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EXECUTIVE SUMMARY 
 
Each year corporations are faced with the challenge of trying to meet increasingly stringent service level agreements 
with their internal and external customers. Availability, performance and capacity planning are the cornerstones 
upon which successful companies position their IT infrastructure to remain competitive. The Oracle redo construct 
plays a pivotal role in achieving these goals for those companies running mission-critical Oracle databases. 
 
Oracle redo minimization and proper redo archival management are paramount given the emergence of warm disaster 
recovery sites using Oracle Data Guard technology and the continuously increasing transaction volumes databases are 
required to support. In this era of corporate merging and application consolidation companies using Oracle databases 
consider it imperative to properly manage the increased redo generation rates. Today Oracle databases can generate 
redo volumes, in short periods, with magnitudes that exceed the size of the database from which it was generated. 
Consequently, Oracle scientists and their IT colleagues are tasked with minimizing unnecessary redo to meet the 
goals of the organization. 
 
In Oracle parlance redo data is the mechanism by which changes can be reconstructed to satisfy recovery. The 
generation of redo to satisfy many recovery scenarios does not come without a cost or without potentially far reaching 
implications to the success of an organization. Very high redo generation rates can contribute to difficulties in 
meeting the recovery point objective (RPO), recovery time objective (RTO) and service level agreement (SLA). 
Resource capacity and application performance could easily suffer from excessive redo generation. 
 
The intent of this paper is to uncover potential problem areas in which corporations might be generating excessive 
redo in their Oracle databases, often unnecessarily, and provide solutions for potential redo minimization. An 
organization might realize a substantial value-add to their availability, performance and capacity planning by 
employing a few mitigating measures. This paper will focus on those operations that can result in excessive or 
unnecessary redo generation such as: integrity constraint violations, potentially useless transactions, user-managed 
backups and the lack of judicious NOLOGGING operations. The examples were experiments performed on a Sun 
Solaris 9 UNIX platform running Oracle Enterprise Edition 9.2.0.4.  Preliminary tests in Oracle 10.1.0.2 using the same 
experiments have yielded similar results. 
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INTEGRITY CONSTRAINT VIOLATIONS 
 
Oracle integrity constraints are used to enforce business rules on data. An Oracle integrity constraint can be defined 
as one of the following five types: 
 

• NOT NULL 
• CHECK 
• PRIMARY KEY 
• UNIQUE KEY 
• REFERENTIAL 

 
NOT NULL AND CHECK 
 
It is easily shown via extended SQL tracing that NOT NULL and CHECK integrity constraints do not require the 
target table data or its index data for validation. The data dictionary contains all the data to validate NOT NULL and 
CHECK integrity constraints. This validation process requires only read operations against the data dictionary. The 
NOT NULL and CHECK constraint violations do not incur redo generation. 
 
PRIMARY KEY AND UNIQUE KEY 
 
As of Oracle8i PRIMARY KEY and UNIQUE KEY constraints can be enforced by unique or non-unique indexes. For 
the purposes of this paper we will refer to PRIMARY KEY and UNIQUE KEY constraints as uniqueness constraints 
because the properties discussed in this section apply to both constraint types. The validation process for a 
uniqueness constraint cannot be satisfied solely via the data dictionary. The index data used to enforce the 
uniqueness constraint must be inspected. In fact Oracle assumes the validity of the new table data irrespective of the 
index type enforcing the uniqueness constraint. It will be demonstrated that in most cases Oracle assumes the 
validity of the new index data. 
 
We can qualify these observed behaviors using the terms table-data optimism and index-data optimism. Table-data 
optimism is the modification of table data prior to validating a constraint imposed on the data. Likewise, index-data 
optimism is the modification of the index data prior to constraint validation. It is these table-data and index-data 
optimistic qualities of the Oracle kernel that necessarily generates redo during uniqueness constraint violations. It 
will be demonstrated that this redo generation is costly because it inflates the redo stream. Another expensive 
corollary is that Oracle will reconstruct blocks created by uniqueness constraint violations during media recovery 
using the redo change vectors, if the file being recovered contains the affected block(s). Figures 1-4 below articulate 
the mechanics of uniqueness constraint validation and the redo generated as a factor of the index type used to enforce 
the constraint and the pass/fail characteristic of the data change. Database examples will follow each figure to 
support its assertion. 
 
It is important to note that all update and delete statements used in the experiments accessed the table data via the 
index enforcing the uniqueness constraint. In this manner we can rule out table-data optimism being a corollary of 
full table scan operations. Whether accessed by an index or a table scan the mechanical assertions remain the same. 
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Passing a Uniqueness Constraint Employing a Unique Index 
 
Successful insert operations, against a table with a uniqueness constraint enforced by a unique index, follow the 
mechanics below in Figure 1. Notice the table block is modified prior to the constraint validation. This depicts the 
notion of table-data optimism. 
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Figure 1:  Table-data optimism using  unique index (pass)  
 
Example 1:  Using the Oracle dynamic performance views v$sesstat and v$sysstat in conjunction with the 
LogMiner utility we can easily demonstrate the flow shown above in Figure 1. This example uses an insert into a test 
table T that has a unique index TPK that is used to enforce a primary key constraint on a single column. The only 
session connected to the test database is the session used to perform this example. Table T has object identifier 24125 
and index TPK has object identifier 24126.  
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SQL> select name, statistic# from v$statname where statistic# in ('115','117'); 
NAME                                                             STATISTIC# 
---------------------------------------------------------------- ---------- 
redo size                                                               115 
redo wastage                                                            117 
SQL> 
SQL> alter system switch logfile; 
SQL> select ‘REDO START’,value from v$sesstat where statistic#=115 and sid = (select sid from v$session where username = 'TEST_USER'); 
SQL> select 'WASTE START',value from v$sysstat where statistic#=117; 
SQL> insert into T values ('z',6,6,'zzzzzzzzzzzzzzz',999,999999999,'zzzzzzzzzz','zz'); 
SQL> commit; 
SQL> select ‘REDO STOP’,value from v$sesstat where statistic#=115 and sid = (select sid from v$session where username = 'TEST_USER'); 
SQL> alter system switch logfile; 
SQL> select 'WASTE STOP',value from v$sysstat where statistic#=117; 
 
The following output was generated: 
 
REDO START   548 
WASTE START  64112 
REDO STOP    1304  
WASTE STOP   64348 
 
Subtract the value for “REDO START” from “REDO STOP” (1304 – 548 = 756). 
Subtract the value for “WASTE START” from “WASTE STOP” (64348 - 64112 = 236). 
 
Use LogMiner to mine the archive log generated by the second switch statement. 
 
select data_obj#, scn, rbablk, rbabyte, operation from v$logmnr_contents; 
 
 DATA_OBJ#                   SCN      RBABLK        RBABYTE    OPERATION 
----------       --------------- -----------    -----------    -------------- 
         0         8296128240387           2             16     START 
     24125         8296128240387           2             16     INSERT 
     24126         8296128240387           2            440     INTERNAL 
         0         8296128240388           3            196     COMMIT 
 
On the experiment platform each redo block is 512 bytes. The first 16 bytes of each block is header space reserved for system use. RBABLK is the 
first redo block associated with an entry. RBABYTE is the byte offset into the first redo block for the beginning of a redo entry. In the 
example, RBABLK 2 constitutes 496 bytes. RBABLK 3 constitutes (196 + COMMIT marker – 16 bytes header space) 260 bytes. Together their redo size 
is 496 + 260 = 756 bytes. This is precisely the value given from v$sesstat.  
 
How did we know the COMMIT marker accounted for 80 bytes? Remember the above redo wastage calculated from v$sysstat was 236 bytes. Since this was 
the only transaction in the system we can assume all of this wastage is owed to this transaction. The LogMiner data reveals two redo blocks 
consumed by the insert statement. 2(496)=992 bytes less 236 bytes for wastage is 756 bytes. If the transaction consumed (496 bytes in RBABLK 2 + 
180 bytes in RBABLK 3) 676 bytes before the COMMIT marker is added then the COMMIT marker must contribute the remaining 80 bytes to realize the 
756 bytes of total redo. 
 
The total number of redo entries owed to this transaction is 3. The START and INSERT operations occupy the same redo entry, RBABLK 2 starting at 
RBABYTE 16, and represents the start of a read-write transaction. Note that SCNs can be comprised of one or more redo entries. 

 
 
 
Notice the ordering of the redo entries in the log stream. First the INSERT operation on the table (24125) occurs. 
Then the index (24126) is modified and the commit marker logged. 
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Failing a Uniqueness Constraint Employing a Unique Index 
 
Failed insert operations, against a table with a uniqueness constraint enforced by a unique index, follow the 
mechanics below in Figure 2. Oracle, once again, uses table-data optimism even in this failure scenario. 
 

Header

Row Data

DML against
row(s)

2

redo and undo for
data block row(s)

redo
log

buffer

Shadow Process

3

1

validate
constraint

rollback marker

Table Index

5

R + U

R

R

redo owed to validation
failure and implicit

rollback against table

4

Figure 2:  Table-data optimism using  unique index (fail)  
 
 
Example 2:  Using LogMiner the mechanics in Figure 2 above can be demonstrated.  Notice the index (24126) is not 
modified. The transaction adheres to the notion of table-data optimism but not index-data optimism. The index data 
is read to validate the integrity of the data prior to any index-data modification. 
 
  
 DATA_OBJ#                 SCN      RBABLK        RBABYTE   OPERATION 
----------  --------------- -----------    -----------   -------------- 
         0       8296128240408           2             16   START 
     24125       8296128240408           2             16   INSERT 
     24125       8296128240408           3             76   DELETE 
         0       8296128240409           3            236   ROLLBACK 
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Passing a Uniqueness Constraint Employing a Non-Unique Index 
 
Successful insert operations, against a table with a uniqueness constraint enforced by a non-unique index, follow the 
mechanics below in Figure 3. There is a subtle distinction between Figure 3 below and Figure 1 above. In Figure 3 the 
integrity validation is performed after the table and index data are modified. This scenario depicts table-data and 
index-data optimism. 
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Figure 3:  Table-data and index-data optimism using  non-unique index (pass)  
 
Example 3:  Table T has object identifier 24169 and index TPK has object identifier 24170. This LogMiner output 
does not appear to be conceptually different than the output in Example 1. The mechanics in Figure 3 are not fully 
apparent until the failed scenario involving the non-unique index is given. 
 
  
DATA_OBJ#                 SCN      RBABLK        RBABYTE   OPERATION 
----------  --------------- -----------    -----------   -------------- 
         0       8296128267102           2             16   START 
     24169       8296128267102           2             16   INSERT 
     24170       8296128267102           2            464   INTERNAL 
         0       8296128267103           3            224   COMMIT  
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Failing a Uniqueness Constraint Employing a Non-Unique Index 
 
Failed insert operations, against a table with a uniqueness constraint enforced by a non-unique index, follow the 
mechanics below in Figure 4. The ideas of table-data and index-data optimism, applying to inserts subjected to this 
type of constraint implementation, are fully apparent in this scenario. 
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Figure 4:  Table-data and index-data optimism using  non-unique index (fail)  
 
Example 4:  This example uses the same objects as Example 3. For inserts causing uniqueness constraint violations 
(ORA-00001) enforced by a non-unique index the redo owed to the rollback of the index data is much greater than 
the same violation using a unique index.  
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 DATA_OBJ#                 SCN      RBABLK        RBABYTE   OPERATION 
----------  --------------- -----------    -----------   -------------- 
         0       8296128267175           2             16   START 
     24169       8296128267175           2             16   INSERT 
     24170       8296128267175           3             76   INTERNAL 
     24170       8296128267175           3            316   INTERNAL 
     24170       8296128267175           4             20   INTERNAL 
     24170       8296128267175           4            228   INTERNAL 
     24170       8296128267175           4            460   INTERNAL 
     24170       8296128267175           5             96   INTERNAL 
     24170       8296128267175           5            228   INTERNAL 
     24170       8296128267175           5            360   INTERNAL 
     24169       8296128267175           6             16   DELETE 
         0       8296128267176           6            176   ROLLBACK 

 
 
Observe the ordering of the redo entries in the log stream. Table 24169 is modified, followed by the modification of 
index 24170. Finally the index data fails validation resulting in index data rollback and table data rollback (DELETE). 
The rollback marker is logged to implicitly terminate the transaction. One might argue that the sequence in Example 
4 does not necessarily make index-data optimism apparent. Consider the amount of redo attributed to index 
maintenance in Example 4, 1292 bytes. The fact that the failed case yields much more redo owed to index 
maintenance than the successful case (256 bytes) indicates the implicit undoing of index modifications. Moreover, 
why would any redo be owed to the index if it had not been modified? Redo change vectors are written to the redo 
stream prior to impending changes (Adams, Change,1). Aside from singleton insert operations what other activities 
might be impacted by these phenomena? 
 
Further Effects of Table-Data and Index-Data Optimism  
 
SQL*Loader 
 
The SQL*Loader utility can be extremely costly if the data being loaded fails a uniqueness constraint. As is the case 
with standard insert operations the redo cost for failed rows via SQL*Loader is influenced by the type of index used 
to enforce the uniqueness constraint. Aside from the index-type influence the number of failed rows per batch 
violating a uniqueness constraint greatly impacts the redo generated. 
 
The number of rows conventional-path SQL*Loader attempts to load per batch is a function of the BINDSIZE and 
ROWS parameters. For example, if you attempt to load 1000 rows using conventional-path SQL*Loader and 
ROWS=100 then Oracle will spread the 1000 rows into 10 distinct transactions; assuming the BINDSIZE parameter is 
large enough for 100 rows. If any row in a single batch fails the entire bulk-bind operation is undone implicitly and 
each row in the batch is reprocessed. This can be very costly for applications that frequently fail uniqueness 
constraints during SQL*Loader operations. 
 
Assume in the previous example that the first 9 batches load without incident and the final batch of 100 rows has 1 
row that fails a uniqueness constraint. The redo associated with the last transaction will not only comprise the redo 
associated with the failed 100 bulk-bind insert operation and its implicit delete but the redo attributed to 
reprocessing the 100 rows. A single failed row will cause a batch of 100 rows to accrue redo for the failed bulk-bind 
insert and the 100 reprocessed rows. More correctly, if row 70 is the failing row Oracle will generate redo for the failed 
100 bulk-bind insert and the 69 rows subsequently reprocessed and inserted successfully. The remaining 30 rows will 
be a single successful bulk-bind insert. Oracle attempts to bulk-bind the residual of any single batch after the first 
failed row in the batch.  
 
If the table being loaded is failing with a uniqueness constraint enforced by a non-unique index the excessive redo 
generated is compounded. For example, using a test table the ratio of redo generated by successfully loading a single 
batch of 10 rows to the redo generated by the same load attempt failing on all 10 rows was 0.14. Or stated another way 
the failed batch produced approximately 720% of the redo generated from the successful batch.  
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Import 
 
In much the same manner as SQL*Loader the Import utility reprocesses arrays of rows that fail from integrity 
constraint violations. An experiment using an array of 10 rows failing on all rows yielded 366% of the redo generated 
from a successful array of the same size into the same table. 
 
REFERENTIAL 
 
Irrespective of the index type managing a uniqueness constraint all update and delete operations against the parent 
table causing ORA-02292 errors (child record found) are parent table-data and parent index-data optimistic. 
Likewise all insert and update operations against the child table causing ORA-02291 errors (no parent record) are 
child table-data and child index-data optimistic except when the child table uses a non-unique index to enforce a 
uniqueness constraint. Using the techniques above the mechanics in Figures 1–4 can be shown to apply to referential 
integrity constraint violations. If to this point the reader is convinced of the mechanics previously exhibited then 
quantifying these impacts to the redo stream is warranted. 
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REDO IMPACT OF INTEGRITY CONSTRAINT VIOLATIONS 
 
In Example 1 it was shown that the redo owed to a successful or failed transaction could be determined either from 
the dynamic performance views or LogMiner. Let us define a successful transaction as a single statement S that does 
not violate any integrity constraint on the target table followed by a commit. Conversely, let a failed transaction be 
the same statement S that violates an integrity constraint of a target table comprising the same data, structure and 
indexes as the target table in the successful statement. Experiments were performed on 20 varying width non-
partioned heap tables accessed via non-partioned B-Tree indexes with assorted widths to enforce uniqueness 
constraints. The following table articulates the ratio R=R

F
/R

S
 where R

F
 is the average redo generated during the failed 

transaction and R
S
 is the average redo generated during the successful transaction. 

 
OOppeerraattiioonn  UUnniiqquueenneessss  

EEnnffoorrcceemmeenntt  
VViioollaattiioonn  

TTyyppee  
IInnddeexx--DDaattaa  
OOppttiimmiissmm  

TTaabbllee--DDaattaa  
OOppttiimmiissmm  

RR==RRFF//RRSS

INSERT Unique Index ORA-00001 No Yes 0.93 
INSERT Non-unique Index ORA-00001 Yes Yes 2.74 
UPDATE Unique Index ORA-00001 Yes Yes 1.11 
UPDATE Non-unique Index ORA-00001 Yes Yes 2.45 
DELETE Unique Index 

(Parent Table) 
ORA-02292 Yes Yes 1.49 

DELETE Non-unique Index 
(Parent Table) 

ORA-02292 Yes Yes 1.49 

UPDATE Unique Index 
(Parent Table) 

ORA-02292 Yes Yes 1.39 

UPDATE Non-unique Index 
(Parent Table) 

ORA-02292 Yes Yes 1.39 

INSERT Unique Index 
(Child Table) 

ORA-02291 Yes Yes 1.50 

INSERT Non-unique Index 
(Child Table) 

ORA-02291 Yes Yes 1.52 

UPDATE Unique Index 
(Child Table) 

ORA-02291 Yes Yes 1.44 

UPDATE Non-unique Index 
(Child Table) 

ORA-02291 No Yes 0.71 

 
Table 1: Transaction Failure to Transaction Success Redo Ratio 
 
It is very evident from Table 1 that integrity constraints come with a redo cost. In most cases the redo owed to the 
failure is appreciably more than that of the successful attempt. The redo attributed to failed integrity constraints is 
only one adverse effect to the database. How do these redo entries get managed during media recovery? 
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RECOVERY AND INTEGRITY CONSTRAINT VIOLATIONS 
 
The redo inflation property of integrity constraint violations has been demonstrated. Above it was mentioned that 
integrity constraints affect the recovery process. It seems logical that Oracle would simply ignore these failed 
statements as they are implicitly rolled back and noted as such in the redo stream. During media recovery Oracle does 
not process each archive log like it does an online redo log during instance or crash recovery using two-pass recovery. 
The notion of two-pass recovery introduced in Oracle9i is not applicable during media recovery. The change vectors 
in the redo stream are necessarily reconstructed in sequence during media recovery.  Even seemingly trivial events 
such as failed integrity constraint violations are subject to recovery. Arguably the most expensive aspect of media 
recovery is not the reading of archive logs. Instead, the major expense results from the reconstruction process because 
it requires fetching the applicable blocks from disk, applying the change vectors and potentially writing the 
reconstructed blocks to disk. The following example demonstrates that Oracle reconstructs redo entries owed to a 
uniqueness integrity constraint violation. The same experiment can be performed to show the same result for 
referential integrity constraints. 
 
Example 5: In this example a single insert statement, against a test table with a non-unique index enforcing a 
primary key constraint, fails a uniqueness constraint. The lone FILE_ID of the segments associated with the test table 
and its index is 7. Non-unique index enforcement was used to show the index data being reconstructed during 
recovery. The case that uses a unique index is not index-data optimistic and therefore would not reconstruct index 
data. 
 
 
Syntax of the Test Script 
 
UNIX> cat rec.sql 
connect / as sysdba; 
shutdown; 
startup; 
select file#, dbarfil, dbablk, obj from x$bh where file#=7; 
alter system switch logfile; 
alter tablespace test_tbsp begin backup; 
!cp /ora/data001/test_db/test_tbsp_001.dbf    /ora/data001/test_db/test_tbsp_001.dbf.bkp 
alter tablespace test_tbsp end backup; 
alter system switch logfile; 
insert into test_user.test_table values ('a','gg','$$$$$$$$$$$$$$$$$$$$$','1',333,'tT'); 
select file#, dbarfil, dbablk, obj from x$bh where file# = 7; 
select sequence# from v$log where status = 'CURRENT';                 
alter system switch logfile; 
alter system switch logfile; 
alter system switch logfile; 
alter system switch logfile; 
shutdown; 
!cp /ora/data001/test_db/test_tbsp_001.dbf.bkp    /ora/data001/test_db/test_tbsp_001.dbf 
startup; 
 
Test Script Invocation 
. 
. 
The Database is shutdown and restarted to clear the buffer cache. 
. 
. 
SQL> @rec.sql 
Connected. 
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Database closed. 
Database dismounted. 
ORACLE instance shut down. 
ORACLE instance started. 
Total System Global Area  110070328 bytes 
Fixed Size                   731704 bytes 
Variable Size              88080384 bytes 
Database Buffers           20971520 bytes 
Redo Buffers                 286720 bytes 
Database mounted. 
Database opened. 
. 
. 
The buffer cache does not currently contain any blocks related to the affected table or index. 
. 
. 
SQL> select file#, dbarfil, dbablk, obj from x$bh where file#=7; 
no rows selected 
SQL> alter system switch logfile; 
System altered. 
. 
. 
Backup data file containing target table and index before the unique constraint violation occurs. 
. 
. 
SQL> alter tablespace users2 begin backup; 
Tablespace altered. 
SQL> !cp /ora/data001/test_db/test_tbsp_001.dbf    /ora/data001/test_db/test_tbsp_001.dbf.bkp  
SQL> alter tablespace users2 end backup; 
Tablespace altered. 
SQL> alter system switch logfile; 
System altered. 
SQL> insert into test_user.test_table values ('a','gg','$$$$$$$$$$$$$$$$$$$$$','1',333,'tT'); 
        insert into test_user.test_table values ('a','gg','$$$$$$$$$$$$$$$$$$$$$','1',333,'tT') 
* 
ERROR at line 1: 
ORA-00001: unique constraint (TEST_USER.TEST_TABLE) violated 
. 
. 
The insert has failed. The cache now contains applicable blocks for the index and table. 
. 
. 
SQL> select file#, dbarfil, dbablk, obj from x$bh where file# = 7; 
     FILE#    DBARFIL     DBABLK        OBJ 
---------- ---------- ---------- ---------- 
         7          7       2057      12720 
         7          7       2058      12720 
         7          7       2074      12721 
3 rows selected. 
. 
. 
The log sequence number of the current redo log is determined. This archive log file will contain the redo affiliated with the unique constraint 
violation. 
. 
. 
SQL> select sequence# from v$log where status = 'CURRENT'; 
 SEQUENCE# 
---------- 
       233 
1 row selected. 
SQL> alter system switch logfile; 
System altered. 
SQL> alter system switch logfile; 
System altered. 
SQL> alter system switch logfile; 
System altered. 
SQL> alter system switch logfile; 
System altered. 
. 
. 
Clear the buffer cache. 
. 
. 
SQL> shutdown 
Database closed. 
Database dismounted. 
ORACLE instance shut down. 
. 
. 
Restore the file backed up earlier and attempt to open database. 
. 
. 
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SQL> !cp /ora/data001/test_db/test_tbsp_001.dbf.bkp    /ora/data001/test_db/test_tbsp_001.dbf 
SQL> startup 
ORACLE instance started. 
Total System Global Area  110070328 bytes 
Fixed Size                   731704 bytes 
Database Buffers           20971520 bytes 
Redo Buffers                 286720 bytes 
Database mounted.  
ORA-01113: file 7 needs media recovery 
ORA-01110: data file 7: '/ora/data001/test_db/test_tbsp_001.dbf ' 
SQL> select file#, dbarfil, dbablk, obj from x$bh where file# = 7; 
no rows selected 
. 
. 
Recover data file #7. 
. 
. 
SQL> recover datafile 7; 
ORA-00279: change 4223779 generated at 08/30/2005 09:45:06 needed for thread 1 
ORA-00289: suggestion : /ora/arch/test_db/test_db_1_232.dbf 
ORA-00280: change 4223779 for thread 1 is in sequence #232 
Specify log: {<RET>=suggested | filename | AUTO | CANCEL} 
ORA-00279: change 4223789 generated at 08/30/2005 09:45:11 needed for thread 1 
ORA-00289: suggestion : /ora/arch/test_db/test_db_1_233.dbf 
ORA-00280: change 4223789 for thread 1 is in sequence #233 
ORA-00278: log file '/ora/arch/test_db/test_db_1_232.dbf' no longer needed for this recovery 
Specify log: {<RET>=suggested | filename | AUTO | CANCEL} 
cancel 
Media recovery cancelled. 
. 
. 
After the first archive log is applied check buffer cache for blocks associated with target table and index. 
. 
. 
SQL>  select file#, dbarfil, dbablk, obj from x$bh where file# = 7; 
no rows selected 
. 
. 
Restart recovery. Log sequence number 233 was the log that contained the unique constraint violation redo. 
. 
. 
SQL> recover datafile 7; 
ORA-00279: change 4223789 generated at 08/30/2005 09:45:11 needed for thread 1 
ORA-00289: suggestion : /ora/arch/test_db/test_db_1_233.dbf 
ORA-00280: change 4223789 for thread 1 is in sequence #233 
Specify log: {<RET>=suggested | filename | AUTO | CANCEL} 
ORA-00279: change 4223795 generated at 08/30/2005 09:45:16 needed for thread 1 
ORA-00289: suggestion : /ora/arch/test_db/test_db_1_234.dbf 
ORA-00280: change 4223795 for thread 1 is in sequence #234 
ORA-00278: log file '/ora/arch/test_db/test_db_1_233.dbf' no longer needed for this recovery 
Specify log: {<RET>=suggested | filename | AUTO | CANCEL} 
cancel 
Media recovery cancelled. 
. 
. 
Archive log with log sequence number 233 is applied and the blocks modified during the unique constraint violation reappear in the buffer cache. 
This indicates the recovery process is affected by the violation. 
. 
. 
SQL> select file#, dbarfil, dbablk, obj from x$bh where file# = 7; 
     FILE#    DBARFIL     DBABLK        OBJ 
---------- ---------- ---------- ---------- 
         7          7       2058 4294967294 
         7          7       2074 4294967294 
2 rows selected. 
SQL> recover datafile 7; 
ORA-00279: change 4223795 generated at 08/30/2005 09:45:16 needed for thread 1 
ORA-00289: suggestion : /ora/arch/test_db/test_db_1_234.dbf 
ORA-00280: change 4223795 for thread 1 is in sequence #234 
Specify log: {<RET>=suggested | filename | AUTO | CANCEL} 
Log applied. 
Media recovery complete. 
SQL> alter database open; 
Database altered. 
. 
. 
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Use LogMiner to reconcile the block and file ids from the recovery process. Note LogMiner does not display the block and file id for indexes. The 
query after the LogMiner output shows the recovery process acted against the index. 
. 
. 
SQL> EXECUTE DBMS_LOGMNR.ADD_LOGFILE(LogFileName => '/ora/arch/test_db/test_db_&sequence..dbf', Options => dbms_logmnr.ADDFILE); 
Enter value for sequence: 233 
PL/SQL procedure successfully completed. 
SQL> EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG); 
PL/SQL procedure successfully completed. 
SQL> select scn,rel_file#,data_blk#,data_obj#,operation,rbablk,rbabyte from v$logmnr_contents; 
       SCN  REL_FILE#  DATA_BLK#  DATA_OBJ# OPERATION       RBABLK    RBABYTE 
---------- ---------- ---------- ---------- ----------- ---------- ---------- 
   4223791          0          0          0 START                2         16    
   4223791          7       2058      12720 INSERT               2         16 
   4223791          0          0      12721 INTERNAL             3         24 
   4223791          0          0      12721 INTERNAL             3        240 
   4223791          0          0      12721 INTERNAL             3        428 
   4223791          0          0      12721 INTERNAL             4        128 
   4223791          0          0      12721 INTERNAL             4        336 
   4223791          0          0      12721 INTERNAL             4        468 
   4223791          0          0      12721 INTERNAL             5        104 
   4223791          0          0      12721 INTERNAL             5        236 
   4223791          7       2058      12720 DELETE               5        384 
   4223792          0          0          0 ROLLBACK             7        372 
12 rows selected. 
. 
. 
The block_id of 2074 was pulled from the section above that showed the blocks affected by the integrity constraint violation being brought into 
cache. Block id 2074 pertains to the index. 
. 
. 
SQL> select segment_name from dba_extents where file_id = 7 and 2074 between block_id  and block_id + blocks; 
SEGMENT_NAME 
------------------------------ 
PK_TEST_TABLE 
 
Notice that after log sequence number 233 is applied the table and index blocks associated with the failed insert 
appear in the buffer cache. Oracle considers this redo to be in a valid state as it reconstructs the change vectors owed 
to these failures during media recovery. 
 
INTEGRITY CONSTRAINT SUMMARY 
 
Integrity constraints can play a pivotal role in ensuring the data rigidly adheres to the rules of the business. Violations 
of integrity constraints are to be expected as not all users or programs will produce data that meets the criteria of a 
constraint. Often applications will rely on front-end or middleware logic to enforce integrity constraints. Those that 
rely entirely on the application will certainly encounter little excessive redo owed to data not satisfying an integrity 
constraint. Some applications, especially Data Warehousing and OLTP with nightly batch processing, can experience 
voluminous uniqueness or referential integrity constraint violations. SQL*Loader, Import and data manipulation 
language (DML) operations that have widespread failures from referential or uniqueness constraints warrant special 
attention. 
 
Regions of the application that are well known to experience integrity constraint violations should be examined first. 
Those regions that are not well known can be targeted by making use of the v$session and v$sesstat dynamic 
performance views. By joining these two views, over a period of time, you can ascertain which programs are 
producing the most redo in the database. In particular, use the value for the redo size statistic as a guide. Ensure that 
care is given when analyzing this data as some versions of Oracle generate overflows for the redo size statistic. A 
session that has a value of 1 megabyte might have generated multiple gigabytes by virtue of cycling through the 
overflow several times.  
 
Detecting integrity constraint violations is often possible by looking at application log files. If this data is not 
available extended SQL tracing can be of great assistance. In the trace files look for the lines with the following 
strings: 
 
ERROR #<CURSOR>:err=1   Uniqueness violation 
ERROR #<CURSOR>:err=2291  Parent key not found 
ERROR #<CURSOR>:err=2292  Child record found  
 
It can be very difficult to curb the tide of these infractions short of making application changes. If an application 
predisposes the database to this unnecessary and excessive redo it could be very beneficial and ultimately cost 
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effective to modify the application to lessen the impact. As previously demonstrated, integrity constraints can very 
quickly generate large amounts of redo as a result of table-data and index-data optimism. Added contention for the 
redo governing constructs can produce systemic performance issues if the infractions are many. Moreover, media 
recovery of affected blocks is subject to the inherent inefficiencies of block reconstruction using the redo change 
vectors created by the violations. Integrity constraint violations are only one cause of excessive redo generation. In the 
next section we look at the notion of transactions that are potentially useless yet generate redo. 
 
POTENTIALLY USELESS TRANSACTIONS 
 
A potentially useless transaction can be defined as a unit of database work that incurs a redo cost for the modification 
of data that will not persist in the changed state beyond the end of the transaction. A simple example is an explicit 
rollback of a read-write transaction. Of course many applications utilize SELECT FOR UPDATE statements to affect 
a pessimistic locking scheme. Often pessimistic locks are taken and data is not modified. In this case pessimistic 
locking should not be considered a useless transaction, albeit at the point of rollback or commit redo is incurred. 
Usually the intent in pessimistic locking is to prevent lost updates for applications predisposed to this type of 
behavior (Kyte 106).  
 
Another example is a commit or rollback on a distributed or remote query. Before the remote query is executed Oracle 
will implicitly create a transaction by allocating a slot for a single undo record in the relevant undo or rollback 
segment. This is required so that the branches of a query can be related to each other through the global transaction-
mapping table (Adams,Distributed,1). Redo is immediately generated to account for this query branch maintenance. 
Upon commit or rollback the relevant marker incurs additional redo. Normal transaction termination is required to 
free the transaction slot attributed to the undo record. Only the query that initiates the remote operation generates 
redo. All subsequent queries issued in the same session prior to transaction termination will not generate additional 
redo. 
  
A remote query is a perfectly legitimate operation and is required for applications using distributed databases. It is 
the severe cases involving hundreds or thousands of remote queries issued per minute that can have a very tangible 
effect on the performance of the database redo infrastructure and the size of the redo generated by a database. If a 
session must issue remote queries one mitigating measure could be to have the session commit less frequently. This 
will reduce the redo generated, lessen the burden on the redo infrastructure and potentially reduce redo wastage1; 
another source for redo inflation. Each commit on a remote query will inflate the redo stream and sets up the next 
remote query in the same session to exhibit the same behavior. Tests involving remote queries in Oracle9i yield 
approximately 280 bytes of redo owed to the branch query accounting and a subsequent commit operation; see 
Example 6.  
 
Using extended SQL tracing in Oracle8i and Oracle9i each of these commits result in one or more log file sync wait 
events. In Oracle10g Release 1 the log file sync wait events are not encountered during the commit or rollback 
following a remote query, even though redo is generated. In 10g Oracle has seemingly opted to relieve the session 
issuing the remote query from having to wait until the redo generated on the query’s behalf has been written to the 
current redo log group. 
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Example 6: In this example three distributed queries are issued from a single session. Two distributed queries are 
issue before the first transaction is terminated. One query is issued prior to terminating the second transaction. 
 
 
 
SQL> select 'REDO0',value from v$sesstat where statistic#=115 and sid = (select sid from v$session where username = 'TEST_USER'); 
REDO0       1332 
SQL> select count(*) from sys.dual@remote_testdb; 
1 
SQL> select 'REDO1',value from v$sesstat where statistic#=115 and sid = (select sid from v$session where username = 'TEST_USER'); 
REDO1       1544 
SQL> select count(*) from sys.dual@remote_testdb; 
1 
SQL> select 'REDO2',value from v$sesstat where statistic#=115 and sid = (select sid from v$session where username = 'TEST_USER'); 
REDO2       1544 
SQL> commit; 
Commit complete. 
SQL> select 'REDO3',value from v$sesstat where statistic#=115 and sid = (select sid from v$session where username = 'TEST_USER'); 
REDO3       1612 
SQL> select count(*) from sys.dual@remote_testdb; 
1 
SQL> select 'REDO4',value from v$sesstat where statistic#=115 and sid = (select sid from v$session where username = 'TEST_USER'); 
REDO4       1824 
SQL> commit; 
Commit complete. 
SQL> select 'REDO5',value from v$sesstat where statistic#=115 and sid = (select sid from v$session where username = 'TEST_USER'); 
REDO5       1892 
. 
. 
The following is the LogMiner data related to these operations. 
. 
. 
 
            SCN  REL_FILE#  DATA_BLK#  DATA_OBJ# OPERATION                     RBABLK    RBABYTE 
--------------- ---------- ---------- ---------- ------------------------- ---------- ---------- 
  8316746044505          0          0          0 START                              2         16 
  8316746044506          0          0          0 ROLLBACK                           2        228 
  8316746044506          0          0          0 START                              2        296 
  8316746044511          0          0          0 ROLLBACK                           3         16 
 
 

 
The first query initiates the remote query and the transaction. This activity accounts for the first 212 bytes of redo. 
Notice the second query does not generate any redo. The commit operation following the second remote query adds 
an additional 68 bytes. The transaction terminates after 280 bytes of redo have been generated. The second 
transaction involving a single remote query and a commit generated another 280 bytes. Another interesting 
observation is that Oracle places a rollback marker in the redo log stream even though the transaction is terminated 
with a commit. Identifying potentially offending programs can be achieved in the same manner as described in the 
“Integrity Constraint Summary” section above. 
 
Detecting potentially useless transactions can be accomplished using extended SQL tracing. Within extended SQL 
trace files the end of transactions are evidenced by the lines containing the string “XCTEND”. The following table 
shows each of the possible suffixes to these lines and their respective transaction type. 
 
Transaction Type Extended SQL Trace Commit/Rollback Read Only/Read Write 

1 XCTEND rblk=0,rd_only 0 Commit Read Write 
2 XCTEND rblk=1,rd_only 0 Rollback Read Write 
3 XCTEND rblk=0,rd_only 1 Commit Read Only 
4 XCTEND rblk=1,rd_only 1 Rollback Read Only 

 
Table 2: Transaction Type Suffixes 
 
Transaction type 1 is a standard commit operation on a read-write transaction. In the vast majority of cases these 
transactions should not be targeted for redo reduction. However, if a database issues many meaningless commit 
operations for read-write transactions measures should be taken to eliminate this behavior. If an application is not 
using a pessimistic locking scheme then a proliferation of transactions of type 2 could indicate the presence of 
unnecessary activity on the database and warrants investigation. Transactions of types 3 or 4 can be encountered for 
any spurious commit or rollback operation within a read-only transaction. Distributed and remote queries are read-
only transactions and will also terminate with the suffixes of transaction types 3 or 4. Remember, in Oracle8i and 
Oracle9i the read-only transaction associated with a distributed query will trigger a log file sync wait event. In this 
manner you can differentiate the spurious transaction termination from that of the distributed query by giving a bit 
more attention to the extended SQL trace file. In 10g the detection approach should use the suffixes above in 
conjunction with inspecting the applicable SQL in the trace file to determine if the SQL is a remote or distributed 
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query. If these queries are useful to the application and hundreds or thousands of these transaction types occur each 
minute reducing the commit rate will reduce the redo inflation. 
 
USER-MANAGED BACKUPS 
 
It has been well documented in earlier releases of Oracle that user-managed backups necessarily generate excessive 
redo. It cannot be overstated that user-managed backups will greatly inflate the redo generated by a database. The 
rule has always been to take user-managed backups during non-peak hours if the enterprise backup and recovery 
strategy affords the option. It has always been good to further lessen the performance impact by marching through 
the tablespaces in some sequence that addresses a subset of the database. 
 
The extra redo generated while a tablespace is in backup mode results from Oracle assuming the presence of fractured 
blocks as the OS utility reads the database files. Oracle is unaware of the read position of the OS utility and must 
account for this lack of knowledge. To properly recover from a potentially fractured block created during user-
managed backups Oracle will write the entire block to the redo log buffer the first time it is modified. Usually 
subsequent writes to the same block do not require the block to be rewritten to the log buffer (Velpuri and Adkoli 
97). The implication is that if the typical mixture of transactions in a database yields low-density block changes (low 
ratio of transactions to modified blocks) during user-managed backups the amount of redo generated can be massive. 
 
Given the technology made available today by hardware and software vendors, user-managed backups should be a 
dying approach to enterprise backup and recovery schemes. Oracle offers its Recovery Manager product with every 
installation. Recovery Manager is much more flexible than user-managed backups and can save an enterprise tape or 
disk space used to store backups. Today many direct access storage device (DASD) subsystem providers offer 
solutions that essentially remove Oracle from the backup equation, i.e. EMC’s Business Continuance Volumes and 
Cloning technology. Using EMC’s technology, very large databases can be mirrored to DASD presented to other 
systems in a fraction of the time required to backup to tape or disk using OS tools. Consistency technology built into 
these products permit the source database to remain open and active during the mirror operation without sacrificing 
recoverability. User-managed backups should be the last resort to backup large 24x7 production environments. 
 
LACK OF NOLOGGING 
 
Another well-documented feature is Oracle’s NOLOGGING capability. Oracle’s NOLOGGING feature provides the 
ability to suppress the generation of redo for a subset of operations: Direct loader (SQL*Loader), direct-path inserts 
resulting from INSERT or MERGE statements and some DDL commands. The performance gain and redo reduction 
benefits of NOLOGGING operations come at a sacrifice to recoverability. For example, if you invoke a sequence of 
direct-path inserts the affected data cannot be recovered using Oracle’s media recovery mechanisms. Following any 
NOLOGGING operation the data file(s) impacted by the NOLOGGING operation need to be backed up to ensure 
that the changes persist through media failure. If the target database has one or more associated physical standby 
databases then the backup files must be copied to the standby environments to permit continued recoverability. 
Reloading data offers a potential alternative to Oracle recovery-based data restoration. 
 
While Data Warehousing applications usually take advantage of NOLOGGING operations, 24x7 OLTP databases 
can benefit as well. In particular, most 24x7 applications still require maintenance windows to perform varied 
database activities. However, each maintenance window usually incurs at least a small outage to the business. 
Expeditious and well-planned changes are a necessity. The DML and data dictionary language (DDL) NOLOGGING 
features can dramatically reduce the time an Oracle scientist needs to perform the maintenance and substantially 
reduce the redo generated. If meticulous planning and care are given to address the recoverability issues the Oracle 
scientist should give serious consideration to the NOLOGGING feature. 
 
CONCLUSION  
 
Excessive redo generation can be incurred in a variety of ways. This paper has focused on four areas where 
applications might be suffering from redo inflation: integrity constraint violations, potentially useless transactions, 
user-managed backups and the lack of judicious NOLOGGING operations.  
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Detecting constraint violations in application code often requires inspecting extended SQL trace files for the relevant 
error codes. Usually correcting rampant integrity violations involves changing the application or middleware. Any 
properly applied change to an application has a cost associated with testing, implementation and maintenance. These 
costs might be offset if the infractions are numerous as the benefits can have a rippling effect on an organization’s 
ability to achieve its goals. 
 
If a production environment is laden with potentially useless transactions, redo inflation is an issue and warrants 
investigation. Sometimes very simple fixes, such as committing or rolling back less frequently, can be applied to 
applications that tend to terminate transactions after each remote or distributed query. Other forms of useless 
modification to data might require more sophisticated application code changes and need to be weighed against the 
cost of such changes. Detecting potentially useless transactions, like constraint violations, is often achieved by 
inspecting extended SQL trace files. 
 
Given the varied alternatives, user-managed backups are strongly discouraged for DML-intensive production 
environments. The ramifications of the redo inflation caused by user-managed backups are probably most evident in 
the performance of a database. 
 
Oracle’s NOLOGGING feature offers the Oracle scientist the ability to suppress tremendous amounts of redo at the 
expense of recoverability. If proper diligence is employed, often the recoverability issues can be overcome. This can 
dramatically increase the probability of an organization’s success in affecting changes during maintenance windows, 
thereby minimizing lost revenue resulting from downtime.    
 
For enterprises with stringent SLAs that demand high performance and high availability, redo minimization can be of 
great assistance. Potentially every aspect of an IT organization’s production environment and its ability to meet SLAs 
is impacted by the generation of redo. These components include but are not limited to: 
 

• Recovery Point Objective 
• Recovery Time Objective 
• Disaster Recovery 
• Database Performance 
• I/O Performance 
• Network Performance 
• Capacity Planning 
• Availability 

 
Application consolidation and the use of Standby databases to service reporting or disaster recovery sites introduce 
special challenges to an organization. Network bandwidth and archive log management must be carefully planned to 
achieve success in meeting the RPO and RTO of the production and standby environments. Reducing the amount of 
redo being generated can result in faster database recovery, more efficient archive log space management and a greater 
opportunity to meet these objectives. 
 
The database mechanisms used to protect and govern the redo infrastructure are critical to the performance and 
availability of any database. If these mechanisms experience contention systemic performance effects can ensue. 
Controlling the tide of redo generation can position an organization to meet its performance and availability 
objectives. 
 
Today the majority of documentation on Oracle performance focuses primarily on tuning the application.  Studies 
have shown that a very high percentage of performance issues are a result of poor performing application code. A 
query that is reduced from 10 minutes to 5 seconds is very palatable to the end-user and will garner an Oracle scientist 
accolades from management and the customer. While application tuning is indeed of utmost importance, the 
application’s influence on redo generation can be very significant as outlined in this paper. By investing a small 
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amount of research into the redo-generating characteristic of a database, an organization could realize a substantial 
value-add to their availability, performance and capacity planning. 
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NOTES 
 
1 For an excellent reference related to the nature of redo wastage please see the following web page 
http://www.ixora.com.au/notes/redo_wastage.htm. 
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