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Getting optimum performance for mission-critical Oracle systems is an extremely complex 
task. For senior Oracle DBAs, measuring internal services waits within an Oracle database is 
a critical aspect of advanced response-time profiling. This article is extremely complex 
because the internals of Oracle response-time are, by their nature, very complex. However, 
this article provides an excellent overview of the complex world of Oracle response-time, and 
a good starting point for those Oracle professionals who wish to become intimate with Oracle 
internal response-time mechanisms. This is not a trivial article; it may require several read-
ings to fully understand the internal response-time mechanisms and the commands that are 
used to gather the response-time information, but it is worthwhile if your goal is to fully 
understand the complex interactions between Oracle and the operating system.

Goal
Solving performance-related problems requires an understanding of the measurement tech-
niques. The accuracy of measurements is an important factor in all types of research. How-
ever, there are no 100-percent accurate measurements in Nature; there are always some 
distortions in the measurements. How can a method be accepted as an accurate method? The 
answer depends on the impact of measurement errors.

The goal of this article is to adapt microstate accounting, which is a more accurate mea-
surement technique provided by OS (operating system) vendors, to database management 
systems (DBMSs).

Microstate Response-time Performance Profiling (MRRP) for Oracle is not a new perfor-
mance modeling technique, but it is a new performance profiling technique for Oracle. It 
adapts microstate accounting to Oracle by using universal response time performance mod-
eling.

In this article, Oracle and UNIX are used as the DBMS and OS, respectively. However, the 
concept can be easly adapted to other DBMS.

The following articles should be read prior to reading this article:

� “Response Time Analysis for Oracle Based Systems”1

� “Yet Another Performance Profiling (YAPP)”2

� “How Busy Is the CPU, Really?”3

� “Prying into Processes and Workloads”4
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Microstate Response-Time Performance Profiling (MRPP)

Measurement of Oracle Services 
and Waits in OS Level
Measurement of Oracle Services  
in OS Level
Oracle measures CPU usage by the CPU used by this ses-
sion statistic. This is done via getrusage() or times() sys-
tem calls  depending on platforms. Exhibit 1 shows a 
sample output.

Oracle uses the getrusage() system call to find CPU 
usage in user mode(ru_utime), and CPU usage in 
kernel mode or system mode(ru_stime).

Measurement of Oracle Waits in OS Level
There are three wait mechanisms in Oracle according to 
wait measurement techniques:

1. Synchronous wait mechanism

2. Asynchronous wait mechanism

3. Timed out wait mechanism

Synchronous Wait Mechanism. In this mechanism, 
after wait is requested, Oracle process is immediately put 
into the OS wait-queue. Until wait-event is completed, 
process sleeps in OS wait-queue. When wait-event is 

Exhibit 1. Test Case: strace Command Output on SuSELinux 7.2/Oracle 8.1.7

19:56:05 gettimeofday({1000781765, 366717}, NULL) = 0
19:56:05 getrusage(RUSAGE_SELF, {ru_utime={0, 80000}, ru_stime={0, 10000}, ...}) = 0
19:56:05 gettimeofday({1000781765, 367403}, NULL) = 0
� Continued on Page 3
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Microstate Response-Time Performance Profiling (MRPP)
completed, OS kernel posts the waiting process and 
makes it runnable.

Oracle uses gettimeofday() system call before and 
after wait-event. The time difference between them is 
updated in dictionary as wait-time of event. Exhibit 2 
shows a sample output.

Oracle gets time by gettimeofday() system call before 
and after pread() system call. The difference between 
them is added to wait-time of wait-event.

Some wait-events that use the synchronous wait 
mechanism include:

� db file scattered read
� db file sequential read
� SQL*Net message from client
� SQL*Net message to client

V$SESSION_EVENT.TOTAL_TIMEOUTS and 
V$SYSTEM_EVENT.TOTAL_TIMEOUTS are always 0 
for this type of wait-event.

Asynchronous Wait Mechanism. Async I/O rou-
tines provide the ability to do real asynchronous I/O in an 
application. This is accomplished by allowing the calling 
process or thread to continue processing after issuing a 
read or write and receive notification either upon com-
pletion of the I/O operation or of an error condition that 
prevented the I/O from being completed.7

Oracle uses the asynchronous wait mechanism in 
asynchronous I/O (AIO) operations. By this mechanism, 
process does not enter wait-queue immediately after the 
AIO request is submitted. So, while the AIO operation is 
continuing on disk, process continues its computations 

on CPU. That is, service and wait can be implemented in 
parallel.

From an Oracle perspective, the wait-time during AIO 
is the actual wait-time in user level, not in OS level. The 
process does not start waiting immediately; it starts wait-
ing if there is nothing to do on CPU.

Here are some wait-events that use the asynchronous 
wait mechanism if AIO is available in both Oracle and OS:

� Direct path read
� Direct path write

Timed Out Wait Mechanism. In the timed-out 
mechanism, process does not have to wait for posting by 
OS kernel. Process wakes up after a specific timeout and 
checks if resource is available. If resource is available, 
process gets it; if not, process goes to sleep again. The 
wait-time is updated in each timeout.

Process timer information is written to OS timer 
queue, which includes process current timeout informa-
tion. This timeout information is calculated/updated at 
each clock cycle by an OS-specific algorithm.

If there are a lot of timed-out based waits in a data-
base, OS kernel CPU usage may become high because OS 
kernel calculates/updates OS timer queue.

V$SESSION_EVENT.TOTAL_TIMEOUTS and 
V$SYSTEM_EVENT.TOTAL_TIMEOUTS are incre-
mented in each timeout.

There are two mechanisms to implement timeouts:

1. FIFO ordered timeouts
2. Non-ordered timeouts

Exhibit 2. Test Case: strace Command Output on SuSELinux 7.2/Oracle 8.1.7

15:26:02.348478 gettimeofday({1003530362, 348525}, NULL) = 0
15:26:02.348564 gettimeofday({1003530362, 348588}, NULL) = 0
15:26:02.348659 pread(409,
“\6\2\0\0\240\27\200\0\325\227\7\0\0\0\2\0\0\0\0\0\1\0\7\0_\f\0\0\210I
\7\0\0\0\24P\2\6\3\0\30/\200\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\1\236\0\0\0
N\1\354\3R\6R\6\0\0\236\0\1\0\2\0\3\0\4\0\5\0”...,
2048, 12386304) = 2048
15:26:02.348995 gettimeofday({1003530362, 349035}, NULL) = 0
15:26:02.349174 gettimeofday({1003530362, 349209}, NULL) = 0
15:26:02.349260 write(6, “WAIT #1: nam=\'db file sequential read\' 
ela= 0 p1=2 p2=6048 p3=1”, 63) = 63
15:26:02.349341 write(6, “\n”, 1)       = 1
Copyright 2002 CRC Press LLC Oracle Internals
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The FIFO (first-in, first-out) ordered timeout mechanism 
is used by wait-events that need serializations. This mech-
anism uses the semaphore facilities of OS. Semaphore 
operations include hardware-based atomic instructions to 
protect critical sections in source code, and processes are 
queued in FIFO order in semaphore operations.

Before waiting, process sets OS alarm clock (normally 
three seconds, but changes according to wait events) 
using setitimer() system call. When timeout occurs, a 
SIGALRM signal is delivered by OS to waiting process. If 
a SIGALRM signal is received by a waiting process and 
resource is not still available, OS alarm clock is set again 
for that process, so timer is restarted; if resource is avail-
able, timer is switched off using setitimer() system call 
and process gets resource.

FIFO ordered timeouts are postable. That means 
waiting process can be posted by OS kernel before time-
out occurs. This mechanism has the pseudo code shown 
in Exhibit 3.

Here are the system calls of a process while waiting 
for locked resources in enqueue (TX) wait-event. As 
seen in Exhibit 4, there is a loop running around each 
three seconds.

Some wait-events that use FIFO ordered timeouts 
wait mechanism include:

� Free buffer waits
� Write complete waits
� Buffer busy waits
� Enqueue

A non-ordered timeout mechanism is used by wait-
event which requires timeout mechanism without an 
order. A latch free wait event uses non-ordered timeouts. 
Because latch operations do not need to be done in FIFO 

order, there is no need for a semaphore queue for latch 
free wait-event. Atomic instructions such as test-and-set, 
compare-and-swap, etc. are sufficient, instead of expen-
sive semaphore operations. That is why Oracle does not 
use semaphores in latch operations.

Exhibit 5 lists some assembly codes. The function 
sskgslcas ( ) includes a compare-and-swap instruc-
tion called lock cmpxchg.

The lock prefix invokes a locked (atomic) read-mod-
ify-write operation when modifying a memory operand.6

If a process tries to get a latch in willing-to-wait mode, 
it spins CPU by _SPIN_COUNT times on multi-processor 
systems. If _SPIN_COUNT is greater than 1 on single-
processor machines, it is ignored.

If a process cannot get latch after spinning, it sleeps by 
using select() system call. The select() system call can 
measure timeout values down to microseconds.

As seen in Exhibit 6, Oracle does not use file descriptors 
in select() to check if there is available data for file descrip-
tors. Just the <timeout> value is used. By using select() sys-
tem call in this way, select() system call causes sleep until 
<timeout> occurs unless process is interrupted by a signal.

There are two mechanisms to implement non-ordered 
timeouts:

1. Postable non-ordered timeouts

2. Non-postable non-ordered timeouts

If _LATCH_WAIT_POSTING=1, which is the default, 
waiting process can be interrupted for library cache and 
shared pool latches only, and gets these latches. If 
_LATCH_WAIT_POSTING>1, waiting process can be 
interrupted for all latches, and gets latches. If 

Exhibit 3. Pseudo Code for FIFO Ordered Timeouts Wait Mechanism

while (resource_not_available)
  {
      setitimer();
      if (semop()==0) break;    // if TRUE resource is available,
                                // otherwise sleeps by using semaphore
      if (SIGALRM)              // signal handling
         {
            if (resource_is_available) break;
         }
   }
Oracle Internals Copyright 2002 CRC Press LLC
January 2003 All Rights Reserved
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_LATCH_WAIT_POSTING=0, process that is waiting for 
latch is never posted, even if latch is free.

Measurement Errors
There are several types of measurement errors, including 
OS measurement errors, Oracle measurement errors, and 
user measurement errors. This section discusses perfor-
mance-related measurement errors on Oracle by examin-
ing OS, Oracle, and user measurement errors.

Service Measurement Errors
Active Service Measurement Error. active service 
is the service of a process while it is running on CPU.

OS updates CPU usage of running process in each 
clock tick. This update is not the time spent by process 
on CPU; rather, it is just a clock tick. The clock tick value 
of a process on CPU is incremented by one in each clock 

Exhibit 4. Test Case: strace Command Output on SuSELinux 7.2/Oracle 8.1.7

19:56:00 --- SIGALRM (Alarm clock) ---
19:56:00 rt_sigprocmask(SIG_BLOCK, [], NULL, 8) = 0
19:56:00 gettimeofday({1000781760, 944916}, NULL) = 0
19:56:00 rt_sigprocmask(SIG_UNBLOCK, [], NULL, 8) = 0
19:56:00 rt_sigprocmask(SIG_SETMASK, [RT_0], NULL, 8) = 0
19:56:00 rt_sigprocmask(SIG_BLOCK, [ALRM], NULL, 8) = 0
19:56:00 setitimer(ITIMER_REAL, {it_interval={0, 0}, it_value={0, 0}}, NULL) = 0
19:56:00 rt_sigprocmask(SIG_UNBLOCK, [ALRM], NULL, 8) = 0
19:56:00 gettimeofday({1000781760, 945344}, NULL) = 0
19:56:00 gettimeofday({1000781760, 945446}, NULL) = 0
19:56:00 rt_sigprocmask(SIG_BLOCK, NULL, [RT_0], 8) = 0
19:56:00 rt_sigprocmask(SIG_BLOCK, [ALRM], NULL, 8) = 0
19:56:00 gettimeofday({1000781760, 945649}, NULL) = 0
19:56:00 setitimer(ITIMER_REAL, {it_interval={0, 0}, it_value={3, 70000}}, NULL) = 0
19:56:00 rt_sigprocmask(SIG_UNBLOCK, [ALRM], NULL, 8) = 0
19:56:00 semop(98304, 0xbfffa8f4, 1)    = -1 EINTR (Interrupted system call)

19:56:04 --- SIGALRM (Alarm clock) ---
19:56:04 rt_sigprocmask(SIG_BLOCK, [], NULL, 8) = 0
19:56:04 gettimeofday({1000781764, 14912}, NULL) = 0
19:56:04 rt_sigprocmask(SIG_UNBLOCK, [], NULL, 8) = 0
19:56:04 rt_sigprocmask(SIG_SETMASK, [RT_0], NULL, 8) = 0
19:56:04 rt_sigprocmask(SIG_BLOCK, [ALRM], NULL, 8) = 0
19:56:04 setitimer(ITIMER_REAL, {it_interval={0, 0}, it_value={0, 0}}, NULL) = 0
19:56:04 rt_sigprocmask(SIG_UNBLOCK, [ALRM], NULL, 8) = 0
19:56:04 gettimeofday({1000781764, 15410}, NULL) = 0
19:56:04 gettimeofday({1000781764, 15498}, NULL) = 0
19:56:04 rt_sigprocmask(SIG_BLOCK, NULL, [RT_0], 8) = 0
19:56:04 rt_sigprocmask(SIG_BLOCK, [ALRM], NULL, 8) = 0
19:56:04 gettimeofday({1000781764, 15686}, NULL) = 0
19:56:04 setitimer(ITIMER_REAL, {it_interval={0, 0}, it_value={3, 70000}}, NULL) = 0
19:56:04 rt_sigprocmask(SIG_UNBLOCK, [ALRM], NULL, 8) = 0
19:56:04 semop(98304, 0xbfffa8f4, 1)    = 0

Exhibit 5. Test Case: objdump -d Command Output of oracle Executable on SuSELinux 7.2 (x86)/Oracle 8.1.7

08c2c272 <sskgslcas>:
 8c2c272:       8b  4c  24  04                          mov        0x4(%esp,1),%ecx
 8c2c276:       8b  44  24  08                          mov        0x8(%esp,1),%eax
 8c2c27a:       8b  54  24  0c                          mov        0xc(%esp,1),%edx
 8c2c27e:       f0  0f  b1  11                          lock  cmpxchg %edx,(%ecx)
 8c2c282:       75  06                                  jne          8c2c28a  <.failed_cmp>
 8c2c284:       b8  01  00  00  00                      mov          $0x1,%eax
 8c2c289:       c3                                      ret
Copyright 2002 CRC Press LLC Oracle Internals
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tick. Whether or not running on CPU is not important. If 
process is on CPU but waits for an event such as fetching 
from memory, then clock tick is assigned to process.

When Oracle uses getrusages() system call, getru-
sages() converts tick numbers to time by dividing tick 
numbers by HZ value of OS. A typical HZ value is 100 
ticks per second, which means a  typical clock tick rate is 
10 milliseconds (ms) per tick.

This method causes some measurement errors called 
active service measurement errors. Exhibit 7 shows the 
measurement error samples.

Measurement errors include:

� Phase 1: process runs 5 ms. It starts after clock 
tick 0 and relinquishes CPU before clock tick 1. 
When clock tick 1 occurs, OS kernel will not be 
able to update process CPU usage because pro-
cess is not running on CPU.

• Result: process CPU time, which is 5 ms, was 
lost.

� Phase 2: process runs 5 ms. It starts before clock 
tick 2 and relinquishes CPU before clock tick 3. 
When clock tick 2 occurs, this clock tick is assigned 
to current running process. This means that the 
tick number of current running process is incre-
mented by one. Because each clock tick is 10 ms, 
process CPU usage is incremented by 10 ms.

• Result: although process CPU time is 5 ms, 
10 ms are measured. CPU time was measured 
higher.

� Phase 3: process runs 15 ms. It starts before clock 
tick 4 and relinquishes CPU before clock tick 5. 
When clock tick 4 occurs, this clock tick is assigned 
to current running process. That is, the tick num-
ber of current running process is incremented by 
one. Because each clock tick is 10 ms, process CPU 
usage is incremented by 10 ms. The process keeps 

Exhibit 6. Test Case: strace Command Output on SuSELinux 7.2/Oracle 8.1.7

16:56:07.107143 gettimeofday({1003708567, 107165}, NULL) = 0
16:56:07.107199 gettimeofday({1003708567, 107221}, NULL) = 0
16:56:07.107251 gettimeofday({1003708567, 107271}, NULL) = 0
16:56:07.107525 gettimeofday({1003708567, 107585}, NULL) = 0
16:56:07.107698 select(0, [], [], [], {0, 10001}) = 0 (Timeout)
16:56:07.172634 gettimeofday({1003708567, 172688}, NULL) = 0
16:56:07.172787 gettimeofday({1003708567, 172815}, NULL) = 0
16:56:07.172866 write(6, “WAIT #1: nam=\'latch free\' ela= 7 p1=1343645620 p2=66 p3=0”, 57) = 57
16:56:07.172955 write(6, “\n”, 1)       = 1

Exhibit 7. CPU Measurement Errors
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running after clock tick 4, and this remaining time 
is not measured because process relinquishes CPU 
before clock tick 5.

• Result: although process CPU time is 15 ms, 
10 ms are measured. CPU time was measured 
lower.

The error is minimal at high usage levels, but ranges 
up to 80 percent or more at low levels. The problem is 
that usage is underreported, and the range of error 
increases on faster CPUs. At a real usage level of 5 per-
cent busy, one will often see vmstat reporting that the 
system is only 1 percent busy.3

Active Wait Measurement Errors. When a process 
runs in OS perspective, but it seems like a wait in user 
perspective, that process is in active wait. There are two 
types of active waits in Oracle:

1. Latch-spinning

2. Wait-loop

Because the time spent for these operations is included in 
service time, it may cause measurement errors. This type 
of error is called an active wait measurement error.

Spinning time is included in the CPU used by this ses-
sion statistic. That is, although process is waiting in user 
perspective, the time spent in spinning is included in 
both OS perspective and Oracle perspective. This means 
that latch-spinnings are seen as if running.

Oracle wait-events wake up in a loop for wait-events 
that implement timed out wait mechanism until they get 
resources. This loop occupies CPU.

Exhibit 8 shows a sample enqueue (TX) wait-event of 
DELETE operation. Most CPU usage in a wait-loop is 
done in kernel mode. There is little time spent in user 
mode (see Exhibit 9).

CPU used by this session is updated after DELETE 
statement is completed, and this statistic also includes 
time spent in CPU during wait-loop. That is, CPU used 
by this session includes CPU usage although process is 
waiting.

Exhibit 8. Test Case: SuSELinux 7.2/Oracle 8.1.7 and strace Command for OS Side

TIME STATISTICS BEFORE DELETE OPERATION:

In Oracle side:

SID        NAME                                           VALUE
---------- ---------------------------------------------- ----------
         9 CPU used when call started                              1
         9 CPU used by this session                                1
         9 OS User time used                                       5
         9 OS System time used                                     1
4 rows selected.

In OS side:

21:19:57.303910 getrusage(RUSAGE_SELF, {ru_utime={0, 50000}, ru_stime={0, 10000}, ...}) = 0

A SNAPSHOT OF TIME STATISTICS IN WAIT-LOOP:

In Oracle side:

SID        NAME                                          VALUE
---------- --------------------------------------------- ----------
         9 CPU used when call started                             1
         9 CPU used by this session                               1
         9 OS User time used                                     15
         9 OS System time used                                  114
4 rows selected.

In OS side:

22:36:18.468218 getrusage(RUSAGE_SELF, {ru_utime={0, 150000}, ru_stime={1, 140000}, ...}) = 0
Copyright 2002 CRC Press LLC Oracle Internals
All Rights Reserved January 2003 7



8

Microstate Response-Time Performance Profiling (MRPP)
Exhibit 10 shows a sample enqueue wait-event of the 
DELETE operation. As seen, the wait-loop impact 
increases while enqueued sessions are increased. Here are 
the interpretations for the following timed terms:

� Average wait-loop elapsed time

� Average wait-loop CPU time
� Average wait-loop utilization
� Average wait-loop impact in system level

Wait-loop elapsed time shows the approximate time 
spent in wait-loops. It includes time spent of all possible 

Exhibit 9. Time Statistics after DELETE Operation

In Oracle side:

SID        NAME                                          VALUE
---------- --------------------------------------------- ----------
         9 CPU used when call started                             1
         9 CPU used by this session                             124
         9 OS User time used                                     15
         9 OS System time used                                  114
4 rows selected.

In OS side:

22:36:33.101442 getrusage(RUSAGE_SELF, {ru_utime={0, 150000}, ru_stime={1, 140000}, ...}) = 0

Exhibit 10. Test Case: 766 MHz SuSELinux 7.2/Oracle 8.1.7

Total sessions: 10

Enqueued sessions: 1

Vmstat:

procs               memory   swap            io     system         cpu
r b w   swpd free buff cache si  so    bi    bo   in    cs  us  sy  id
0 0 0  30664 9628 1164 78580  0   0     0     8  103    84   0   0 100
Wait-loop impact per session: 1.670 ms

Total sessions: 60

Enqueued sessions: 51

Vmstat:

procs               memory   swap            io     system         cpu
r b w   swpd free buff cache si  so    bi    bo   in    cs  us  sy  id
0 0 0  57240 1396  520 45552  0   0     0     4  102   106   0   1  99
Wait-loop impact per session: 1.688 ms

Total sessions: 210

Enqueued sessions: 202

Vmstat:

procs               memory   swap            io     system         cpu
r b w   swpd free buff cache si  so    bi    bo   in    cs  us  sy  id
0 0 1 248948 1504  476 37776  0   0     0    12  110   187   1   5  94
Wait-loop impact per session: 1.752 ms 
Oracle Internals Copyright 2002 CRC Press LLC
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events in wait-loops, such as CPU usage, OS activities 
such page faults, context switches, etc.

Exhibit 11 shows a wait-loop that has average values. 
The first instruction starts at 14:38:24.736238, and the 
last instruction (semop) starts at 14:38:24.737990. The 
time difference between them is 0.001752 seconds, equal 
to 1.752 ms wall-clock time. This is an average value and 
does not include time spent in the semop() system call. 
So, the average wait-loop elapsed time is 1.752 ms.

Exhibit 12 shows a CPU usage summary of wait-loop 
system calls that has average values. There are 13 
semop() system calls. Because each loop includes one 
semop() system call, there are 13 loops in this sample. It 
was found that the kernel mode is predominantly used in 
wait-loops. So, the time spent in system calls can be 
approximately accepted as the average wait-loop CPU 
time. Thus, the average wait-loop CPU time = 
0.000443/13 = 0.034 ms.

Wait-loop utilization = 100* (average wait-loop 
CPU usage) / (average wait-loop elapsed time)

= 100 * (0,034/1.752)

= 1.94%

The wait-loop utilization is too low. This means that 
most of the time in the wait-loop was spent in OS-specific 
tasks such as page faults, context switches, etc. These OS 
tasks were recorded to enqueue wait-event by Oracle.

The wait-loop impact may be small in session level. 
However, it becomes larger when the number of sessions 
increases. For example:

wait-loop impact in system level = (wait-loop 
impact per session) * (average timed out  
sessions)

= 1.752 ms * (202)

= 353,904 ms

= 0.354 sec

Because enqueue timeout normally occurs every three 
seconds in this test case, there will be 0.354 seconds total 

Exhibit 11. Wait-Loop System Calls

14:38:24.736238 --- SIGALRM (Alarm clock) ---
14:38:24.736782 rt_sigprocmask(SIG_BLOCK, [], NULL, 8) = 0
14:38:24.736937 gettimeofday({944433504, 736967}, NULL) = 0
14:38:24.737007 rt_sigprocmask(SIG_UNBLOCK, [], NULL, 8) = 0
14:38:24.737091 rt_sigprocmask(SIG_SETMASK, [RT_0], NULL, 8) = 0
14:38:24.737183 rt_sigprocmask(SIG_BLOCK, [ALRM], NULL, 8) = 0
14:38:24.737269 setitimer(ITIMER_REAL, {it_interval={0, 0}, it_value={0, 0}}, NULL) = 0
14:38:24.737341 rt_sigprocmask(SIG_UNBLOCK, [ALRM], NULL, 8) = 0
14:38:24.737428 gettimeofday({944433504, 737452}, NULL) = 0
14:38:24.737531 gettimeofday({944433504, 737562}, NULL) = 0
14:38:24.737610 rt_sigprocmask(SIG_BLOCK, NULL, [RT_0], 8) = 0
14:38:24.737699 rt_sigprocmask(SIG_BLOCK, [ALRM], NULL, 8) = 0
14:38:24.737779 gettimeofday({944433504, 737806}, NULL) = 0
14:38:24.737844 setitimer(ITIMER_REAL, {it_interval={0, 0}, it_value={3, 70000}}, NULL) = 0
14:38:24.737912 rt_sigprocmask(SIG_UNBLOCK, [ALRM], NULL, 8) = 0
14:38:24.737990 semop(98304, 0xbfffa5c4, 1) = -1 EINTR (Interrupted system call)

Exhibit 12. CPU Usage Summary of Wait-Loop System Calls

oracle@linux:~/test5 > strace -p 714 -tt -c
% time     seconds  usecs/call     calls    errors syscall
------ ----------- ----------- --------- --------- ----------------
 52.82    0.000234           2       109           rt_sigprocmask
 22.57    0.000100           2        55           gettimeofday
 21.67    0.000096           3        28           setitimer
  2.93    0.000013           1        13        13 semop
------ ----------- ----------- --------- --------- ----------------
100.00    0.000443                   205        13 total
Copyright 2002 CRC Press LLC Oracle Internals
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wait-loop impact every three seconds. This means that 
the total wait-loop impact will be increased every three 
seconds. Because time spent in wait-loops is recorded as 
relevant Oracle wait-events, it distorts Oracle wait-events.

Wait Measurement Errors
Inactive Wait Measurement Errors. If a running 
process is stopped by Oracle process itself, its called pro-
cess is in inactive wait. Sleeping during inactive waits is 
controlled by Oracle. That is, inactive waits are Oracle 
wait-events.

If a process completes its waiting or wait-timeout 
occurs, it does not get the CPU immediately. It is put into 
the ready (runnable) queue first. Then, when a CPU is 
assigned, the process is determined by CPU Scheduler. 
Operations from taking the process from wait-queue to 
assigning the CPU to a process are done by OS kernel.

When an Oracle process gets CPU, it updates its wait-
time. This wait-time includes wait-time in wait-queue, 
wait-time in ready (runnable) queue, preemption latency 
time, context switch time, and any operations such as 
swapping, paging etc. during Oracle waits. This means 
there are some other operations included in Oracle waits. 
Time spent in these non-Oracle operations are called inac-
tive wait measurement errors. Inactive wait measurement 
errors make Oracle waits distorted and overvalued.

Exhibit 13 shows a sample measurement error. An Ora-
cle process slept 1 centisecond (10,001 microseconds) on 
wait-queue by select() system call. After getting CPU, pro-
cess measured elapsed time by gettimeofday() system call 
(7 centiseconds) and updated the latch sleep time by 7 cen-
tiseconds. However, this is the total time and includes 
latch-sleep time in wait-queue, wait-time in the ready 
(runnable) queue, preemption latency time, and context 

switch time. In fact, the time spent in latch-sleep was 1 
centisecond. Other rounded 6 centiseconds were caused by 
other components of the system, not by Oracle latch.

If there are bottlenecks in CPUs, the number of pro-
cesses in ready (runnable) queue increases. This mani-
fests as if problems are in Oracle wait-events.

Inactive Service Measurement Errors. If a run-
ning process is stopped by OS kernel, its called process is 
in inactive service. A running process can be stopped by 
OS for preempting, swapping, paging, etc.

Sleeping during inactive services are not controlled by 
Oracle. Oracle processes do not know this state. Time 
spent in inactive services is called an inactive service 
measurement error. This error is not included in Oracle 
waits. In other words, it is missed.

Recurring Waits. If a wait-event occurs for the same 
resource in multiple sessions at the same time,it is called a
recurring wait. Adding up the time spent in each 
wait-event to total wait-time may give distorted results.5

For example, let a log switch completion take 2 seconds. 
If five processes wait for log file switch completion  
wait-event at the same time through these 2 seconds,
the total time spent in the log file switch completion 
wait-event will be 5 × 2 = 10 seconds. But, in fact,
 it takes 2 seconds in system.

The log file switch completion wait-event is a recur-
ring wait-event because it occurs one time in system 
level, but recurrs multiple times in session level. 

Exhibit 14 shows the recurring wait measurement 
errors. While the number of sessions increases, cumulative 
measurements may be distorted. Average waits per session 

Exhibit 13. Test Case: strace Command Output on SuSELinux 7.2/Oracle 8.1.7

16:56:07.107143 gettimeofday({1003708567, 107165}, NULL) = 0
16:56:07.107199 gettimeofday({1003708567, 107221}, NULL) = 0
16:56:07.107251 gettimeofday({1003708567, 107271}, NULL) = 0
16:56:07.107525 gettimeofday({1003708567, 107585}, NULL) = 0
16:56:07.107698 select(0, [], [], [], {0, 10001}) = 0 (Timeout)
16:56:07.172634 gettimeofday({1003708567, 172688}, NULL) = 0
16:56:07.172787 gettimeofday({1003708567, 172815}, NULL) = 0
16:56:07.172866 write(6, “WAIT #1: nam=\'latch free\' ela= 7 p1=1343645620 p2=66 p3=0”, 57) = 57
16:56:07.172955 write(6, “\n”, 1)       = 1
Oracle Internals Copyright 2002 CRC Press LLC
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may not give correct measurements because wait-times 
among sessions may not be distributed uniformly. That 
is, the reponse time performance modeling is not a proper 
model in system level. Also, a system should be a serial 
system for response time calculation; that is, the wait-
time should not include service time and service time 
should not include wait-time. Both service time and wait-
time must be separate.

Microstate Accounting
Microstate accounting, on the other hand, takes a high-
resolution timestamp on every state change, every system 
call, every page fault, and every scheduler change.4

The prusage structure of SunOS 5.5 (Exhibit 15) 
shows the resource usage structure used in microstate 
accounting. As seen in this structure, more detailed and 
accurate time information is measured than that pro-
vided by getrusage(), times(), and gettimeofday() system 
calls. By this mechanism it is possible to see the time 
spent in several system components.

Oracle and Microstate Accounting
If the OS does not support microstate accounting, Oracle 
cannot support it. Exhibit 16 shows some system calls 
generated by the Oracle process when TIMED_OS_ 
STATISTICS is set. The ioctl() calls are used with the 

parameter of PIOCUSAGE. If TIMED_OS_STATISTICS 
is set 0, ioctl() disappears.

Applying PIOCUSAGE to a process that does not have 
microstate accounting enabled will enable microstate 
accounting and return an estimate of time spent in the 
various states up to this point. Further invocations of 
PIOCUSAGE will yield accurate microstate time account-
ing from this point.4

This means that Oracle uses microstate accounting for 
the following timed OS statistics for this test case:

� OS User level CPU time
� OS System call CPU time
� OS Other system trap CPU time
� OS Text page fault sleep time
� OS Data page fault sleep time
� OS Kernel page fault sleep time
� OS User lock wait sleep time
� OS All other sleep time
� OS Wait-cpu (latency) time

Correcting Oracle  
Measurement Errors
Test Environment
OS and Database. There are two types of statistics 
used in this test:

1. Statistics obtained from Oracle timed statistics
2. Statistics obtained from Oracle timed OS statistics:

a. Database: Oracle 9.0 EE
b. OS: Solaris 8 with two CPUs
c. Process architecture: dedicated server

Exhibit 14. Recurring Waits Measurement Errors

Log file switch completion

Session 1

Session n - 1

Session n

t seconds

Real wait: t seconds

Recurring wait: [0, n * t] seconds

time
Copyright 2002 CRC Press LLC Oracle Internals
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Test Scripts. The statements shown in Exhibit 17 
were used in this test.

Infinite procedure testp1, testp2, testp3, testp4, testp5 
are initiated from different sessions. Then the testp() 
procedure is called to observe its statistics (Exhibit 18). 
Exhibit 19 shows the microstate accounting-based pro-
cess status taken by prstat –ma.

Statistic Values. There are two types of statistics 
used in this test:

1. Oracle timed statistics
2. Oracle timed OS statistics

Statistics of the test session were taken before and after the 
test. That is, the differences between after and before the 
test show the value of the statistics for the test interval.

Exhibit 15. prusage Structure of SunOS 5.5

typedef struct prusage {
    id_t         pr_lwpid;    /* lwp id.  0: process or defunct */
    u_long       pr_count;    /* number of contributing lwps */
    timestruc_t  pr_tstamp;   /* current time stamp */
    timestruc_t  pr_create;   /* process/lwp creation time stamp */
    timestruc_t  pr_term;     /* process/lwp termination time stamp */
    timestruc_t  pr_rtime;    /* total lwp real (elapsed) time */

    timestruc_t  pr_utime;    /* user level CPU time */
    timestruc_t  pr_stime;    /* system call CPU time */
    timestruc_t  pr_ttime;    /* other system trap CPU time */
    timestruc_t  pr_tftime;   /* text page fault sleep time */
    timestruc_t  pr_dftime;   /* data page fault sleep time */
    timestruc_t  pr_kftime;   /* kernel page fault sleep time */
    timestruc_t  pr_ltime;    /* user lock wait sleep time */
    timestruc_t  pr_slptime;  /* all other sleep time */
    timestruc_t  pr_wtime;    /* wait-cpu (latency) time */

    timestruc_t  pr_stoptime; /* stopped time */
    u_long       pr_minf;     /* minor page faults */
    u_long       pr_majf;     /* major page faults */
    u_long       pr_nswap;    /* swaps */
    u_long       pr_inblk;    /* input blocks */
    u_long       pr_oublk;    /* output blocks */
    u_long       pr_msnd;     /* messages sent */
    u_long       pr_mrcv;     /* messages received */
    u_long       pr_sigs;     /* signals received */
    u_long       pr_vctx;     /* voluntary context switches */
    u_long       pr_ictx;     /* involuntary context switches */
    u_long       pr_sysc;     /* system calls */
    u_long       pr_ioch;     /* chars read and written */
  } prusage_t;

Exhibit 16. Test Case: truss Command Output on Solaris 8/Oracle 9.0

$ truss -p 907
read(8, 0x024F28D6, 2064) (sleeping...)
read(8, “\0BC\0\006\0\0\0\0\011 i”.., 2064) = 188
times(0xFFBED5C8) = 855271
ioctl(10, PIOCUSAGE, 0xFFBED18C) = 0
ioctl(10, PIOCSTATUS, 0xFFBED28C) = 0
times(0xFFBED560) = 855271
times(0xFFBED5C8) = 855271
times(0xFFBED420) = 855271
Oracle Internals Copyright 2002 CRC Press LLC
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Exhibit 17. Test Script

### A table named test created.

connect dunal/dunal;
create table test(f1 number);
### There are initially 8192 rows which have the value of –1.

### The following 5 procedures were created. So that, they never caused a lock
### and they did infinite loop to make CPU busy when they were called.

create or replace procedure testp1 is
begin
  loop
    insert into test values(1);
    delete test where f1=1;
    commit;
  end loop;
end;
/

create or replace procedure testp2 is
begin
  loop
    insert into test values(2);
    delete test where f1=2;
    commit;
  end loop;
end;
/

create or replace procedure testp3 is
begin
  loop
    insert into test values(3);
    delete test where f1=3;
    commit;
  end loop;
end;
/

create or replace procedure testp4 is
begin
  loop
    insert into test values(4);
    delete test where f1=4;
    commit;
  end loop;
end;
/

create or replace procedure testp5 is
begin
  loop
    insert into test values(5);
    delete test where f1=5;
    commit;
  end loop;
end;
/

### The following procedure was created to observe its statistics.
### It loops 5000 times and then exits.
Copyright 2002 CRC Press LLC Oracle Internals
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Exhibit 17. Test Script (continued)

connect www/www
create or replace procedure testp is
begin
  for i in 1 .. 5000 loop
    insert into dunal.test values(0);
    delete dunal.test where f1=0;
    commit;
  end loop;
end;
/

Exhibit 18. Running the Test Procedures

Session# Commands Explanation

1 connect dunal/dunal

exec testp1; Runs infinite procedure testp1

2 connect dunal/dunal

exec testp2; Runs infinite procedure testp2

3 connect dunal/dunal

exec testp3; Runs infinite procedure testp3

4 connect dunal/dunal

exec testp4; Runs infinite procedure testp4

5 connect dunal/dunal

exec testp5; Runs infinite procedure testp5

6 connect www/www

exec testp;  Runs procedure testp in order to observe its statistics 

Exhibit 19. Microstate Accounting-Based Process Status Taken by prstat –ma

 PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/NLWP
1011 oracle    17 0.0 0.0 0.0 0.0 0.0 5.9  78   9  63 374   0 oracle/1
1093 oracle    16 0.0 0.0 0.0 0.0 0.0 8.9  75   8  70 393   0 oracle/1
1070 oracle    16 0.0 0.0 0.0 0.0 0.0 5.9  78   8  75 397   0 oracle/1
1091 oracle    16 0.0 0.0 0.0 0.0 0.0 5.7  78   7  69 426   0 oracle/1
1030 oracle    16 0.0 0.0 0.0 0.0 0.0 8.6  76   8  69 396   0 oracle/1
1050 oracle    14 0.0 0.0 0.0 0.0 0.0  12  73   7  59 287   0 oracle/1
 839 oracle   0.1 0.3 0.0 0.0 0.0 0.0 100 0.0  20   0 203   0 prstat/1
1099 oracle   0.1 0.0 0.0 0.0 0.0 0.0 100 0.0   5   2  90   5 se.sparcv9.5/1
 975 oracle   0.0 0.1 0.0 0.0 0.0  80  18 1.3 452  67 699   8 oracle/11
 977 oracle   0.0 0.0 0.0 0.0 0.0  82  18 0.1  18   8  1K   0 oracle/11
 952 oracle   0.0 0.0 0.0 0.0 0.0 0.0 100 0.0   5   0  10   0 script/1
1096 oracle   0.0 0.0 0.0 0.0 0.0 0.0 100 0.1   5   0  11   0 script/1
 346 root     0.0 0.0  -   -   -   -  100  -    2   0  75   1 mibiisa/12
 971 oracle   0.0 0.0 0.0 0.0 0.0 0.0 100 0.0   6   0  22   0 oracle/1
 643 oracle   0.0 0.0 0.0 0.0 0.0 0.0 100 0.0   4   1  26   1 httpd/4
 NPROC USERNAME  SIZE   RSS MEMORY      TIME  CPU
    40 oracle   2937M 2125M    97%   0:53.16  97%
    37 root      104M   67M   3.0%   0:00.01 0.1%
     1 daemon   2488K 1712K   0.1%   0:00.00 0.0%

Total: 78 processes, 261 lwps, load averages: 5.16, 4.91, 4.64
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Some of the statistics used later are marked with a 
number in parentheses. The statistics in Exhibit 20 are 
obtained when TIMED_STATISTICS=TRUE.

The statistics in Exhibit 21 are obtained when 
TIMED_OS_STATISTICS=1. These statistics are 
obtained by Oracle using microstate accounting kernel 
calls. These statistics will be accepted as accurate statis-
tics and will be compared with Oracle timed statistics to 
compute measurement errors.

Correcting Service Measurement Errors
Formulas for Correcting Service Measurement 
Errors. Exhibit 22 shows service time components. Ora-
cle service time also includes active wait measurement 
errors.

The formula for the total service time in OS level is:

total_service_time_in_OS  
= real_Oracle_service_time_ in_OS

+ active_wait_measurement_errors

Exhibit 20. TIMED_STATISTICS=TRUE

Statistic Before After Elapsed

CPU used by this session 0.03 201.36 201.33

total_service_time_in_Oracle (1a) 201.33

SQL*Net message to client 0.00 0.00 0.00

SQL*Net message from client 0.20 176.67 176.47

latch free (1d) — 1.26 1.26

buffer busy waits — 260.54 260.54

log file sync — 0.00 0.00

db file sequential read — 0.20 0.20

db file scattered read — 0.31 0.31

total_wait_time_in_Oracle (1b) 438.78

total elapsed time 640.11

Exhibit 21. TIMED_OS_STATISTICS=1

Statistics Before After Elapsed

OS User level CPU time 0.05 19865 198.60

OS System call CPU time 0.06 0.65 0.59

OS Other system trap CPU time 0.00 0.14 0.14

total_service_time_in_OS (2a) 199.33

OS Text page fault sleep time 0.00 0.00 0.00

OS Data page fault sleep time 0.00 0.00 0.00

OS Kernel page fault sleep time 0.00 0.00 0.00

OS User lock wait sleep time (2c) 0.00 0.00 0.00

OS All other sleep time (2e) 0.01 289.27 289.26

OS Wait-cpu (latency) time (2d) 0.00 955.65 955.65

total_wait_time_in_OS (2b) 1,244.91

total elapsed time 1,444.24
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The formula for service measurement errors is:

service_measurement_errors 
= |  total_service_time_in_Oracle (1a)  

– real_Oracle_service_time_in_OS |

total_service_time_in_OS is the total time of all 
services in Oracle timed OS statistics. It can also be found 
by the following formula:

total_service_time_in_OS  
= OS User level CPU time

+ OS System call CPU time
+ OS Other system trap CPU time

= total_service_time_in_OS (2a)

active_wait_measurement_errors is the service 
time spent in active waits, and real_Oracle_ 
service_time_in_OS indicates the real service time 
of Oracle process after isolating active wait measurement 
errors.

Applying Formulas to Services. Active wait-time 
depends on the timeout values of wait-events (see Exhibit 
23). Timeout occurred for the latch free (1d) wait-event 
only. It is just 17 timeouts. Also, there is no timeout value 
for other wait-events. This means that there are no active 
wait CPU usages for other wait-events.

Normally, it is not possible to measure latch spinning 
time. But, in the test, there is no high amount of latch free 
wait-events in the system level, so it is expected that there 
will be no high amount of latch spinning available in this 
test. If it is expected to be high, it would not be possible to 
isolate the active wait-time of latch free from service time.

Because latch spinning is expected to be low, latch 
timeout is very small and timeout values of other events 
are zero: active_wait_measurement_errors is 
accepted as 0 for this test.

To find real_Oracle_service_time_in_OS:

total_service_time_in_OS 
= real_Oracle_service_time_in_OS

+ active_wait_measurement_errors

Exhibit 22. Service Time Components

Exhibit 23. Timeout Values of Wait Events

Statistic Before After Timeout

SQL*Net message to client 0 0 0

SQL*Net message from client 0 0 0

Latch free (1d) — 17 17

buffer busy waits — 0 0

log file sync — 0 0

db file sequential read — 0 0

db file scattered read — 0 0

Total 17

time

total_service_time_in_OS

real_Oracle_service_time_in_OS active_wait_measurement_errors
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total_service_time_in_OS (2a) 
= real_Oracle_service_time_in_OS

+ active_wait_measurement_errors

real_Oracle_service_time_in_OS

= 199.33 – 0

= 199.33 seconds

To find service_measurement_errors, the following for-
mula returns the impact of service measurement errors:

service_measurement_errors

= | total_service_time_in_Oracle (1a) –  
real_Oracle_service_time_in_OS |

= | 201.33 – 199.33 |

= 2 seconds

Exhibit 24 shows the graph which includes service time 
measured by Oracle timed statistic and service time com-
puted by formula. The service measurement error is min-
imal. This confirms the rule that “CPU measurement 
error is minimal at high usage levels”3 because the test is 
is done at high CPU usages. If active_wait_ 
measurement_errors was not ignored, this rule 
would not be applicable because it would not be possible 
to isolate active_ wait_measurement_errors 
from total_service_time_in_OS.

Correcting Wait Measurement Errors
Exhibit 25 shows wait-time components: 
inactive_wait_measurement_errors is assigned 
to Oracle waits and inactive_service_ 
measurement_errors is missed by Oracle.

The formula for the total wait-time in OS level is:

total_wait_time_in_OS  
= real_Oracle_wait_time_in_OS

+ inactive_wait_measurement_errors
+ inactive_service_measurement_errors

The total_wait_time_in_OS is the total time of all 
waits in Oracle timed OS statistics. It can also be found 
from the following formula:

total_wait_time_in_OS 
= OS Text page fault sleep time

+ OS Data page fault sleep time
+ OS Kernel page fault sleep time
+ OS User lock wait sleep time
+ OS All other sleep time
+ OS Wait-cpu (latency) time

=  total_wait_time_in_OS (2b)

real_Oracle_wait_time_in_OS indicates the real 
wait-time of Oracle process after isolating wait measure-
ment errors.

Exhibit 24. Service Time Measured by Oracle Timed Statistic and Service Time Computed by Formula
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real_Oracle_wait_time_in_OS 

= OS User lock wait sleep time (2c)

+ OS All other sleep time (2e)

inactive_wait_measurement_errors is the non-
Oracle wait-time assigned to Oracle. That is, it shows the 
distorted wait-time included in Oracle waits.

The difference between the total wait-time measured 
in Oracle timed statistics and the real wait-time mea-
sured in Oracle timed OS statistics gives the minumum 
distorted wait-time assigned to Oracle. It is called “minu-
mum” because there may be other non-Oracle-related 
sleeps in OS All other sleep time.

Min. inactive_wait_measurement_errors

= total_wait_time_in_Oracle – 

real_Oracle_wait_time_in_OS

inactive_service_measurement_errors is the 
wait-time that cannot be measured by Oracle. That is, it 
shows the wait-time missed by Oracle.

The difference between the total wait-time measured 
in Oracle timed OS statistics and the total wait-time 
measured in Oracle timed statistics gives the maximum 
wait-time missed by Oracle. It is called “maximum” 
because there may be other non-Oracle-related sleeps in 
OS All other sleep time.

Max. inactive_service_measurement_errors

= total_wait_time_in_OS –

total_wait_time_in_Oracle

Applying Formulas to Waits. To find 
real_Oracle_wait_time_in_OS:

real_Oracle_wait_time_in_OS

= OS User lock wait sleep time (2c) + OS All other
sleep time (2e)

= 0.00 + 289.26
= 289.26 seconds

To find Min. inactive_wait_measurement_errors:

Min. inactive_wait_measurement_errors
= total_wait_time_in_Oracle (1b) –

real_Oracle_wait_time_in_OS
= 438.78 – 289.26
= 149.52 seconds assigned to Oracle waits

Exhibit 26 depicts the graph, which includes the statis-
tics in this formula. The difference between them gives 
the wait distortions assigned to Oracle.

To find Max. inactive_service_measurement_errors:

Max. inactive_service_measurement_errors
= total_wait_time_in_OS(2b) –

total_wait_time_in_Oracle (1b)
= 1,244.91 – 438.78
= 806.13 seconds missed by Oracle

Exhibit 27 shows the graph, which includes the statistics 
in this formula. The difference between them gives the 
wait misses that cannot be measured by Oracle.

Exhibit 25. Wait Time Components

time

real_Oracle_wait_
time_in_OS

total_wait_time_in_Oracle

total_wait_time_in_OS

inactive_wait_
measurement_errors

inactive_service_
measurement_errors
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Breaking Down Wait Measurement Errors to 
Timed OS Statistics. Because elapsed time for all OS 
waits, except OS Wait-cpu (latency) time, are zero, the 
wait distortions assigned to Oracle come from OS Wait-
cpu (latency) time (see Exhibit 28).

Wait Distortion Ratios. Normally, it is not possible 
to find wait distortions for individual Oracle wait-events, 

but it is possible to find overall wait distortion for Oracle 
ratios. If a wait-event predominantly sleeps in real_ 
Oracle_wait_time_in_OS, there is a low probabil-
ity of wait distortion error because it is already accounted 
for in Oracle. That is why there are two formulas to find 
the wait distortion ratio:

1. Distortion ratio with ignorable Oracle waits

2. Distortion ratio with all Oracle waits

Exhibit 26. The Difference: Wait Distortions Assigned to Oracle

Exhibit 27. The Difference: Wait Misses that Cannot Be Measured by Oracle
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Exhibit 29 shows the number of calls of Oracle wait 
events.

In this test, the SQL*Net message from client wait-event 
is the idle form of the SQL*Net message from client wait-
event because it is waited in the SQL*Net message from cli-
ent wait-event before starting the test script. So, sleep time 
in this wait-event is predominantly included in the OS All 
other sleep time statistic. That is, it has predominantly no 
wait distortions, so it is ignored (see Exhibit 30).

Min. ratio_for_inactive_wait_measurement_errors
= 100 * (Min. inactive_wait_measurement_errors

  /  total_non_idle_wait_time_in_Oracle (3a))
= 100 * (149.52 / 262.31)
= 57%

If the SQL*Net message from client wait-event is a 
non-idle form of the SQL*Net message from client wait-
event, it will not be possible to ignore them easily. For 
example, high amounts of waits enter ready (runnable) 

queue frequently and cause wait distortions. So, some of 
its wait-time will be included in the OS Wait-cpu 
(latency) time. In that case, the following formula should 
be used:

Min. ratio_for_inactive_wait_measurement_errors

= 100 * (Min. inactive_wait_measurement_errors

/ total_wait_time_in_Oracle (1b))

Exhibit 28. Breaking Down Wait Measurement Errors to Timed OS Statistics

Statistics Elapsed
inactive_wait_  
measurement_errors

inactive_service_  
measurement_errors

OS Text page fault sleep time 0.00 0.00 0.00

OS Data page fault sleep time 0.00 0.00 0.00

OS Kernel page fault sleep time 0.00 0.00 0.00

OS Wait-cpu (latency) time (2d) 955.65 149.52 806.13
Total 

Exhibit 29. Number of Calls of Oracle Wait Events

Statistic Before After Call

SQL*Net message to client 38 39 1

SQL*Net message from client (idle) 37 38 1

latch free — 18 18

buffer busy waits — 2622 2622

log file sync — 2 2

db file sequential read — 1187 1187

db file scattered read — 1064 1064

Total 4895

Exhibit 30. non_idle_wait_time_in_Oracle (3a)

Statistic Elapsed

SQL*Net message to client 0.00

latch free 1.26

buffer busy waits 260.54

log file sync 0.00

db file sequential read 0.20

db file scattered read 0.31

total_non_idle_wait_time_in_Oracle (3a) 262.31 
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Overall Impact of Measurement Errors
Exhibit 31 shows the overall measurement errors. There 
are significant amounts of time missed by Oracle. Also, 
there are significant amounts of distorted wait-time 
assigned to Oracle wait-events. There is no significant 
amount of measurement in service time because it is min-
imal at high usage level3 and there is no high amount of 
active_wait_measurement_errors.

Microstate Response-Time 
Performance Profiling (MRPP)
Decision Tree
Using the correct modeling is the most important part of 
problem solving. If there is a problem, there is a cause of 
the problem. Deductive decision tree takes users to solu-
tion by constructing cause-consequence relationships 
tree.

Exhibit 32 shows a combined Deductive-Inductive 
tree. Suppose that Circle A is a symptom of the problem. 
It is located at the root of the tree. Circles C1, C2, and C3 
are the leaves. One of them is the cause of the problem, 
say C1. How can the cause of the problem (C1) be 
reached?

There are two walking ways in this tree: deductive 
(downward) and inductive (upward). In the deductive 
method, root is broken into sub-components. Components 

are broken down repeatedly until the component that is 
the cause of problem is found. If a component does not 
have an effect on the problem, the breaking process is 
stopped on that component, but continues on other com-
ponents. If the cause of the problem is found, the break-
ing process is stopped. The component on which the 
breaking process is finally stopped is the cause of prob-
lem. The path from root to solution component is called 
solution path or critical path.

In this method, the possibility of reaching the cause of 
the problem is 100 percent because if there is a problem, 
there is a cause; and finding the possibility of the cause 
of the problem is 100 percent by going backward from 
the symptom (root) to causes (components). For 
Exhibit 32, path (A,B2,C1) is the solution path (or the 
critical path).

In the inductive method, root is reached by combining 
components. That is, the symptom (root) is reached by 
assuming that the possible causes (components) are the 
starting point. In this method, finding the cause of prob-
lem is not 100 percent because possible starting compo-
nents may not be the real cause of the problem, or 
possible starting components may not be known yet. This 
method is similar to the Test-and-See method, and it 
wastes time. As a result, a Deductive Solution tree should 
be used in problem solving by walking from root to 
leaves.

Exhibit 31. Overall Measurement Errors
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If problem-solving modeling wants to be accurate 
modeling, it must be compatible with deductive model-
ing.

Applying MRPP to Oracle
Exhibit 33 shows the components of the Deductive 
Response-Time Decision tree having all the components 

of response time. Exhibit 33 used microstate accounting 
in Solaris; other systems that provide microstate 
accounting may use different fields for their events, but 
the concept is the same.

Each leaf on the tree is located at a particular depth, 
or level. Walking on the tree should start from the root of 
tree, which is the response time, and it should be broken 

Exhibit 32. Deductive-Inductive Decision Tree

Exhibit 33. Deductive Response-Time Decision Tree
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down to its sub-components (e.g., service time and wait 
time). High impact components (e.g., service time) 
should be broken down into sub-components (e.g., 
parse, fetch, execute); low impact component (e.g., wait 
time) should be ignored. This walking on tree process 
should be continued until the problem is found. Because 
all components are more accurately available in the tree, 
it is easy to find the cause of the problem.

MRPP offers some parameters and formulas for sev-
eral layers. Although some of these parameters may be 
merged into single parameters by the provider, this arti-
cle shows all possible parameters.

Levels
High response time is a symptom of a performance prob-
lem. Thus, it is the root of deductive tree. Each leaf at the 
same depth has the same level. The root of the tree is 
level 0. Its components and sub-components are levels 1, 
2, 3, 4, 5, and OSD.

Level 0

response_time = service_time + wait_time

� response_time: time spent on completing a 
unit of work, including waits.

� service_time: time spent on CPU while ser-
vicing in system perspective.

� wait_time: time spent while waiting in system 
perspective.

Level 1

service_time = active_service_time + active_wait_time

wait_time = inactive_wait_time + inactive_service_time

All statistics starting with “active” imply that they are 
running on CPU. All statistics starting with “inactive” 
imply they are waiting.

� active_service_time: time spent on CPU 
while servicing.

� active_wait_time: time spent on CPU while 
waiting in user perspective.

� inactive_wait_time: time spent while 
sleeping on Oracle wait-event.

� inactive_service_time: time spent while 
sleeping on non-Oracle wait-event.

Level 2

active_service_time 

= active_service_time for PARSE

+ active_service_time for EXECUTE

+ active_service_time for FETCH

active_wait_time 

= active_wait_time for LATCH-SPINNING

+ active_wait_time for WAIT-LOOP

inactive_wait_time 

= inactive_wait_time for recursive_statement

+ inactive_wait_time for user_statement

inactive_service_time 

= inactive_service_time for PARSE

+ inactive_service_time for EXECUTE

+ inactive_service_time for FETCH

+ inactive_service_time for LATCH-SPINNING

+ inactive_service_time for WAIT-LOOP

Recursive statements are generated by Oracle to perform 
data dictionary operations (e.g., extent allocations) on 
behalf of the user process.

� active_service_time for PARSE, EXE-
CUTE, FETCH: time spent on CPU for parsing, 
executing, and fetching, respectively.

� active_wait_time for LATCH-SPINNING, 
WAIT-LOOP: time spent on CPU while spinning 
latches or doing wait-loops. Although they are 
the waits in user perspective, they occupy CPU in 
OS perspective.

� inactive_wait_time for recursive statement, 
user statement: time spent while sleeping on Ora-
cle wait-events for recursive and user statements, 
respectively. It shows the real wait time. It does 
not include active wait time.

� inactive_service_time for PARSE, EXE-
CUTE, FETCH, LATCH-SPINNING, WAIT-
LOOP: time spent while sleeping on non-Oracle 
wait-events for PARSE, EXECUTE, FETCH, 
LATCH-SPINNING, and WAIT-LOOP, respec-
tively.
Copyright 2002 CRC Press LLC Oracle Internals
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Level 3

active_service_time for PARSE 
= active_service_time for recursive PARSE

+ active_service_time for user PARSE

active_service_time for EXECUTE 

= active_service_time for recursive EXECUTE
+ active_service_time for user EXECUTE

active_service_time for FETCH 

= active_service_time for recursive FETCH

+ active_service_time for user FETCH

active_wait_time for LATCH-SPINNING 
= active_wait_time for recursive LATCH-SPINNING

+ active_wait_time for user LATCH-SPINNING

active_wait_time for WAIT-LOOP 

= active_wait_time for recursive WAIT-LOOP
+ active_wait_time for user WAIT-LOOP

inactive_service_time for PARSE 

= inactive_service_time for recursive PARSE

+ inactive_service_time for user PARSE

inactive_service_time for EXECUTE 
= inactive_service_time for recursive EXECUTE

+ inactive_service_time for user EXECUTE

inactive_service_time for FETCH 

= inactive_service_time for recursive FETCH
+ inactive_service_time for user FETCH

inactive_service_time for LATCH-SPINNING 

= inactive_service_time for recursive  
LATCH-SPINNING

+ inactive_service_time for user  
LATCH-SPINNING

inactive_service_time for WAIT-LOOP 

= inactive_service_time for recursive WAIT-LOOP

+ inactive_service_time for user WAIT-LOOP

Definitions are the same as parameter names.

Level 4

active_service_time for recursive PARSE 

= user level CPU time for active_service_time for 
recursive PARSE

+ system call CPU time for active_service_time for 
recursive PARSE

+ other system trap CPU time for 
active_service_time for recursive PARSE

active_service_time for user PARSE 

= user level CPU time for active_service_time for 
user PARSE

+ system call CPU time for active_service_time for 
user PARSE

+ other system trap CPU time for 
active_service_time for user PARSE

active_service_time for recursive EXECUTE 

= user level CPU time for active_service_time for 
recursive EXECUTE

+ system call CPU time for active_service_time for 
recursive EXECUTE

+ other system trap CPU time for 
active_service_time for recursive EXECUTE

active_service_time for user EXECUTE 

= user level CPU time for active_service_time for 
user EXECUTE

+ system call CPU time for active_service_time for 
user EXECUTE

+ other system trap CPU time for 
active_service_time for user EXECUTE

active_service_time for recursive FETCH 

= user level CPU time for active_service_time for 
recursive FETCH

+ system call CPU time for active_service_time for 
recursive FETCH

+ other system trap CPU time for 
active_service_time for recursive FETCH

active_service_time for user FETCH 

= user level CPU time for active_service_time for 
user FETCH
Oracle Internals Copyright 2002 CRC Press LLC
January 2003 All Rights Reserved



Microstate Response-Time Performance Profiling (MRPP)
+ system call CPU time for active_service_time for 
user FETCH

+ other system trap CPU time for 
active_service_time for user FETCH

active_wait_time for recursive LATCH-SPINNING  
= user level CPU time for active_wait_time for  

recursive LATCH-SPINNING
+ system call CPU time for active_wait_time for 

recursive LATCH-SPINNING
+ other system trap CPU time for 

active_wait_time for recursive LATCH-SPIN-
NING

active_wait_time for user LATCH-SPINNING  
= user level CPU time for active_wait_time for user 
LATCH-SPINNING

+ system call CPU time for active_wait_time for 
user LATCH-SPINNING

+ other system trap CPU time for 
active_wait_time for user LATCH-SPINNING

active_wait_time for recursive WAIT-LOOP  
= user level CPU time for active_wait_time for recur-
sive WAIT-LOOP

+ system call CPU time for active_wait_time for 
recursive WAIT-LOOP

+ other system trap CPU time for 
active_wait_time for recursive WAIT-LOOP

active_wait_time for user WAIT-LOOP  
= user level CPU time for active_wait_time for user 
WAIT-LOOP

+ system call CPU time for active_wait_time for 
user WAIT-LOOP

+ other system trap CPU time for 
active_wait_time for user WAIT-LOOP

inactive_wait_time for recursive_statement  
= text page fault sleep time for inactive_wait_time 
for recursive_statement

+ data page fault sleep time for 
inactive_wait_time for recursive_statement

+ kernel page fault sleep time for 
inactive_wait_time for recursive_statement

+ user lock wait sleep time for inactive_wait_time 
for recursive_statement

+ wait-cpu (latency) time for inactive_wait_time 
for recursive_statement

+ all other sleep time for inactive_wait_time for 
recursive_statement

inactive_wait_time for user_statement  
= text page fault sleep time for inactive_wait_time 
for user_statement

+ data page fault sleep time for 
inactive_wait_time for user_statement

+ kernel page fault sleep time for 
inactive_wait_time for user_statement

+ user lock wait sleep time for inactive_wait_time 
for user_statement

+ wait-cpu (latency) time for inactive_wait_time 
for user_statement

+ all other sleep time for inactive_wait_time for 
user_statement

inactive_service_time for recursive PARSE  
= text page fault sleep time for inactive_service_time 
for recursive PARSE

+ data page fault sleep time for 
inactive_service_time for recursive PARSE

+ kernel page fault sleep time for 
inactive_service_time for recursive PARSE

+ user lock wait sleep time for 
inactive_service_time for recursive PARSE

+ wait-cpu (latency) time for 
inactive_service_time for recursive PARSE

+ all other sleep time for inactive_service_time for 
recursive PARSE

inactive_service_time for user PARSE  
= text page fault sleep time for inactive_service_time 
for user PARSE

+ data page fault sleep time for 
inactive_service_time for user PARSE

+ kernel page fault sleep time for 
inactive_service_time for user PARSE

+ user lock wait sleep time for 
inactive_service_time for user PARSE

+ wait-cpu (latency) time for 
inactive_service_time for user PARSE

+ all other sleep time for inactive_service_time for 
user PARSE
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inactive_service_time for recursive EXECUTE  
= text page fault sleep time for inactive_service_time 
for recursive EXECUTE

+ data page fault sleep time for 
inactive_service_time for recursive EXECUTE

+ kernel page fault sleep time for 
inactive_service_time for recursive EXECUTE

+ user lock wait sleep time for 
inactive_service_time for recursive EXECUTE

+ wait-cpu (latency) time for 
inactive_service_time for recursive EXECUTE

+ all other sleep time for inactive_service_time for 
recursive EXECUTE

inactive_service_time for user EXECUTE  
= text page fault sleep time for inactive_service_time 
for user EXECUTE

+ data page fault sleep time for 
inactive_service_time for user EXECUTE

+ kernel page fault sleep time for 
inactive_service_time for user EXECUTE

+ user lock wait sleep time for 
inactive_service_time for user EXECUTE

+ wait-cpu (latency) time for 
inactive_service_time for user EXECUTE

+ all other sleep time for inactive_service_time for 
user EXECUTE

inactive_service_time for recursive FETCH  
= text page fault sleep time for inactive_service_time 
for recursive FETCH

+ data page fault sleep time for 
inactive_service_time for recursive FETCH

+ kernel page fault sleep time for 
inactive_service_time for recursive FETCH

+ user lock wait sleep time for 
inactive_service_time for recursive FETCH

+ wait-cpu (latency) time for 
inactive_service_time for recursive FETCH

+ all other sleep time for inactive_service_time for 
recursive FETCH

inactive_service_time for user FETCH  
= text page fault sleep time for inactive_service_time 
for user FETCH

+ data page fault sleep time for 
inactive_service_time for user FETCH

+ kernel page fault sleep time for 
inactive_service_time for user FETCH

+ user lock wait sleep time for 
inactive_service_time for user FETCH

+ wait-cpu (latency) time for 
inactive_service_time for user FETCH

+ all other sleep time for inactive_service_time for 
user FETCH

inactive_service_time for recursive LATCH-SPINNING  
= text page fault sleep time for inactive_service_time 
for recursive LATCH-SPINNING

+ data page fault sleep time for 
inactive_service_time for recursive LATCH-
SPINNING

+ kernel page fault sleep time for 
inactive_service_time for recursive LATCH-
SPINNING

+ user lock wait sleep time for 
inactive_service_time for recursive LATCH-
SPINNING

+ wait-cpu (latency) time for 
inactive_service_time for recursive LATCH-
SPINNING

+ all other sleep time for inactive_service_time for 
recursive LATCH-SPINNING

inactive_service_time for user LATCH-SPINNING  
= text page fault sleep time for inactive_service_time 
for user LATCH-SPINNING

+ data page fault sleep time for 
inactive_service_time for user LATCH- 
SPINNING

+ kernel page fault sleep time for 
inactive_service_time for user LATCH- 
SPINNING

+ user lock wait sleep time for 
inactive_service_time for user LATCH- 
SPINNING

+ wait-cpu (latency) time for 
inactive_service_time for user LATCH- 
SPINNING

+ all other sleep time for inactive_service_time for 
user LATCH-SPINNING
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inactive_service_time for recursive WAIT-LOOP  
= text page fault sleep time for inactive_service_time 
for recursive WAIT-LOOP

+ data page fault sleep time for 
inactive_service_time for recursive WAIT-
LOOP

+ kernel page fault sleep time for 
inactive_service_time for recursive WAIT-
LOOP

+ user lock wait sleep time for 
inactive_service_time for recursive WAIT-
LOOP

+ wait-cpu (latency) time for 
inactive_service_time for recursive WAIT-
LOOP

+ all other sleep time for inactive_service_time for 
recursive WAIT-LOOP

inactive_service_time for user WAIT-LOOP  
= text page fault sleep time for inactive_service_time 
for user WAIT-LOOP

+ data page fault sleep time for 
inactive_service_time for user WAIT-LOOP

+ kernel page fault sleep time for 
inactive_service_time for user WAIT-LOOP

+ user lock wait sleep time for 
inactive_service_time for user WAIT-LOOP

+ wait-cpu (latency) time for 
inactive_service_time for user WAIT-LOOP

+ all other sleep time for inactive_service_time for 
user WAIT-LOOP

Definitions are the same as parameter names.

Level OSD. The Operating System Dependent (OSD) 
level is the lowest level in deductive tree. This level pro-
vides base parameters to higher levels. Higher-level 
parameters can be defined as real parameters, or as vir-
tual parameters derived from the OSD level.

This level provides time information to Oracle, and 
may be different in different OS.

The following timed statistics of prusage structure of 
SunOS 5.5 are used in this article:

timestruc_t    pr_utime;    /* user level CPU time */
timestruc_t    pr_stime;    /* system call CPU time */
timestruc_t    pr_ttime;    /* other system trap CPU time 

*/

timestruc_t    pr_tftime;   /* text page fault sleep  
time */

timestruc_t    pr_dftime;   /* data page fault sleep  
time */

timestruc_t    pr_kftime;   /* kernel page fault sleep  
time */

timestruc_t    pr_ltime;    /* user lock wait sleep time *
timestruc_t    pr_slptime;  /* all other sleep time */

timestruc_t    pr_wtime;    /* wait-
cpu (latency) time */

all other sleep time (pr_slptime) includes 
I/O waits from disk, net, and terminal.

Sleep Fields
All sleep fields in struct prusage were used to keep mod-
ularity. Some of prusage sleep fields are not used by some 
operations, and their values will be 0.

Conclusion
Oracle wait time statistics are distorted, especially when 
OS activities such as paging, swapping, context switch-
ing is high. These OS activities are usually high on busy 
systems.

Oracle service time statistics are not distorted on busy 
systems unless there is no high amount of latch spinning 
time or wait-loops time. 

This article offered a new approach to response time 
modeling for Oracle by using microstate accounting of 
OS. This approach is more accurate and will be applica-
ble when Oracle supports microstate accounting.

With MRPP, any level of users — from beginners to 
experts — will be able to easily identify the level of per-
formance problems. Also, MRPP can be embedded into 
Oracle kernel by Oracle to make more accurate perfor-
mance decision making for Optimizer. �
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