The Three Schema Security Model

The "Three Schema Security Model" is a database security model where one schema
 owns data, a second schema owns views, stored procedures, packages, and stored functions, and a third schema is used for anonymous user connections. The rationale for this is as follows:

Shortcomings of a One Schema Approach

In many applications
, a single schema owns all data, all stored procedural code, and is used for user sessions. However, any user session using this schema can theoretically perform any SQL operation, not just approved operations -- such as dropping a table, truncating a table, updating or deleting any row -- and there is no way to revoke the database privileges that allow these operations. Oracle always presumes that an owner of an object always has full and unconstrainable power over his own objects.

For this reason, end users should never be allowed to connect to a database using the user account that owns the application data objects.

Shortcomings of a Two Schema Approach (1)

In other applications, a single schema owns all data and all stored procedures, and a second schema is used for user sessions. This is not perhaps a bad approach, as it avoids most of the problems of the one schema approach. However, it does not provide as clean a division between data and procedures as might be desired. Because the data owner always has all privileges over all data and other objects, he can own code that might manipulate the data in ways not desired by the architect. There is no formal way to review which privileges the code is making use of, and no way to use the Oracle security model to control or track what privileges the code might need. The only remaining option is to manually inspect every line of code for conformance to desired security behavior.

Shortcomings of a Two Schema Approach (2)

In other applications, a single schema owns all data, and a second schema owns stored procedures and is also used for user sessions. This avoids some problems in the other two-schema approach, but does open up new problems. The second user account must have all privileges needed for all pieces of code to operate on all application data, but there is no way to restrict this second user from issuing on-the-fly SQL that uses these privileges in unintended or unapproved ways. The procedural code is there, but it is not the only path to the data. And this user also has full privileges for dropping or altering the stored procedures, which is undoubtedly a power we wish to deny the casual user.

Blessings of a Three Schema Approach

In the three schema approach, the first schema owns application data and grants only the bare minimum of needed privileges to the second schema. The second schema uses those privileges to create stored code that act as "methods" on the data objects, as well as any views that might be desired. This second schema grants EXECUTE privileges on the stored code to the third schema. The third schema is for user sessions; this schema can only access the data by going through the approved path provided by the stored code and views of the second schema.

Neither the first nor second schema should be allowed to create user sessions; this will make security quite tight and allow easy auditing of approved and unapproved data access.

� 'Schema' and 'database user' are essentially the same thing. In order to make very clear that we are NOT talking about other sorts of user accounts (OS users, e-mail users, application users, etc.), the word 'schema' is used as the default term – even though, to create a schema, most databases would require you to enter a "Create User" command.

� Notably SAP, Oracle, and BaaN. Most home-built applications I've seen also use a single schema security model.

Thomas B. Cox
Page 1 of 1
last modified 26-Feb-1999
tbcox@worldnet.att.net

