Implementing Integrity constraints on Updateable Snapshots in an Oracle 8 Replicated environment.

A Guide for DBA’s

Author: Lelanie Moll

Date: January 1999

Very few applications perform sufficient referential integrity constraint checking. The best some of them would do is to intercept an Oracle error and display something more friendly to the user.

If this same application would be implemented on an Oracle 7 replicated database using updateable snapshots, you would be in big trouble. The users could enter invalid data and not know about it. You on the other hand could spend long hours trying to resolve conflict occurring at the master definition site regarding referential integrity violations. They normally come in chains – the insert fails and as a result inserts of child records fails and as a result updates on any of these records fail and so on and so on…. What makes it worse is that if the application performs 20 DML transactions before a commit, only one of them needs to fail to cause the whole transaction to be rejected. Needless to say, each one of the 19 correct entries could have its own chain of rejections.

With the release of Oracle 8 came a new type of constraint checking called deferred checking. Adding constraints on the snapshots would pass the buck back to the application. Users would not be able to perform invalid DML entries on the data. If the application does not trap the error, they would at least get an Oracle error message and correct the entries before they are stored on the database.

To make your life easy, you could create all constraints as initially deferred and forget about it. Some development tools however check the success of a write statement and then continue. As oracle checks these constraints at commit time, the errors reach the application too late. In this case you should create the constraints only as deferrable.

Example:

ALTER TABLE "SNAP$_MYTABLE"

 ADD (CONSTRAINT "C_YOURTABLE_MYTABLE" FOREIGN KEY (

 "SEQ_NO")

 REFERENCES "SNAP$_YOURTABLE" (

 "SEQ_NO") DEFERRABLE);

This only means you can perform deferred constraint checking whenever you choose to, not that it would do that by default. To enable deferred constraint checking, you have to do it at session level with:

ALTER SESSION SET CONSTRAINTS=DEFERRED;

What you actually want to accomplish is to enable deferred constraint checking only for snapshot refresh transaction and leave it at immediate for all other DML actions. Normally, for each refresh group with scheduled refresh interval you would have a Job that would execute the package DBMS_REFRESH.REFRESH(refresh_group).

To enable deferred constraint checking before the refresh executes, create the following procedure under the replication administrator’s schema:

CREATE OR REPLACE PROCEDURE deferred_refresh(rgroup in varchar) AS

 cid INTEGER;

BEGIN

 /* Open new cursor and return cursor ID. */

 cid := DBMS_SQL.OPEN_CURSOR;

 DBMS_SQL.PARSE(cid, 'alter session set constraints=deferred ', dbms_sql.v7);

 /* Close cursor. */

 DBMS_SQL.CLOSE_CURSOR(cid);

 dbms_refresh.refresh('"REPADMIN"."'||rgroup||'"');

EXCEPTION

 WHEN OTHERS THEN

 DBMS_SQL.CLOSE_CURSOR(cid);

 RAISE; -- reraise the exception

END refresh_group;

/

Now you can replace oracle’s job with this one:

begin

 dbms_job.change(job => 41,

 next_date => NULL,

 interval => NULL,

 what => 'repadmin.deferred_refresh(''BUS_DAT'');');

end;

/

Additional considerations:

· Be extra careful when adding snapshots to a refresh group. Referential integrity has to be preserved inside a refresh group. Don’t create referential constraints across refresh groups.

· In case of a large refresh group, allocate a large rollback segment to handle the load as oracle commits at the end of the refresh.

· You may need more DML_LOCKS at both the snapshot site.

· Schedule the refresh for a timeslot when the users are least likely to work. If the refresh should be at a certain time say 00:00, you will have to reset it every day as the next time would be when the job was completed and not when it started.

· It may become virtually impossible to perform complete refreshes on single tables.

· I you choose to have snapshots with a where clause, ensure that it is structured in such a way that oracle can still perform a fast refresh on the snapshot. You should also ensure that you do not separate the parent and child records as this will cause the refresh job to fail.

· Be careful with on delete cascade constraints. Oracle does not perform a cascaded delete during snapshot refresh times but it does on the master site when applying the deferred transactions.

