledger files
 ... more applications
 home/ subtree for login home directories
 mlm/ home for a user
 oradata/ subtree for Oracle data
 intl/ subtree for �intl� database files
 sab/ subtree for �sab� database files
 sabt/ subtree for �sabt� database files
 u03/ �user data� mount point #3
 app/ subtree for applications software
 applmgr/ auxiliary directory for Oracle Applications
 gl/ Oracle General Ledger
 home/ subtree for login home directories
 vrm/ home for a user
 oradata/ subtree for Oracle data
 intl/ subtree for �intl� database files
 sab/ subtree for �sab� database files
 sabt/ subtree for �sabt� database files
 ... more mount points, etc.

Figure 8. This is a hierarchical directory listing for a sample OFA compliant system. Indentation shows the
relationships among directories and the files and directories contained within.

14 • Cary V. Millsap

Oracle System Performance Group Technical Paper, September 24, 1995

 • Fragmentation character. Dropping of seg-
ments causes tablespace free space
fragmentation that can lead you to the
doorstep of people who hope to �de-
fragment�� your database in exchange for a
few thousands of your dollars. Free space
fragmentation is preventable. By separating
segments with different lifespans into dif-
ferent tablespaces, the database creator
prevents the problems associated with ta-
blespace free space fragmentation.

 • I/O distribution. Only at the tablespace level
can the administrator determine what set of
operating system files a segment will oc-
cupy. By separating segments with
competing I/O requirements into different
tablespaces, the database creator can make
it possible to ensure well-balanced I/O
loads across hardware components.

 • Administrative needs. Only at the tablespace
level can the administrator specify a collec-
tion of segments for backup, or restrict a
user�s privilege to consume database space.
By separating segments with different ad-
ministrative characteristics into different
tablespaces, the database creator can make
give the administrator an appropriate level
of control over collections of segments.

The following requirement motivates decisions
about tablespace creation:

Requirement 11. Tablespace contents
must be separated to (a) minimize ta-
blespace free space fragmentation,
(b) minimize I/O request contention;
and (c) maximize administrative flexi-
bility.

The next rule fulfills requirement 11.

OFA 7 Separate groups of segments with different

lifespans, I/O request demands, and backup fre-

quencies among different tablespaces. For each

Oracle database, create the following special ta-

blespaces in addition to those needed for applications

segments:

 • SYSTEM�data dictionary segments only

 • TEMP�temporary segments only

 • RBS�rollback segments only

 • TOOLS�general-purpose tools only

 • USERS�miscellaneous user segments

This standard has proven to have several tre-
mendous benefits. For example, because
dictionary segments are never dropped, and
because no other segments that can be dropped
are allowed in the SYSTEM tablespace, this
scheme guarantees that the SYSTEM tablespace
will never require a rebuild due to tablespace
free space fragmentation. Because no rollback
segment is stored in any tablespace holding
applications data, the administrator is never
blocked from taking an applications data ta-
blespace offline for maintenance. Because
segments are partitioned physically by type, the
administrator can record and predict data vol-
ume growth rates without complicated tools.

Tablespace Names The OFA standard of em-
bedding the name of a tablespace in the
basename of its associated data files (OFA 6)
means that UNIX file name length restrictions
also restrict tablespace name lengths. Although
Oracle7 tablespace names can be thirty charac-
ters long, portable UNIX file names are
restricted to fourteen characters. Recall that the
recommended standard for a data file basename
is tn.dbf, where t is a tablespace name and n is a
two-digit string. The six-character n.dbf suffix
leaves eight characters remaining for t. The rec-
ommended naming standard for tablespaces is
thus:

OFA 8 Name tablespaces connotatively with eight

or fewer characters.

Eight-character tablespace names not only
simplify data file naming, they also make ad-
ministrative reports about tablespaces much
more �80-column friendly.�� The total number
of tablespaces in a database is generally on the
order of 100 or less, so inventing connotative
names with eight characters is usually easy.

Connotation enables the administrator to divine
the purpose of a tablespace by looking at its
name. It is sometimes useful to encode infor-
mation about what type of segment a
tablespace is designed to store into the ta-
blespace name. For example, the names GLD
and GLX might connote that these tablespaces
are designed to store Oracle General Ledger
data and indexes, respectively. Figure 9 illus-
trates tablespace and file naming in an OFA
compliant system.

Resist the temptation to embed reminders of
the word tablespace in your tablespace names.

OFA Standard • 15

Oracle System Performance Group Technical Paper, September 24, 1995

Tablespaces are distinguishable as tablespaces
by context, and their names do not need to con-
vey information about their type. A competent
Oracle administrator would not confuse a ta-
blespace with another database object, so names
like TEMP_TABLESPACE are patently unnec-
essary. Administrators learn as they gather
experience that embedding type information
into an object�s name is usually a waste of mo-
tion.8

4. Raw Devices vs. Buffered I/O

The term raw device is an informal synonym for

character special file, which is an unmounted disk

8 People who, after the sermon, insist upon continu-
ing to embed type information into the names of new
things are of course free to do so. However, I am also
free to fantasize that the grammar police will make
these people use their own naming convention at
home until they see how ridiculous it is. The parents
of Billy the Kid, Attila the Hun, Winnie the Pooh, and
Frosty the Snowman were evidently afflicted with
such a curse.

slice that Oracle can read and write without
incurring the overhead of UNIX I/O buffer-
ing [Bach 1986, Leffler et al 1990]. A character
special file has a fixed size because it is allocated
an entire disk slice. Oracle Corporation uses
raw devices extensively in TPC benchmarks to
increase the number of transactions per second
that Oracle can perform. As tempting as a po-
tential performance gain sounds, use of raw
I/O bears undeniable costs. The following sec-
tions identify some of the benefits and costs of
using raw devices.

Benefits of Using Raw Devices The following
factors weigh in favor of using raw devices:

 • If you intend to use Oracle Parallel Server
on a UNIX cluster, with multiple UNIX
nodes manipulating a single database on a
shared disk subsystem, you must use raw
devices. UNIX vendors have not yet im-
plemented a way for nodes in a cluster to
simultaneously mount a shared disk subsys-
tem.

File Type or
Tablespace Name

File Name Size (KB)

control /u01/oradata/sab/control.ctl

control /u02/oradata/sab/control.ctl

control /u03/oradata/sab/control.ctl

redo group 1 /u03/oradata/sab/redo0101.log 5,120
redo group 1 /u05/oradata/sab/redo0102.log 5,120
redo group 1 /u07/oradata/sab/redo0103.log 5,120
redo group 2 /u04/oradata/sab/redo0201.log 5,120
redo group 2 /u06/oradata/sab/redo0202.log 5,120
redo group 2 /u08/oradata/sab/redo0203.log 5,120
SYSTEM /u02/oradata/sab/system01.dbf 65,536
TEMP /u04/oradata/sab/temp01.dbf 131,072
RBS /u03/oradata/sab/rbs01.dbf 65,536
TOOLS /u07/oradata/sab/tools01.dbf 16,384
USERS /u07/oradata/sab/users01.dbf 32,768
AOL /u05/oradata/sab/aol01.dbf 98,304
GLD /u02/oradata/sab/gld01.dbf 524,288
GLD /u04/oradata/sab/gld02.dbf 524,288
GLX /u05/oradata/sab/glx01.dbf 524,288

Figure 9. This is a file map of a sample OFA compliant database. Note the
ease with which you can discern each file�s mount point, its application, its
database, and its tablespace. Note also that each file�s type (control file,
redo log file, or data file) is apparent by viewing its name.

16 • Cary V. Millsap

Oracle System Performance Group Technical Paper, September 24, 1995

 • Some platforms offer the capability for
asynchronous I/O to boost output perform-
ance. Asynchronous I/O is normally
available only with character special de-
vices, outside the UNIX file system. Ask
your hardware vendor or Oracle World-
wide Support for more details about your
particular implementation.

 • Using raw devices will in some cases in-
crease throughput if either your processes
frequently wait for I/O, or your system
state CPU time is persistently excessive.9

 • If you have variable disk partitioning,10 us-
ing raw devices for redo log files is
particularly attractive, because: Raw devices
benefit you most for write-intensive, se-
quentially accessed data; and online redo
log files are not included in normal operat-
ing system backup procedures.

Costs of Using Raw Devices The following
factors weigh against using raw devices:

 • Raw devices are more costly to administer
than files in the UNIX file system. Opera-
tions that become more difficult are backup
and recovery, I/O load balancing, and ad-
dition of files to the database. If you do not
have the ability to thoroughly practice da-
tabase recovery before taking your project
live, then do not use raw devices. If you do
not have sufficient disk volume that you
can leave two or more large unformatted
disk slices available for database growth or
I/O balancing, then do not use raw devices.

9 An interesting exception to the performance benefit
traditionally attributed to raw device configurations
occurs with applications that rely on table scans for
data access. These applications actually perform bet-
ter on mounted file systems than on raw devices.
Improving the performance of an application that
does frequent table scans begins with analysis of the
application�s data access methods, not with sweeping
changes to the underlying operating system configu-
ration.
10 Variable disk partitioning is a capability offered by
many UNIX vendors� logical volume management
software. With this capability, an administrator can
make any disk slice any size at all; without variable
disk partitioning, an administrator must choose from
a limited (usually small) number of ways to cut a
disk into slices.

 • Raw I/O improves throughput in only a
small percentage of production site situa-
tions. Applications in which I/O or I/O-
related processing is not the bottleneck will
not deliver better throughput by improving
the performance of I/O and I/O-related
processing. If I/O is your bottleneck, then
before choosing to use raw devices, ensure
that you have taken full advantage of per-
formance optimization techniques that are
less costly to you:

 − Carefully construct your application to
minimize I/O.

 − Configure your operating system and
instance parameters so that the Oracle
Server operates as efficiently as possi-
ble.

 − Balance your I/O load across enough
disks that each drive�s data transfer rate
is within the manufacturer�s recom-
mended limits for the drive and its
controller.

 After these optimizations, you are likely to
find that I/O and the CPU overhead associ-
ated with I/O is no longer your bottleneck,
at which point moving to a raw device con-
figuration will not improve throughput.

 • If your UNIX implementation does not of-
fer variable disk partitioning, a raw device
Oracle configuration requires more disk
volume than a similarly configured data-
base using buffered I/O. Fixed partitioning
constraints make it difficult to find enough
suitably sized disk slices for redo logs and
small data files. A dangerous consequence
of any raw device configuration is that
having only a few large slices tempts the
inexperienced configuration planner to
combine database segments that should be
separated among Oracle tablespaces. The
benefits of raw devices are not enough to
overcome the user performance and server
administrator workload costs of a poor fun-
damental configuration decision.

If yours is a big site with a sophisticated Oracle
for UNIX administration staff with time for re-
search, enough budget for several disk drives,
and enough patience to leave some of your disk
space unused but reserved for unanticipated
growth and load balancing, then using raw de-

OFA Standard • 17

Oracle System Performance Group Technical Paper, September 24, 1995

vices may be economically feasible for you. If
you use raw devices, you will need to meet the
following requirement:

Requirement 12. It must be possible to
tune disk I/O load across all drives, in-
cluding drives storing Oracle data in
character special files.

The following rule enables the administrator to
remedy a persistent I/O imbalance in a raw
device configuration, because two character
special files can trade places on disk only if they
are precisely the same size.

OFA 9 Choose a small set of standard sizes for all

character special files that may be used to store

Oracle database files.

The Verdict Use of raw I/O does not necessar-
ily increase a site�s throughput, so a responsible
administrator will study the issues before using
them. Simply stated, if you are not running
Oracle Parallel Server and testing shows there
to be no performance improvement by using
raw devices in your specific environment, then
using them would be all cost and no gain for
you. If testing shows raw devices to improve
performance by an amount that outweighs the
cost of administering them, then use raw de-
vices. If you lack the time or expertise to invest
in construction of a test to determine whether
or not to use raw devices, then you probably
also lack the time or expertise to administer
them effectively.

When determining whether or not to use raw
devices, do not ignore the possibility of using
them only for some database files. Hybrid sys-
tems that use unbuffered I/O for sequential
write-intensive files (e.g., redo log files in
highly active OLTP environments) and buffered
I/O for other files (e.g., control and data files
that have to be backed up by a UNIX adminis-
trator) can offer the best mixture of low cost
and high gain.

5. Oracle Parallel Server
Administrative Files

Using Oracle Parallel Server (OPS) adds chal-
lenges to the database administrative task,
because the OPS environment highlights the
distinction between instance (a collection of
processes and memory) and database (a collec-
tion of files). For example, assume that the sab

database is simultaneously held open by two
OPS instances on two UNIX nodes, sab1 on
node node1 and sab2 on node node2. Regard-
less of which instance hosts the connection, a
report on a data dictionary table (or view, such
as dba_users) will provide a consistent answer.
However, a report produced on a dynamic per-
formance table (or view, such as v$parameter)
will give an answer wholly dependent upon
which instance hosts the connection. Hence the
motivation for the following requirement:

Requirement 13. (a) Database specific
administrative data must be stored in a
central place accessible to all instance
administrators; and (b) instance specific
administrative data must be distin-
guishable as associated with a given
instance by file name.

In other words, you must never have to search
multiple directories to find all the reports on
dba_users for a given database, and you must
never have to look through a list of
v$parameter reports to find the ones related to
the instance you are inspecting.

We can refine our understanding of how to
fulfill requirement 13 by observing the follow-
ing features about OFA 5: the directories arch,
create, and exp are database administrative di-
rectories; adump, bdump, cdump, pfile, and
udump are instance administrative directories;
and adhoc and logbook are curious mixtures of
both.

18 • Cary V. Millsap

Oracle System Performance Group Technical Paper, September 24, 1995

One way of structuring the administrative di-
rectory for the sab database is depicted in
Figure 10. In this example, each administrative
subtree that must contain information specific
to two or more instances uses another directory
layer to denote the distinction in the file name.
For example, consider the admin/sab/logbook
directory. Operationally, an Oracle administra-
tor would use this as the working directory for
a SQL*Plus, SQL*DBA, or Server Manager ses-
sion while administering the sab database. A
data dictionary table report like users.lst would
be spooled to the current working directory,
regardless of whether the administrator is con-
nected to sab1 or sab2, to meet requirement 13.
But a dynamic performance table report like
params.lst would be spooled to the directory
named for the instance to which the adminis-
trator running the report is connected. In
addition to flexibly accommodating the storage

of database and instance report history, the
Figure 10 arrangement enables administrators
to quickly find trace files created by a given in-
stance. Therefore, the structure shown here
fulfills requirement 13.b.

Further OPS environment complication derives
from the fact that any instance can be adminis-
tered from any node in the cluster. An
administrator is equally likely to have logged
into node2 to administer the sab database as
node1, and, through SQL*Net, the node2 user
can administer the sab1 instance as sab2. How-
ever, to fulfill requirement 13.a, the
administrator must use a single central adminis-
trative directory to store database reports. A
mechanism for accommodating this require-
ment is to choose exactly one node to act as
�administrative home�� for maintenance of a
database. Each node housing an instance that
connects to that database may have a distinct

/u01/app/oracle/admin/sab/ administrative directory for �sab� database
 adhoc/ directory for miscellaneous scripts
 adump/ directory for audit file dumps
 sab1/ audit file dest for �sab1� instance
 sab2/ audit file dest for �sab2� instance
 arch/ log archive dest for all instances
 redo0001.arc archived redo log file
 bdump/ directory for background dump files
 sab1/ background dump dest for �sab1� instance
 sab2/ background dump dest for �sab2� instance
 cdump/ directory for core dump files
 sab1/ core dump dest for �sab1� instance
 sab2/ core dump dest for �sab2� instance
 create/ directory for creation scripts
 exp/ directory for exports
 930920full.dmp Sep 20 full export dump file
 export/ directory for export parfiles
 import/ directory for import parfiles
 logbook/ directory for �sab� logbook entries
 sab1/ directory for �sab1� instance reports
 params.lst v$parameter report for �sab1� instance
 sab2/ directory for �sab2� instance reports
 params.lst v$parameter report for �sab2� instance
 users.lst dba_users report
 pfile/ directory for instance parameter files
 sab1/ directory for �sab1� instance parameters
 sab2/ directory for �sab2� instance parameters
 udump/ directory for user dump files
 sab1/ user dump dest for �sab1� instance
 sab2/ user dump dest for �sab2� instance

Figure 10. Administrative directory structure for dual instance OPS

OFA Standard • 19

Oracle System Performance Group Technical Paper, September 24, 1995

product directory, but the admin/d directory for
a given database must be a remotely mounted
link to the admin/d directory on the adminis-
trative home node. Thus, when an
administrator logged onto node2 sets
~oracle/admin/sab as the session�s current
working directory, the working directory
physically becomes the central
node1:/u01/app/oracle/admin/sab, fulfilling re-
quirement 13.

From this discussion, we can induce the follow-
ing rule:

OFA 10 If you are using Oracle Parallel Server,

select exactly one node N to act as Oracle adminis-

trative home for the cluster to house the

administrative subtree defined in rule OFA 5. Let h

be the Oracle software owner�s login home directory

on node N. Create a directory named for each in-

stance accessing database d within the adump,

bdump, cdump, logbook, pfile, and udump direc-

tories of N:h/admin/d. On every node n in the

cluster except N, mount the remote directory

N:h/admin/d as the administrative directory for

database d (i.e., as n:h/admin/d).

6. Mount Points for VLDB Sites

There are at least two very different correct so-
lutions to the mount point naming challenge,
one for sites who can relax requirement 4 to
satisfy requirement 2 economically, and one for
sites able to afford massive disk farms. Most
sites should use OFA 1. Only a handful of very
large database (VLDB) sites worldwide should
consider the following strategy.

OFA 11 If you can afford enough hardware that:

 1. You can guarantee that each disk drive11 will

contain database files from exactly one applica-

tion; and

 2. You can dedicate sufficiently many drives to

each database to ensure that there will be no I/O

bottleneck.

Then name mount points matching the pattern /qdm

where q is a string denoting that Oracle data and

11 This is important: each disk drive, not disk slice.
You violate requirement 4 if you place two applica-
tions on the same disk, even if they�re stored in two
different slices.

nothing else is to be stored there, d is the value of the

db_name init.ora parameter for the single database

that will be stored there, and m is a unique fixed-

length key that distinguishes one mount point for a

given database from another.

Mount point names like /ora/intl01 connote a
commitment to putting only control, redo log,
and data files from the single Oracle database
called �intl�� on a given disk slice.12 If you adopt
this standard, you commit never to need to use
your Oracle data mount points for anything
else. Only a very small percentage of all Oracle
customers worldwide can make this commit-
ment, and you should not adopt this particular
VLDB component of the OFA Standard if there
is a risk that you cannot.

7. Quick Reference Summary

The following sections are intended for use as a
reference guide that summarizes the system
requirements and OFA Standard recommenda-
tions discussed in this paper.

7.1 System Requirements

 1. The file system must be organized so that it
is easy to administer growth from: adding
data into existing databases, adding users,
creating databases, and adding hardware.

 2. It must be possible to distribute I/O load
across sufficiently many disk drives to pre-
vent a performance bottleneck.

 3. It may be necessary to minimize hardware
cost.

 4. It may be necessary to isolate the impact of
drive failure across as few applications as
possible.

 5. It must be possible to distribute across two
or more disk drives both (a) the collection
of home directories and (b) the contents of
an individual home directory.

 6. It must be possible to add or move login
home directories without having to revise
programs that refer to them.

 7. Categories of files must be separated into
independent directory subtrees so that files
in one category are minimally affected by

12 In this example, q=ora/, d=intl, and m=01.

20 • Cary V. Millsap

Oracle System Performance Group Technical Paper, September 24, 1995

operations upon files in the other catego-
ries.

 8. It must be possible to execute multiple ver-
sions of applications software
simultaneously. Cutover after upgrade
must be as simple for the administrator and
as transparent for the user community as
possible.

 9. Administrative information about one da-
tabase must be separated from that of
others; there must be a reasonable structure
for organization and storage of administra-
tive data.

 10. Database files should be named so that
(a) database files are easily distinguishable
from other files; (b) files of one database are
easily distinguishable from files of another;
(c) control files, redo log files, and data files
are easily distinguishable from one another;
and (d) the association of data file to ta-
blespace is easily identifiable.

 11. Tablespace contents must be separated to
(a) minimize tablespace free space fragmen-
tation, (b) minimize I/O request
contention; and (c) maximize administra-
tive flexibility.

 12. It must be possible to tune disk I/O load
across all drives, including drives storing
Oracle data in character special files.

 13. (a) Database specific administrative data
must be stored in a central place accessible
to all instance administrators; and
(b) instance specific administrative data
must be distinguishable as associated with a
given instance by file name.

7.2 OFA Standard Recommendations

 1. Name all mount points that will hold site-
specific data to match the pattern /pm
where p is a string constant chosen not to
misrepresent the contents of any mount
point, and m is a unique fixed-length key
that distinguishes one mount point from
another.

 2. Name home directories matching the pat-
tern /pm/h/u, where pm is a mount point
name, h is selected from a small set of stan-
dard directory names, and u is the name of
the owner of the directory.

 3. Refer to explicit path names only in files
designed specifically to store them, such as
the UNIX /etc/passwd file and the Oracle
oratab file; refer to group memberships
only in /etc/group.

 4. Store each version of Oracle Server distri-
bution software in a directory matching the
pattern h/product/v, where h is the login
home directory of the Oracle software
owner, and v represents the version of the
software.

 5. For each database with db_name=d, store
database administration files in the follow-
ing subdirectories of h/admin/d:

 • adhoc�ad hoc SQL scripts for a given
database

 • adump�audit trail trace files

 • arch�archived redo log files

 • bdump�background process trace files

 • cdump�core dump files

 • create�programs used to create the da-
tabase

 • exp�database export files

 • logbook�files recording the status and
history of the database

 • pfile�instance parameter files

 • udump�user SQL trace files

 where h is the Oracle software owner�s
login home directory.

 6. Name Oracle database files using the fol-
lowing patterns:

 • /pm/q/d/control.ctl�control files

 • /pm/q/d/redon.log�redo log files

 • /pm/q/d/tn.dbf�data files

 where pm is a mount point name, q is a
string denoting the separation of Oracle
data from all other files, d is the db_name of
the database, n is a distinguishing key that
is fixed-length for a given file type, and t is
an Oracle tablespace name. Never store any
file other than a control, redo log, or data
file associated with database d in /pm/q/d.

 7. Separate groups of segments with different
lifespans, I/O request demands, and backup
frequencies among different tablespaces.
For each Oracle database, create the follow-

OFA Standard • 21

Oracle System Performance Group Technical Paper, September 24, 1995

ing special tablespaces in addition to those
needed for applications segments:

 • SYSTEM�data dictionary segments
only

 • TEMP�temporary segments only

 • RBS�rollback segments only

 • TOOLS�general-purpose tools only

 • USERS�miscellaneous user segments

 8. Name tablespaces connotatively with eight
or fewer characters.

 9. Choose a small set of standard sizes for all
character special files that may be used to
store Oracle database files.

 10. If you are using Oracle Parallel Server, se-
lect exactly one node N to act as Oracle
administrative home for the cluster to
house the administrative subtree defined in
rule OFA 5. Let h be the Oracle software
owner�s login home directory on node N.
Create a directory named for each instance
accessing database d within the adump,
bdump, cdump, logbook, pfile, and udump
directories of N:h/admin/d. On every node n
in the cluster except N, mount the remote
directory N:h/admin/d as the administrative
directory for database d (i.e., as
n:h/admin/d).

 11. If you can afford enough hardware that:

 1. You can guarantee that each disk drive
will contain database files from exactly
one application; and

 2. You can dedicate sufficiently many
drives to each database to ensure that
there will be no I/O bottleneck.

 Then name mount points matching the pat-
tern /qdm where q is a string denoting that
Oracle data and nothing else is to be stored
there, d is the value of the db_name init.ora
parameter for the single database that will
be stored there, and m is a unique fixed-
length key that distinguishes one mount
point for a given database from another.

8. References

BACH, M. 1986. The Design of the UNIX Operating

System. Englewood Cliffs, New Jersey:
Prentice Hall.

FRISCH, A. 1991. Essential System Administration.
Sebastopol, California: O�Reilly & Associ-
ates.

LEFFLER, S.; MCKUSICK, M.; KARELS, M.;
QUARTERMAN, J. 1990. The Design and Imple-

mentation of the 4.3BSD UNIX Operating

System. Reading, Massachusetts: Addison-
Wesley.

LOUKIDES, M. 1991. System Performance Tuning.
Sebastopol, California: O�Reilly & Associ-
ates.

MILLSAP, C. 1993. �An optimal flexible architec-
ture for a growing Oracle database.� In
Oracle Magazine, vol. VII no. 1 (Winter
1993): 41�46. Published originally as an
Oracle Corporation white paper, 1990. Also
published as �Configuring a growing Ora-
cle V6 database for optimal performance� in
1991 International Oracle User Week Proceed-

ings, paper 513.

NEMETH, E; SNYDER, G; SEEBASS, S. 1989. UNIX

System Administration Handbook. Englewood
Cliffs, New Jersey: Prentice Hall.

9. UNIX Utilities

UNIX site administrators are always on the
lookout for useful utilities that ease the burden
of administering complex applications. The
pages at the end of this paper give you portable
utilities that are typical of the small, reliable
tools used by OFA compliant Oracle sites. Local
general-purpose utilities such as these should
normally be stored in the directory called
/var/opt/bin. Enjoy.

About the Author

Cary Millsap is the director of Oracle�s System
Performance Group, a part of the Oracle Serv-
ices Advanced Technologies group. The team is
responsible for building new tools and capa-
bilities like the ones described in this paper for
Oracle and its customers. The System Perform-
ance Group provides system design, capacity
planning, and performance management serv-
ices to customers worldwide.

Since joining Oracle in 1989, Mr. Millsap has
worked with over 100 Oracle customers. He has

22 • Cary V. Millsap

Oracle System Performance Group Technical Paper, September 24, 1995

published several papers, and he has developed
and taught internationally acclaimed courses.

OFA Standard • 23

Oracle System Performance Group Technical Paper, September 24, 1995

LHD(L) Oracle Services Utilities LHD(L)

NAME

lhd � print login home directory name for a given user

SYNOPSIS

lhd [login]

DESCRIPTION

lhd prints the name of the login home directory for a given UNIX login, to allow the adminis-
trator to refer to a user�s login home directory without hard-coding the path name. Using `lhd
login` in the Bourne shell is the equivalent of ~login in the C shell or KornShell. lhd enables
creation of zero-maintenance administration programs that can survive file system changes
without modification.

EXAMPLES

example$. `lhd applmgr`/AOL.env

This example shows a line typical to that executed to set up a UNIX environment for Oracle
Applications. The .profile containing this line of code would not require modification if the
login home directory for applmgr were to change.

AUTHOR

Cary V. Millsap, Oracle Services

SOURCE

#!/bin/sh
#
lhd - print login home directory name for a given user
#
Cary Millsap, Oracle Services
@(#)1.1 (93/05/17)

prog=`basename $0`
if [$# -eq 0] ; then
 login=`whoami`
elif [$# -eq 1] ; then
 login=$1
else
 echo "Usage: $prog login" >$2
 exit 2
fi
nawk -F: '$1==login {print $6}' login=$login /etc/passwd

24 • Cary V. Millsap

Oracle System Performance Group Technical Paper, September 24, 1995

GRPX(L) Oracle Services Utilities GRPX(L)

NAME

grpx � print the list of users belonging to a given group

SYNOPSIS

grpx group

DESCRIPTION

grpx prints the list of users belonging to a given group. grpx can be used to eliminate the need
for hard-coding group memberships into administrative programs used to manipulate (e.g.,
back up, propagate files to) classes of users.

EXAMPLES

example$ for u in `grpx clerk` ; do
example> cp /etc/skel/.profile `lhd $u`
example> done

This example shows how the administrator can propagate a skeleton .profile to the home direc-
tory for each member of a group. This code would not require modification if the membership
list of the clerk group were to change.

AUTHOR

Cary V. Millsap, Oracle Services

SOURCE

#!/bin/sh
#
grpx - print the list of users belonging to a given group
#
Cary Millsap, Oracle Services
@(#)1.1 (93/07/04)

prog=`basename $0`
if [$# -ne 1] ; then
 echo "Usage: $prog group" >&2
 exit 2
fi
g=$1
calculate group id of g
gid=`nawk -F: '$1==g {print $3}' g=$g /etc/group`
list users whose default group id is gid
u1=`nawk -F: '$4==gid {print $1}' gid=$gid /etc/passwd`
list users who are recorded members of g
u2=`nawk -F: '$1==g {gsub(/,/," "); print $4}' g=$g /etc/group`
remove duplicates from the union of the two lists
echo $u1 $u2 | tr " " "\012" | sort | uniq | tr "\012" " "
echo

