
Document Revision Date: 9/26/00 Page 1 of 9

Dissassembling the Oracle Redolog

The redolog is one of the most powerful features of the Oracle database, since it is the mechanism by which

Oracle guarantees to be able to recover the database to the last committed transaction (provided the

database is in archive-log mode). What most DBA's do not know, is that the redolog is also one of the

most powerful debugging tools available, allowing the DBA to see the actual transactions, including the

data, that was executed against the database.

Where this differs from the well known trace facilities, is that the redolog is always on. Unlike tracing,

which has be turned on in advance of a known problem, redologs faithfully capture every transaction,

making them particularly useful in regulated production environments, or where problems cannot be

recreated on demand. Oracle now offers a product called Log Miner for use with Oracle 8i, but for those of

us still using older releases, this articles provides an introduction to how to leverage some of the untapped

power of the redolog.

The redolog is written in a condensed binary form, unsuitable for text editors. The first step then is to locate

and convert the logfile into ANSI format. This is achieved by using as follows:

SVRMGR> alter system dump logfile <logfilename> <options>

Options are:

RBA MIN seqno.blockno

RBA MAX seqno.blockno

DBA MIN fileno.blockno

DBA MAX fileno.blockno

TIME MIN value

TIME MAX value

LAYER value

OPCODE value

Note that we do not necessarily have to use the same database to dump the logfile as generated it. Provided

they are the same version of Oracle, any instance can dump any other instances logfiles. The maximum

size of the dumped logfile is limited by the max_dump_file_size parameter, which defaults to 5Mb. If no

options are specified we will probably need to increase this parameter in order to be able to dump the entire

Dissassembling the Oracle Redolog written by Graham Thornton
Snr. Database Architect / Oracle DBA

Document Revision Date: 9/26/00 Page 2 of 9

file, since a 4Mb redolog file will grow to 20Mb or more when dumped. The dumped logfile will be

written to the directory pointed to by the background_dump_dest parameter, using the familiar

<node>_<sid>_ORACLE_FG_<num>.TRC filename format.

In order to verify the whole of the requested dump file was written correctly, check the last line which

should contain the text 'END OF REDO DUMP'.

Now that we have the redolog in human readable format, we can use it to provide advanced debugging

capabilities for our off-the-shelf and in-house applications, as well as powerful data-recovery information.

I have included two scenarios that are based on actual production problems I have encountered.

Scenario 1:

Helpdesk has received a call from a user who got an error message whilst using a new application. The

message was an ORA-00001 unique constraint <constraint_name> violated type of message. The

Development team reviewed their code and were unable to re-create the error. The code selects a number

from a database sequence when a new windows opens, and then uses it as the primary key to insert a new

record when the user presses the Save button. The Development team are now convinced that the database

sequence is corrupt and generating duplicate values.

The error message returned to the user identifies the table as ORDER_LINES. We need to know what the

internal database object number is for that table. We can determine this by looking in the OBJ$ table, and

looking for objects of that name with a TYPE# of 2 (table). We need to include the type to differentiate

from any procedures, synonyms or other objects that might share the same name:

SVRMGR> select obj# from obj$

 2> where name like '%ORDER_LINES%' and type# = 2;

OBJ#

 38342

1 row selected.

The helpdesk call was logged at 15:21, and the user claims to have called in the report as soon as it

occurred. We can see which logfile(s) are most likely to include the offending transaction by looking at the

V$LOGHIST table:

Dissassembling the Oracle Redolog written by Graham Thornton
Snr. Database Architect / Oracle DBA

Document Revision Date: 9/26/00 Page 3 of 9

SVRMGR> select * from v$loghist

 2> where trunc(to_date(first_time,'MM/DD/YY HH24:MI:SS')) = trunc(sysdate)

 3> /

THREAD# SEQUENCE# FIRST_CHAN FIRST_TIME SWITCH_CHA

---------- ---------- ---------- -------------------- ----------

 1 1480 1025281 07/19/00 16:19:12 1026165

 1 1479 1024269 07/19/00 12:44:30 1025281

 1 1478 1023406 07/19/00 10:02:44 1024269

3 rows selected.

The logfile we need is 1479, and since our log_archive_format parameter is set to T%TS%S.ARC and our

database name is UPPS, we are looking for file ARCH_UPPST0001S0000001479.ARC which will be in

the archive directory. Note that if the time frame we are looking for is not in the V$LOGHIST table, the

transaction is in a redolog that is still being written to. We then need to switch the logfiles to allow the file

to be archived before we can access it.

We can dump this file using:

SVRMGR> alter system dump logfile

'DISK6:[ORA_UPPS_ARC]ARCH_UPPST0001S0000001479.ARC';

Statement processed.

Remember we are looking for operations against object 38342. Oracle prefixes each transaction with a

small header block that includes the object number (obj: in Oracle 7, objn: in Oracle 8) the transaction is

being performed against. So for this Oracle 8 database, we can search for the string "objn: 38342"

REDO RECORD - Thread:1 RBA: 0x000c66.00000002.012c LEN: 0x01f4 VLD: 0x01

SCN scn: 0x0000.008a710b 07/19/00 15:18:54

CHANGE #1 TYP:0 CLS:15 AFN:2 DBA:0x00800002 SCN:0x0000.008a7104 SEQ: 1 OP:5.2

ktudh redo: slt: 0x0003 sqn: 0x00002ec8 flg: 0x0012 siz: 84 fbi: 0

 uba: 0x00801199.2fd9.10 pxid: xid: 0x0000.000.00000000

CHANGE #2 TYP:0 CLS:16 AFN:2 DBA:0x00801199 SCN:0x0000.008a7103 SEQ: 1 OP:5.1

ktudb redo: siz: 84 spc: 724 flg: 0x0012 seq: 0x2fd9 rec: 0x10

 xid: 0x0002.003.00002ec8

Dissassembling the Oracle Redolog written by Graham Thornton
Snr. Database Architect / Oracle DBA

Document Revision Date: 9/26/00 Page 4 of 9

ktubl redo: slt: 3 rci: 0 opc: 11.1 objn: 38342 objd: 38342 tsn: 2

Undo type: Regular undo Begin trans Last buffer split: No

Temp Object: No

 rdba: 0x00000000 prev ctl uba: 0x00801199.2fd9.0f

prev ctl max cmt scn: 0x0000.008a22c0 prev tx cmt scn: 0x0000.008a22c2

KDO undo record:

KTB Redo

op: 0x03 ver: 0x01

op: Z

KDO Op code: QMD xtype: XA bdba: 0x00c070a3 hdba: 0x00c070a2

itli: 1 ispac: 0 maxfr: 1177

tabn: 0 lock: 0 nrow: 1

slot[0]: 0

CHANGE #3 TYP:0 CLS: 1 AFN:3 DBA:0x00c070a3 SCN:0x0000.008a710b SEQ: 4

OP:11.11

KTB Redo

op: 0x01 ver: 0x01

op: F xid: 0x0002.003.00002ec8 uba: 0x00801199.2fd9.10

KDO Op code: QMI xtype: XA bdba: 0x00c070a3 hdba: 0x00c070a2

itli: 1 ispac: 0 maxfr: 1177

tabn: 0 lock: 1 nrow: 1

slot[0]: 0

tl: 31 fb: --H-FL-- lb: 0x0 cc: 8

col 0: [4] c3 0d 17 4b

col 1: [2] c1 02

col 2: [5] 30 36 32 31 35

col 3: [2] 31 33

col 4: [2] 30 31

col 5: [2] 34 38

col 6: [2] c1 03
col 7: [1] 31

The above excerpt shows a transaction against the object at 15:18:54. The block includes the values being

inserted into each of the eight columns of the table. We know that the primary key for the table is the first

two columns and we know that both columns are numeric. Oracle stores numeric values as a series of two-

digit pairs held as a single-byte offset by one, and then prefixed with another byte indicating the numeric

type and sign.

Dissassembling the Oracle Redolog written by Graham Thornton
Snr. Database Architect / Oracle DBA

Document Revision Date: 9/26/00 Page 5 of 9

The hexadecimal string 'c3 0d 17 4b' converts to 195 13 23 75. We can discard the 195 as it is a prefix, and

then subtract one from each digit-pair and append them to get the number 122274. Repeating the same

operation on the second column yields a composite primary key of 122274, 1.

We can verify our calculations by using the dump command from Oracle:

SQL> select dump(122274) from dual;

DUMP(122274)

Typ=2 Len=4: 195,13,23,75

SQL>

This seems to be a perfectly valid primary key for the table, but then we checked a little further down the

logfile and found the following entry:

REDO RECORD - Thread:1 RBA: 0x000c66.00000004.0010 LEN: 0x00ec VLD: 0x01

SCN scn: 0x0000.008a710b 07/19/00 15:19:00

CHANGE #1 TYP:0 CLS:16 AFN:2 DBA:0x00801199 SCN:0x0000.008a710b SEQ: 2 OP:5.1

ktudb redo: siz: 68 spc: 568 flg: 0x0022 seq: 0x2fd9 rec: 0x12

 xid: 0x0002.003.00002ec8
ktubu redo: slt: 3 rci: 17 opc: 11.1 objn: 38342 objd: 38342 tsn: 2

Undo type: Regular undo Last buffer split: No

 rdba: 0x00000000

KDO undo record:

KTB Redo

op: 0x02 ver: 0x01

op: C uba: 0x00801199.2fd9.10

KDO Op code: QMD xtype: XA bdba: 0x00c070a3 hdba: 0x00c070a2

itli: 1 ispac: 0 maxfr: 1177

tabn: 0 lock: 0 nrow: 1

slot[0]: 1

CHANGE #2 TYP:0 CLS: 1 AFN:3 DBA:0x00c070a3 SCN:0x0000.008a710b SEQ: 5

OP:11.11

KTB Redo

op: 0x02 ver: 0x01

op: C uba: 0x00801199.2fd9.12

Dissassembling the Oracle Redolog written by Graham Thornton
Snr. Database Architect / Oracle DBA

Document Revision Date: 9/26/00 Page 6 of 9

KDO Op code: QMI xtype: XA bdba: 0x00c070a3 hdba: 0x00c070a2

itli: 1 ispac: 0 maxfr: 1177

tabn: 0 lock: 1 nrow: 1

slot[0]: 1

tl: 31 fb: --H-FL-- lb: 0x0 cc: 8

col 0: [4] c3 0d 17 4b

col 1: [2] c1 02

col 2: [5] 30 36 32 31 35

col 3: [2] 31 33

col 4: [2] 30 31

col 5: [2] 34 38

col 6: [2] c1 03

col 7: [1] 31

Check the primary key again. Even without converting the values to decimal we can see they are exactly

the same as before, but this transaction occurred six seconds later. Either there was a loop in the code or

something else was causing the application to attempt to write the transaction twice.

We went back to the Development team with this information and worked with them on identifying the

cause. It turned out that what in fact happened was the application was failing to disable to Save button on

the screen, and impatient users were hitting the button twice. Since the unique key was generated when the

screen opened, the second transaction was being written with the same primary key, and since no commits

had taken place, both transactions were being rolled back.

The solution was to disable the Save button after it was pressed, and keep it disabled until the application

had received a response from the database.

Scenario 2:

A junior DBA calls with a problem - he dropped a table from a live database that had data not captured by

the previous night's backup. He then panicked for some time before calling for help, allowing more live

transactions to take place, and now is not entirely sure when the drop occurred.

With the database safely shut down, what we need to do now is to recover the database to right before the

drop, then export the table, continue recovery until all of the redologs have been applied, and then import

the table again. With user's already complaining, we need to do this fast, so we need to know exactly

which SCN caused the table drop.

Dissassembling the Oracle Redolog written by Graham Thornton
Snr. Database Architect / Oracle DBA

Document Revision Date: 9/26/00 Page 7 of 9

Using the same procedure as before, we can dump the redolog to the trace directory, limiting the dump file

to the time frame we are interested in. Then, using a suitably powerful text editor/browser, browse the

dumped logfile and look for the DDL operation that dropped the table.

When performing any DDL operation, Oracle actually performs a number of DML operations on the tables

of the data-dictionary, including FET$, UET$ and OBJ$. The OBJ$ table is the key here since it records

the name of the object, which in this scenario is a table called SALES_DATA.

We can find out the OBJ# of the OBJ$ table using the following query:

SVRMGR> select obj# from obj$ where name = 'OBJ$';

OBJ#

 3202

1 row selected.

If we describe the OBJ$ table, we can see that the name of the object is stored in column 4 as a

VARCHAR2. We are looking then for operations against object 3202 where column 4 contains the string

'SALES_DATA', which in hexadecimal is: 53 41 4c 45 53 5f 44 41 54 41

REDO RECORD - Thread:1 RBA: 0x00038f.00000169.0148 LEN: 0x01b0 VLD: 0x01

SCN scn: 0x0000.0038b09d 07/19/00 18:10:51
CHANGE #1 TYP:0 CLS:16 AFN:7 DBA:0x070052cd SCN:0x0000.0038b09d SEQ: 15 OP:5.1

ktudb redo: siz: 248 spc: 254 flg: 0x0022 seq: 0x0441 rec: 0x0f

 xid: 0x0002.009.000017f4

ktubu redo: slt: 9 rci: 14 opc: 11.1 objn: 3202 objd: 3202 tsn: 0

Undo type: Regular undo Last buffer split: No

 rdba: 0x00000000

KDO undo record:

KTB Redo

op: 0x04 ver: 0x01

op: L itl: xid: 0x0002.001.000017b0 uba: 0x070052a8.0441.08

 flg: C--- lkc: 0 scn: 0x0000.0038b09d

KDO Op code: IRP xtype: XA bdba: 0x0800237e hdba: 0x080000d9

itli: 1 ispac: 0 maxfr: 1177

tabn: 0 slot: 22(0x16) size/delt: 63

fb: --H-FL-- lb: 0x0 cc: 14

Dissassembling the Oracle Redolog written by Graham Thornton
Snr. Database Architect / Oracle DBA

Document Revision Date: 9/26/00 Page 8 of 9

null:

0123456789012345678901234567890123456789012345678901234567890123456789012345678

9

-----N-----NN-

col 0: [3] c2 4b 29

col 1: [3] c2 4b 29

col 2: [2] c1 23

col 3: [10] 53 41 4c 45 53 5f 44 41 54 41

col 4: [2] c1 02

col 5: *NULL*

col 6: [2] c1 03

col 7: [7] 78 64 07 14 08 18 15

col 8: [7] 78 64 07 14 08 18 15

col 9: [7] 78 64 07 14 08 18 15

col 10: [2] c1 02

col 11: *NULL*

col 12: *NULL*

col 13: [1] 80

And here it is! - we can see that the fourth column (column 3 since the dumped logfile numbers from zero)

hold the hexadecimal values for the sting 'SALES_DATA'. We can also see that the seventh column

(TYPE#) is set to 2 (two-digit pairs offset by one) which an object type of table. We can also see that the

SCN for this entry is 0x38b09d or 3715229.

In order to recover the table, and preserve all of the data, we can restore the backup and recover the

database to right before the drop table command using the following command:

SVRMGR> alter database recover database until change 3715228

We can then export the SALES_DATA table, fully recover the database, and then re-import the

SALES_DATA table.

Dissassembling the Oracle Redolog written by Graham Thornton
Snr. Database Architect / Oracle DBA

Document Revision Date: 9/26/00 Page 9 of 9

Note:

The above information is based on my own experience and investigation with the Oracle database on

OpenVMS, Sun Solaris and Windows NT. None of this information has been verified by Oracle Corp.

Use the above information at your own risk - and always make a backup before you start.

