
Why Have Scattered

Thoughts About

Oracle Reads?

The Case for Sanity

in Oracle’s Read

Event Nomenclature

EXECUTIVE SUMMARY

Like any Oracle scientist at some point in your optimizing endeavors you have probably stared at an extended SQL
trace file and pondered the reason why Oracle calls a potentially sequential disk read a db file scattered read and a likely
random disk read a db file sequential read. I have read accounts for this seeming discrepancy none more interesting than
Jeff Holt’s assertion that these event names correspond to how blocks are stored in memory (Named Backwards,1), i.e.
blocks are either stored in memory in a scattered or contiguous manner. Irrespective of the inspiration for the event
nomenclature this explanation requires further lucidity; especially when confronted with a system call that reads
blocks into contiguous memory but is tagged a db file scattered read event.

While the db file scattered read event name is intuitive in the context of how blocks are stored in memory, can the same
be asserted for the db file sequential read event? If a db file sequential read is a single-block read isn’t it inherently self-
contiguous once read into virtual memory? Is it that simple? It would appear tautological to tag db file sequential
read to a notion that an Oracle block is stored in contiguous memory. If it is that simplistic why isn’t a db file scattered
read called a db file multi-block sequential read? Is there another more subtle reason Oracle decided to call it a db file
scattered read? How do contiguous memory read operations supporting db file scattered read events get scattered?

Other potential interpretations of this contiguous notion for db file sequential read events are relegated to the
frameworks of successive db file sequential read events for a single SQL statement or multi-block db file sequential
read events. Could most Oracle scientists conceptualize the buffer cache memory quantum as the segment block
size yet struggle to reconcile this with how blocks are stored in memory, the db file sequential read event in particular?

This exposition into the db file sequential read and db file scattered read events is intended to elucidate the rationale for
Oracle’s read event nomenclature, while addressing the potential alternate interpretations of the db file sequential
read event within the context of how blocks are stored in memory. Additionally, the mystery concerning a contiguous
memory read operation that supports a db file scattered read event is unraveled. If you do not like to leave any stone
unturned this exposition might scratch that inquisitive itch. The examples were experiments performed on a Sun
Solaris 9 UNIX platform running Oracle Enterprise Edition 9.2.0.4. The UNIX system calls studied are the ubiquitous
UNIX functions pread() and readv().

AUTHOR

Eric Emrick
Senior Technical Consultant
Convergys Corporation

©2005 Convergys Corporation www.converg ys.com 2

Why Have Scattered Thoughts About Oracle Reads?

THE CACHE BUFFERS LRU CHAIN AND PHYSICAL READ REQUESTS

The foundation for Oracle’s physical read operations is the cache buffers LRU chain. These structures dictate the
geography of the SGA (System Global Area) buffer cache and by consequence the manner in which blocks are placed
into the SGA for physical read operations.

For example, assume the Oracle kernel has a hypothetical memory allocation function called oramalloc(). This
function traverses, from the LRU end to the MRU end, the relevant cache buffers LRU chain and returns the first
found address to a free buffer in the buffer cache. For simplicity let the entire buffer cache be managed by a single
cache buffers LRU chain as in Figure 1.

db file scattered read

At time t=y an interested Oracle shadow process performing a full table scan acquires the relevant cache buffers LRU
chain latch. While holding the latch oramalloc() could be called up to eight1 times on behalf of a db file scattered read.
Based on the state of the SGA at time t=y, when the latch was obtained, these calls to oramalloc() would return the
following eight free buffer addresses in sequence: 12,8,13,1,5,6,19,3. For UNIX readv() scatter-reads2 these addresses are
used to populate the UNIX <iov> address array (Stevens 404-405). This array is allocated in the calling Oracle shadow
process’s stack. If Oracle uses pread() for multi-block disk reads these same free buffer addresses are also stored in the
shadow process’s stack. The use of pread() is not synonymous with UNIX scatter-reads as a call to pread() only takes
a single address. Nonetheless, Oracle has classified an event waiting for a multi-block read using pread() as a db file
scattered read. At face value Oracle appears to have employed a sleight of hand.

The information gathered during the system call to open a file in conjunction with run time code constructs dictates
if Oracle will use a call to readv() or pread() to perform the disk read that populates the buffers at the aforementioned
memory addresses. The size of the db file scattered read (p3=?) depends on extent boundaries and blocks already in cache
among other influences (Holt, Predicting,1-2).

©2005 Convergys Corporation www.converg ys.com 3

Why Have Scattered Thoughts About Oracle Reads?

D IDIDDDDIDIDIDD DDIDD

18 1514319176111241201385 1697102

D IDDIDDIDIIDDDI DDDID

18 1514319176751612013812 4911102

Cache Buffer LRU

Cache Buffer LRU

Buffer Cache

Buffer Cache

T
im
e

Free Buffer

Unavailable Buffer

Memory

y

y+n

1 15141312111098765432 2019181716

40 5453525150494847464544434241 5958575655

40 5453525150494847464544434241 5958575655

1 15141312111098765432 2019181716

LRU MRU

MRULRU

Figure 1: Buffer Cache and Cache Buffer LRU

D=Data
I=Index

If Oracle uses readv() the address array is traversed and the blocks read from disk are placed at the addresses therein.
This operation is referred to as a UNIX managed scatter-read as the OS reads the blocks into the SGA. The Oracle
kernel developers call this event a db file scattered read as it employs the read component of the longstanding UNIX
scatter/gather I/O methodology.

If Oracle uses pread() the blocks are read from disk into the CGA (Call Global Area), a transient subheap of the PGA
(Process Global Area), and then copied to the free buffer addresses stored in the shadow process’s stack (Adams).
Using this approach Oracle is able to simulate scatter-reads by dispatching blocks to predetermined free buffers.
Oracle uses the CGA3 as its conduit for turning a contiguous PGA memory read into a noncontiguous SGA read. This
operation can be referred to as an Oracle managed scatter-read. Therefore, in spirit, the Oracle kernel developers have
not violated the notion of a UNIX scatter-read and are justified in calling this multi-block pread() a db file scattered read.
Notice that Oracle does not call this event scenario a db file sequential read with p3>1 even though the PGA has received
a contiguous memory read. If the fashion in which a read system call stores data in memory has dictated the naming
convention then Oracle has afforded itself latitude with its read event nomenclature.

Later at time t=y+n the same process is performing another table scan of a separate table and acquires the requisite
cache buffers LRU chain latch. The next eight calls to oramalloc() will return the following address sequence:
18,8,13,1,6,3,15,10.

A cache buffers LRU chain manages a mutually exclusive set of memory buffers at any point in time. Each buffer’s
pointer position in the chain is determined by the factors that influence the heating and cooling of buffers. So it is
easy to see that in a seasoned cache there is a very low probability of consecutive oramalloc() calls getting contiguous
memory buffers for a scatter-read. The db file scattered read is used by Oracle to service multi-block reads that preserve
physical order. The blocks for a particular segment are inspected from memory in the order they are stored on disk.

It would be terribly inefficient for oramalloc() to search the entire cache buffers LRU chain for contiguous memory
addresses, assuming it could even find the requisite number of buffers aligned contiguously. Imagine the inefficiency
of playing billiards in such a manner that your opponent is required to hit all of her shots in ball-number succession
after the break has occurred, passing up perfectly accommodating and easier shots along the way.

Example 1: Several paragraphs back the use of the ephemeral CGA to accommodate db file scattered read events was
mentioned. During my research on this topic I was intrigued by the use of pread() for scatter-reads given it takes a
single address, thusly requiring a contiguous memory read. This notion was seemingly contrary to Oracle’s buffer
replacement techniques and was incongruous with the observable Oracle world. Empirically, blocks were being placed
in the SGA in a scattered manner during multi-block reads but pread() was doing the work. What is truly fascinating
is Oracle uses pread() to fill temporary buffers in the CGA prior to copying them to the SGA (Adams). The following
experimentally demonstrates this phenomenon.

©2005 Convergys Corporation www.converg ys.com 4

Why Have Scattered Thoughts About Oracle Reads?

Extended SQL Trace

The FETCH and SQL*Net waits events have been excluded for brevity.

PARSING IN CURSOR #1 len=38 dep=0 uid=0 oct=3 lid=0 tim=889121198240 hv=3524099643

ad='19cca4e8'

select * from test_table where rownum < 5000

END OF STMT

PARSE #1: c=0, e=215, p=0, cr=0, cu=0, mis=0, r=0, dep=0, og=4, tim=889121198233

BINDS #1:

EXEC #1: c=0, e=227, p=0, cr=0, cu=0, mis=0, r=0, dep=0, og=4, tim=889121198659

WAIT #1: nam= ' db file scattered read' ela= 18796 p1=979 p2=5 p3=8

WAIT #1: nam= ' db file scattered read' ela= 14318 p1=979 p2=13 p3=8

WAIT #1: nam= ' db file scattered read' ela= 11572 p1=979 p2=21 p3=8

WAIT #1: nam= ' db file scattered read' ela= 13275 p1=979 p2=29 p3=8

WAIT #1: nam= ' db file scattered read' ela= 11195 p1=979 p2=37 p3=8

WAIT #1: nam= ' db file scattered read' ela= 11036 p1=979 p2=45 p3=8

WAIT #1: nam= ' db file scattered read' ela= 11734 p1=979 p2=53 p3=8

WAIT #1: nam= ' db file scattered read' ela= 13929 p1=979 p2=61 p3=8

WAIT #1: nam= ' db file scattered read' ela= 12361 p1=979 p2=69 p3=8

WAIT #1: nam= ' db file scattered read' ela= 11247 p1=979 p2=77 p3=8

WAIT #1: nam= ' db file scattered read' ela= 11114 p1=979 p2=85 p3=8

WAIT #1: nam= ' db file scattered read' ela= 13620 p1=979 p2=93 p3=8

WAIT #1: nam= ' db file scattered read' ela= 11045 p1=979 p2=101 p3=8

WAIT #1: nam= ' db file scattered read' ela= 10976 p1=979 p2=109 p3=8

WAIT #1: nam= ' db file scattered read' ela= 11011 p1=979 p2=117 p3=8

STAT #1 id=1 cnt=4999 pid=0 pos=1 obj=0 op='COUNT STOPKEY (cr=444 r=120 w=0

time=203478 us)'

STAT #1 id=2 cnt=4999 pid=1 pos=1 obj=292723 op='TABLE ACCESS FULL TEST_TABLE

(cr=444 r=120 w=0 time=201097 us)'

Solaris truss

pread(257, 0x10339AC00, 65536, 40960) = 65536

pread(257, 0x10339AC00, 65536, 106496) = 65536

pread(257, 0x10339AC00, 65536, 172032) = 65536

pread(257, 0x10339AC00, 65536, 237568) = 65536

pread(257, 0x10339AC00, 65536, 303104) = 65536

pread(257, 0x10339AC00, 65536, 368640) = 65536

pread(257, 0x10339AC00, 65536, 434176) = 65536

pread(257, 0x10339AC00, 65536, 499712) = 65536

pread(257, 0x10339AC00, 65536, 565248) = 65536

pread(257, 0x10339AC00, 65536, 630784) = 65536

pread(257, 0x10339AC00, 65536, 696320) = 65536

pread(257, 0x10339AC00, 65536, 761856) = 65536

pread(257, 0x10339AC00, 65536, 827392) = 65536

pread(257, 0x10339AC00, 65536, 892928) = 65536

pread(257, 0x10339AC00, 65536, 958464) = 65536

©2005 Convergys Corporation www.converg ys.com 5

Why Have Scattered Thoughts About Oracle Reads?

UNIX pmap

0000000100000000 50472K r–x–– /opt/oracle/product/9.2.0.4.0/bin/oracle

0000000103248000 712K rwx–– /opt/oracle/product/9.2.0.4.0/bin/oracle

00000001032FA000 656K rwx–– [heap]

0000000380000000 3530752K rwxsR [ism shmid=0x202]

FFFFFFFF7CE00000 8K rwx–– [anon]

FFFFFFFF7CF00000 8K r–x–– /usr/lib/sparcv9/libmd5.so.1

FFFFFFFF7D002000 8K rwx–– /usr/lib/sparcv9/libmd5.so.1

FFFFFFFF7D100000 16K r–x–– /usr/lib/sparcv9/libmp.so.2

FFFFFFFF7D204000 8K rwx–– /usr/lib/sparcv9/libmp.so.2

FFFFFFFF7D300000 8K rwx–– [anon]

FFFFFFFF7D400000 216K r–x–– /usr/lib/sparcv9/libm.so.1

FFFFFFFF7D534000 16K rwx–– /usr/lib/sparcv9/libm.so.1

FFFFFFFF7D600000 8K r–x–– /usr/lib/sparcv9/libkstat.so.1

FFFFFFFF7D702000 8K rwx–– /usr/lib/sparcv9/libkstat.so.1

FFFFFFFF7D800000 32K r–x–– /usr/lib/sparcv9/librt.so.1

FFFFFFFF7D908000 8K rwx–– /usr/lib/sparcv9/librt.so.1

FFFFFFFF7DA00000 32K r–x–– /usr/lib/sparcv9/libaio.so.1

FFFFFFFF7DB08000 8K rwx–– /usr/lib/sparcv9/libaio.so.1

FFFFFFFF7DB0A000 8K rwx–– /usr/lib/sparcv9/libaio.so.1

FFFFFFFF7DC00000 8K rwx–– [anon]

FFFFFFFF7DD00000 728K r–x–– /usr/lib/sparcv9/libc.so.1

FFFFFFFF7DEB6000 56K rwx–– /usr/lib/sparcv9/libc.so.1

FFFFFFFF7DEC4000 8K rwx–– /usr/lib/sparcv9/libc.so.1

FFFFFFFF7DF00000 8K r–x–– /usr/platform/FJSV,GPUZC-

M/lib/sparcv9/libc_psr.so.1

FFFFFFFF7E000000 32K r–x–– /usr/lib/sparcv9/libgen.so.1

FFFFFFFF7E108000 8K rwx–– /usr/lib/sparcv9/libgen.so.1

FFFFFFFF7E200000 672K r–x–– /usr/lib/sparcv9/libnsl.so.1

FFFFFFFF7E3A8000 56K rwx–– /usr/lib/sparcv9/libnsl.so.1

FFFFFFFF7E3B6000 40K rwx–– /usr/lib/sparcv9/libnsl.so.1

FFFFFFFF7E400000 5328K r–x–– /opt/oracle/product/9.2.0.4.0/lib/libjox9.so

FFFFFFFF7EA32000 384K rwx–– /opt/oracle/product/9.2.0.4.0/lib/libjox9.so

FFFFFFFF7EA92000 8K rwx–– /opt/oracle/product/9.2.0.4.0/lib/libjox9.so

FFFFFFFF7EB00000 48K r–x–– /usr/lib/sparcv9/libsocket.so.1

FFFFFFFF7EC0C000 16K rwx–– /usr/lib/sparcv9/libsocket.so.1

FFFFFFFF7ED00000 8K rwx–– [anon]

FFFFFFFF7EE00000 32K r–x–– /opt/oracle/product/9.2.0.4.0/lib/libskgxn9.so

FFFFFFFF7EF06000 8K rwx–– /opt/oracle/product/9.2.0.4.0/lib/libskgxn9.so

FFFFFFFF7F000000 8K r–x–– /opt/oracle/product/9.2.0.4.0/lib/libskgxp9.so

FFFFFFFF7F100000 8K rwx–– /opt/oracle/product/9.2.0.4.0/lib/libskgxp9.so

FFFFFFFF7F200000 8K r–x–– /opt/oracle/product/9.2.0.4.0/lib/libodmd9.so

FFFFFFFF7F300000 8K rwx–– /opt/oracle/product/9.2.0.4.0/lib/libodmd9.so

FFFFFFFF7F400000 8K r–x–– /usr/lib/sparcv9/libdl.so.1

FFFFFFFF7F500000 8K rwx–– [anon]

FFFFFFFF7F600000 160K r–x–– /usr/lib/sparcv9/ld.so.1

FFFFFFFF7F726000 16K rwx–– /usr/lib/sparcv9/ld.so.1

FFFFFFFF7FFF2000 56K rw––– [stack]

©2005 Convergys Corporation www.converg ys.com 6

Why Have Scattered Thoughts About Oracle Reads?

Observe the virtual address 0x10339AC00 value for each pread() call in the truss output. Peruse the pmap sequential
memory mapping for the shadow process performing the db file scattered reads. Notice the highlighted heap address.
The repeating pread() address of 0x10339AC00 points into the process’s heap portion of its virtual address space. The
blocks read via pread() are headed to the PGA of the shadow process, and the CGA specifically.

db file sequential read (successive)

In the case of a single-block read the same hypothetical oramalloc() returns a single buffer address. The same low
probability concerning contiguous memory buffers for a db file scattered read applies for successive db file sequential
read events. In Figure 1 if you consider the states of the LRU chain and the buffer cache at times y and y+n, two
successive oramalloc() calls would yield the noncontiguous free buffer addresses 12 and 18 respectively. It is often
misinterpreted, within the context of how blocks are stored in memory, that successive db file sequential reads equate
to contiguous memory storage. In Example 2 this will be demonstrated to be false in the context of the SGA using
careful examination of an extended SQL trace, truss and buffer cache header interrogation.

Example 2: On page 8 is a snippet from an extended SQL trace of an index range scan in a database with 8K blocks.
Concentration is focused on the 19 db file sequential read events used to service table block access as the first 3 are
index blocks. While the SQL is executed a truss command is employed to trace just the pread() system calls. Finally,
the buffer cache headers for the table being read are interrogated to determine the memory addresses of the blocks
read from disk.

©2005 Convergys Corporation www.converg ys.com 7

Why Have Scattered Thoughts About Oracle Reads?

Extended SQL Trace

PARSING IN CURSOR #1 len=88 dep=0 uid=0 oct=3 lid=0 tim=11170584536855

hv=753384306 ad='85193660'

select col1, col2 from test_table where col1 = 'HGBJ'

END OF STMT

PARSE #1: c=10000,e=6757,p=0,cr=3,cu=0,mis=1,r=0,dep=0,og=4,tim=11170584536846

BINDS #1:

EXEC #1: c=0, e=110, p=0, cr=0, cu=0, mis=0, r=0, dep=0, og=4, tim=11170584537201

WAIT #1: nam= 'SQL*Net message to client' ela= 5 p1=1650815232 p2=1 p3=0

WAIT #1: nam= 'db file sequential read' ela= 16309 p1=4 p2=3274 p3=1

WAIT #1: nam= 'db file sequential read' ela= 50530 p1=23 p2=125847 p3=1

WAIT #1: nam= 'db file sequential read' ela= 50813 p1=23 p2=122817 p3=1

WAIT #1: nam= 'db file sequential read' ela= 43830 p1=23 p2=105746 p3=1

FETCH #1: c=10000, e=167997, p=4, cr=4, cu=0, mis=0, r=1, dep=0, og=4, tim=11170584705354

WAIT #1: nam= 'SQL*Net message from client' ela= 676 p1=1650815232 p2=1 p3=0

WAIT #1: nam= 'db file sequential read' ela= 34860 p1=23 p2=105900 p3=1

WAIT #1: nam= 'SQL*Net message to client' ela= 3 p1=1650815232 p2=1 p3=0

WAIT #1: nam= 'db file sequential read' ela= 38847 p1=23 p2=105930 p3=1

WAIT #1: nam= 'db file sequential read' ela= 31912 p1=23 p2=105592 p3=1

WAIT #1: nam= 'db file sequential read' ela= 38990 p1=23 p2=105916 p3=1

WAIT #1: nam= 'db file sequential read' ela= 36426 p1=23 p2=105944 p3=1

WAIT #1: nam= 'db file sequential read' ela= 36074 p1=23 p2=104817 p3=1

WAIT #1: nam= 'db file sequential read' ela= 33200 p1=23 p2=105561 p3=1

WAIT #1: nam= 'db file sequential read' ela= 37927 p1=23 p2=110513 p3=1

WAIT #1: nam= 'db file sequential read' ela= 35104 p1=23 p2=110522 p3=1

WAIT #1: nam= 'db file sequential read' ela= 33214 p1=23 p2=110303 p3=1

WAIT #1: nam= 'db file sequential read' ela= 31605 p1=23 p2=110454 p3=1

WAIT #1: nam= 'db file sequential read' ela= 32753 p1=23 p2=110463 p3=1

FETCH #1: c=10000, e=424541, p=12, cr=16, cu=0, mis=0, r=15, dep=0, og=4, tim=11170585130838

WAIT #1: nam= 'SQL*Net message from client' ela= 1779 p1=1650815232 p2=1 p3=0

WAIT #1: nam= 'db file sequential read' ela= 39668 p1=23 p2=110482 p3=1

WAIT #1: nam= 'SQL*Net message to client' ela= 4 p1=1650815232 p2=1 p3=0

WAIT #1: nam= 'db file sequential read' ela= 32685 p1=23 p2=110369 p3=1

WAIT #1: nam= 'db file sequential read' ela= 35170 p1=23 p2=110364 p3=1

WAIT #1: nam= 'db file sequential read' ela= 32338 p1=23 p2=110495 p3=1

WAIT #1: nam= 'db file sequential read' ela= 36289 p1=23 p2=110429 p3=1

WAIT #1: nam= 'db file sequential read' ela= 29881 p1=23 p2=110458 p3=1

FETCH #1: c=0, e=207326, p=6, cr=11, cu=0, mis=0, r=11, dep=0, og=4, tim=11170585340218

WAIT #1: nam= 'SQL*Net message from client' ela= 2039735 p1=1650815232 p2=1 p3=0

STAT #1 id=1 cnt=27 pid=0 pos=1 obj=5937 op='TABLE ACCESS BY INDEX ROWID

TEST_TABLE (cr=31 r=22 w=0 time=799486 us)'

STAT #1 id=2 cnt=27 pid=1 pos=1 obj=5938 op='INDEX RANGE SCAN PK_TEST_TABLE (cr=5

r=3 w=0 time=124121 us)

©2005 Convergys Corporation www.converg ys.com 8

Why Have Scattered Thoughts About Oracle Reads?

Solaris truss

pread(256, "0602\0\001\0\fCA01 " u1A".., 8192, 0x01994000) = 8192

pread(257, 0x380474000, 8192, 0x3D72E000) = 8192

pread(257, 0x3812AC000, 8192, 0x3BF82000) = 8192

pread(257, 0x381C14000, 8192, 0x33A24000) = 8192

pread(257, 0x38061A000, 8192, 0x33B58000) = 8192

pread(257, 0x38239A000, 8192, 0x33B94000) = 8192

pread(257, 0x3805DE000, 8192, 0x338F0000) = 8192

pread(257, 0x381C1C000, 8192, 0x33B78000) = 8192

pread(257, 0x381C9E000, 8192, 0x33BB0000) = 8192

pread(257, 0x3820D2000, 8192, 0x332E2000) = 8192

pread(257, 0x381BA0000, 8192, 0x338B2000) = 8192

pread(257, 0x381C84000, 8192, 0x35F62000) = 8192

pread(257, 0x380B4C000, 8192, 0x35F74000) = 8192

pread(257, 0x3805AC000, 8192, 0x35DBE000) = 8192

pread(257, 0x38050E000, 8192, 0x35EEC000) = 8192

pread(257, 0x3804E0000, 8192, 0x35EFE000) = 8192

pread(257, 0x381F8E000, 8192, 0x35F24000) = 8192

pread(257, 0x3820E2000, 8192, 0x35E42000) = 8192

pread(257, 0x380CDA000, 8192, 0x35E38000) = 8192

pread(257, 0x381C74000, 8192, 0x35F3E000) = 8192

pread(257, 0x380AEC000, 8192, 0x35EBA000) = 8192

pread(257, 0x3805BC000, 8192, 0x35EF4000) = 8192

Buffer Header Examination

SQL> select file#, dbablk, ba from x$bh where obj = 292723 order by 1,2;

FILE# DBABLK BA

---------- ---------- ----------------

23 99337 0000000382352000

23 110303 00000003805AC000

23 110364 0000000380CDA000

23 110369 00000003820E2000

23 110429 0000000380AEC000

23 110454 000000038050E000

23 110458 00000003805BC000

23 110463 00000003804E0000

23 110482 0000000381F8E000

23 110495 0000000381C74000

23 110513 0000000381C84000

23 110522 0000000380B4C000

23 105561 0000000381BA0000

23 105592 00000003805DE000

23 105746 0000000381C14000

23 104817 00000003820D2000

23 105900 000000038061A000

23 105916 0000000381C1C000

23 105930 000000038239A000

23 105944 0000000381C9E000

©2005 Convergys Corporation www.converg ys.com 9

Why Have Scattered Thoughts About Oracle Reads?

The sequence of db file sequential read events as they appear in the extended SQL trace and their corresponding
(file#,block#) attributes are joined to the truss and buffer header data. The following table articulates this join.

The truss pread() addresses are provided to corroborate the integrity of the x$bh.ba attribute. It is easy to see that
in this case each memory address associated with each successive db file sequential read is not contiguous with
the previous address, i.e. previous address + 8192. The idea that successive db file sequential read events equate to
sequentially or contiguously stored memory buffers is contradicted by a single counterexample. This is very easily
reproduced. More pointedly, in a mildly seasoned buffer cache of reasonable size it would be extremely improbable
to find buffer addresses of successive db file sequential read events that are contiguous.

db file sequential read (multi-block)

In the extremely unlikely4 event you encounter a multi-block db file sequential read, that reads blocks into the SGA, it
would suffer the same low probability fate regarding the contiguous nature of the buffers in memory. For multi-block
db file sequential read events the first N addresses found on the LRU chain would be used in the same manner as the
Oracle or UNIX managed scatter-read, yet would not necessarily preserve physical order. Otherwise the event could
not be differentiated from a db file scattered read.

I have encountered multi-block db file sequential reads that place temporary segment blocks into the PGA in Oracle7
and Oracle8. In all such cases the blocks were placed into contiguous PGA memory.

db file sequential read (contiguous memory)

The notion of contiguous memory in the context of a db file sequential read event can be interpreted several ways. You
might be the Oracle scientist that believes the segment block size is the Oracle buffer cache memory quantum. Or,
your notion might be all real memory is comprised of bits and contiguous memory is simply a stream of contiguous
memory bits. Both assertions are correct and do not materially affect the notion that a db file sequential read stores
blocks into contiguous memory. A single-block db file sequential read event reading into the SGA is inherently
self-contiguous from either perspective. A single Oracle block, when placed in memory, is comprised of a single
self-contiguous buffer or a contiguous stream of bits in memory.

©2005 Convergys Corporation www.converg ys.com 10

Why Have Scattered Thoughts About Oracle Reads?

Sequent ial
Read Ev ent
Sequenc e#

Extende d SQL
Trace

File#,B lock#

X$BH.BA truss
pread()
Address

1 23,1057 46 0000000 381C1 4000 0x381C1 4000

2 23,1059 00 0000000 38061 A000 0x38061 A000

3 23,1059 30 0000000 38239 A000 0x38239 A000

4 23,1055 92 0000000 3805D E000 0x3805D E000

5 23,1059 16 0000000 381C1 C000 0x381C1 C000

6 23,1059 44 0000000 381C9 E000 0x381C9 E000

7 23,1048 17 0000000 3820D 2000 0x3820D 2000

8 23,1055 61 0000000 381BA 0000 0x381BA 0000

9 23,1105 13 0000000 381C8 4000 0x381C8 4000

10 23,1105 22 0000000 380B4 C000 0x380B4 C000

11 23,1103 03 0000000 3805A C000 0x3805A C000

12 23,1104 54 0000000 38050 E000 0x38050 E000

13 23,1104 63 0000000 3804E 0000 0x3804E 0000

14 23,1104 82 0000000 381F8 E000 0x381F8 E000

15 23,1103 69 0000000 3820E 2000 0x3820E 2000

16 23,1103 64 0000000 380CD A000 0x380CD A000

17 23,1104 95 0000000 381C7 4000 0x381C7 4000

18 23,1104 29 0000000 380AE C000 0x380AE C000

19 23,1104 58 0000000 3805B C000 0x3805B C000

CONCLUSION

The Oracle kernel developers might have labeled the db file sequential read and db file scattered read events according
to how Oracle blocks are stored in memory. However, it has been exhibited that a db file scattered read event can
perform a contiguous read into the PGA prior to copying the blocks to the SGA, which is only reconciled by Oracle
managed scatter-reads. Also, it has been shown that the contiguous memory notion of a single-block db file sequential
read requires clarification given a prevailing sense that the Oracle buffer cache quantum is the segment block size.

When the Oracle Wait Interface was introduced in Oracle7 (Shee, Deshpande and Gopalakrishnan xxv), similar to
today in 10g, the overwhelming vast majority of physical read operations in Oracle databases were either single-block
contiguous reads called db file sequential read events, or multi-block scatter-reads called db file scattered read events.
Most Oracle scientists probably discard the nomenclature of these events for the greater purpose of understanding
their implications in optimization. The newly aspiring or even seasoned Oracle scientist might stumble on the
nomenclature within the context of how the blocks are stored in memory; hopefully this exposition shortens a
potential sojourn in confusion on your path to Oracle optimization.

NOTES

1 This assumes db_file_multiblock_read_count=8. A single oramalloc() call could have been made to return the requisite
number of addresses. Since this is a hypothetical function it has been reduced to atomic operations for clarity, not
performance.
2 UNIX system programmers refer to a read from disk using readv() as scatter-read and is the read component of
scatter/gather I/O.
3 Refer to Oracle8i Internal Services by Steve Adams for an explanation of the Call Global Area.
4 Although I have not encountered or seen documented a multi-block db file sequential read event placing blocks into the
SGA, I will not rule it out. This case is included to exhaust the alternate perceptions of buffer continuity with db file
sequential read events.

REFERENCES

Adams, Steve. “Re: X$BH.BA.” E-mail to Steve Adams. 12 April 2005.
Holt, Jeff. “Why are Oracle’s Read Events ‘Named Backwards’?” http://www.hotsos.com (Feb. 1, 2000).
Holt, Jeff. “Predicting Multi-Block Read Call Size.” http://www.hotsos.com (Jan. 3, 2000).
Shee, Richmond, Kirtikumar Deshpande, and K. Gopalakrishnan. Oracle Wait Interface: A Practical Guide to
Performance Diagnostics and Tuning. Emeryville: McGraw-Hill/Osborne, 2004.
Stevens, Richard W. Advanced Programming in the UNIX Environment. 3rd ed. Reading: Addison-Wesley, 1992.

ACKNOWLEDGEMENTS

Special thanks to my colleagues Mike Wielonski, Darin Brown, Mike Witt and Michael Eubanks for their valuable
feedback and commitment to knowledge.

©2005 Convergys Corporation www.converg ys.com 11

Why Have Scattered Thoughts About Oracle Reads?

©2005 Convergys Corporation www.converg ys.com

Why Have Scattered Thoughts About Oracle Reads?

C O N T A C T I N F O R M A T I O N

I N D U S T RY A N A LY S T S T R A D E M E D I A

B OBBY D’ARCY JEFF HAZEL

bobby.d’arcy@convergys.com jeff.hazel@convergys.com

513 723 6956 513 723 7153

www.convergys.com

Convergys Corporation (NYSE: CVG) is a global leader in providing customer care, human resources, and billing
services. Convergys combines specialized knowledge and expertise with solid execution to deliver outsourced
solutions, consulting services, and software support. Clients in more than 60 countries speaking nearly 30 languages
depend on Convergys to manage the increasing complexity and cost of caring for customers and employees. Convergys
serves the world's leading companies in many industries including communications, financial services, technology, and
consumer products.

Convergys is a member of the S&P 500 and a Fortune Most Admired Company. Headquartered in Cincinnati, Ohio,
Convergys has more than 66,000 employees in 65 customer contact centers, three data centers, and other facilities in the
United States, Canada, Latin America, Europe, the Middle East, and Asia. For more information visit www.convergys.com.

P R O D U C T S Y S T E M S

ERIC EMRICK

eric.s.emrick@convergys.com

513 723 6944

Corporate Headquarters
201 East Fourth Street
Cincinnati, Ohio 45202 USA
Tel: 513 723 7000
Fax: 513 421 8624

Regional Headquarters
Europe, Middle East & Africa
Cambourne Business Park, Cambourne
Cambridge CB3 6DN, UK
Tel: 44 1223 705000
Fax: 44 1223 705001

Latin America
CENU – Av.das Nacoes Unidas,
12.901-34 andar – Torre Norte
CEP: 04578-000 – Sao Paulo – Brasil
Tel: 55 11 5102 1800
Fax: 55 11 5102 1911

Asia Pacific
30 Cecil Street #11-08 Prudential Tower
Singapore 049712
Tel: 65 6557 2277
Fax: 65 6557 2727

For more information on our products and
services, please visit www.convergys.com
or call 1 800 344 3000 or 513 458 1300.

© 2005 Convergys Corporation. All rights reserved. Convergys and the Convergys logo are registered trademarks of Convergys. Convergys refers to Convergys Corporation and its wholly owned subsidiaries. All other trademarks are the
property of their respective owners. Every effort has been made to ensure that the information obtained in this document is true and correct at the time of going to press. However, the products and specifications and content in general described
in this document are subject to continuous development and improvement and Convergys is entitled to change them at any time. Convergys cannot accept liability for any loss or damage of any nature whatsoever arising or resulting from the use
of or reliance on information or particulars in this document. The information contained in this document is of a general nature. Should you require further advice for your particular business requirements, please refer to the contact details above.

