
Oracle Internals

Volume 4 Issue 10 January 2003

Getting optimum performance for mission-critical Oracle systems is an extremely complex
task. For senior Oracle DBAs, measuring internal services waits within an Oracle database is
a critical aspect of advanced response-time profiling. This article is extremely complex
because the internals of Oracle response-time are, by their nature, very complex. However,
this article provides an excellent overview of the complex world of Oracle response-time, and
a good starting point for those Oracle professionals who wish to become intimate with Oracle
internal response-time mechanisms. This is not a trivial article; it may require several read-
ings to fully understand the internal response-time mechanisms and the commands that are
used to gather the response-time information, but it is worthwhile if your goal is to fully
understand the complex interactions between Oracle and the operating system.

Goal
Solving performance-related problems requires an understanding of the measurement tech-
niques. The accuracy of measurements is an important factor in all types of research. How-
ever, there are no 100-percent accurate measurements in Nature; there are always some
distortions in the measurements. How can a method be accepted as an accurate method? The
answer depends on the impact of measurement errors.

The goal of this article is to adapt microstate accounting, which is a more accurate mea-
surement technique provided by OS (operating system) vendors, to database management
systems (DBMSs).

Microstate Response-time Performance Profiling (MRRP) for Oracle is not a new perfor-
mance modeling technique, but it is a new performance profiling technique for Oracle. It
adapts microstate accounting to Oracle by using universal response time performance mod-
eling.

In this article, Oracle and UNIX are used as the DBMS and OS, respectively. However, the
concept can be easly adapted to other DBMS.

The following articles should be read prior to reading this article:

� “Response Time Analysis for Oracle Based Systems”1

� “Yet Another Performance Profiling (YAPP)”2

� “How Busy Is the CPU, Really?”3

� “Prying into Processes and Workloads”4

Microstate Response-time Performance Profiling
(MRPP-1.0.2)
Danisment Gazi Unal

From the Editor
–Don Burleson

For senior Oracle DBAs, measur-
ing internal waits within an Ora-
cle database is a critical aspect of
advanced response-time profil-
ing. Entire industries have been
built around the use of Oracle
10046 wait dump analysis. The
internals of Oracle wait events
are, by their nature, very com-
plex. This article contains an
excellent overview of the com-
plex world of Oracle wait analy-
sis and a good starting-point for
those Oracle professionals who
wish to become intimate with
Oracle internal mechanisms.
This is not a trivial article; it may
require several readings to
understand the internal wait
mechanisms and the commands
used to gather wait information.
The investment is worthwhile if
your goal is to fully understand
the complex interactions
between Oracle and the operat-
ing system.

Editor
Don Burleson
www.dba-oracle.com

Adana,Turkey
� Continued on Page 2

http://www.dba-oracle.com

2

Microstate Response-Time Performance Profiling (MRPP)

Measurement of Oracle Services
and Waits in OS Level
Measurement of Oracle Services
in OS Level
Oracle measures CPU usage by the CPU used by this ses-
sion statistic. This is done via getrusage() or times() sys-
tem calls depending on platforms. Exhibit 1 shows a
sample output.

Oracle uses the getrusage() system call to find CPU
usage in user mode(ru_utime), and CPU usage in
kernel mode or system mode(ru_stime).

Measurement of Oracle Waits in OS Level
There are three wait mechanisms in Oracle according to
wait measurement techniques:

1. Synchronous wait mechanism

2. Asynchronous wait mechanism

3. Timed out wait mechanism

Synchronous Wait Mechanism. In this mechanism,
after wait is requested, Oracle process is immediately put
into the OS wait-queue. Until wait-event is completed,
process sleeps in OS wait-queue. When wait-event is

Exhibit 1. Test Case: strace Command Output on SuSELinux 7.2/Oracle 8.1.7

19:56:05 gettimeofday({1000781765, 366717}, NULL) = 0
19:56:05 getrusage(RUSAGE_SELF, {ru_utime={0, 80000}, ru_stime={0, 10000}, ...}) = 0
19:56:05 gettimeofday({1000781765, 367403}, NULL) = 0
� Continued on Page 3

Oracle Internals Copyright 2002 CRC Press LLC
January 2003 All Rights Reserved

Oracle Internals

Publisher Richard O’Hanley
ro’hanley@crcpress.com

Consulting Editor Don Burleson
don@burleson.cc

Editor Richard O’Hanley
ro’hanley@crcpress.com

Project Editors Andrea Demby
Gerry Jaffe

Copyright
©2002 Oracle Internals is a registered trademark owned by CRC Press LLC.
All rights reserved. No part of this newsletter may be reproduced in any
form—by microfilm, xerography, or otherwise—or incorporated into any
information retrieval system without the written permission of the
copyright owner.

Trademarks
Oracle is a registered trademark of Oracle Corp. All brand and product
names in this publication are trade names, service marks, trademarks,
or registered trademarks of their respective owners. Neither Auerbach
Publications nor CRC Press LLC is associated with any product or vendor
mentioned in this publication.

Send Information to Postmaster
Richard O’Hanley Send address changes to:
Auerbach Publications Oracle Internals
345 Park Ave. South, 10th Floor Auerbach Publications
New York, NY 10010 CRC Press LLC

 2000 NW Corporate Blvd.
 Boca Raton, FL 33431

• •
Oracle Internals (ISSN 1522-8584) is published monthly by Auerbach Publications, CRC Press LLC, 2000 NW Corporate Blvd., Boca Raton, FL 33431.
Periodicals postage paid at Boca Raton and other mailing offices. The subscription rate is $145/year in the U.S. Prices elsewhere vary. Printed in USA.
For orders call 1-800-272-7737. Requests to publish material or to incorporate material into computerized databases or any other electronic form, or
for other than individual or internal distribution, should be addressed to Auerbach Publications, Editorial Services, 2000 NW Corporate Blvd., Boca
Raton, FL 33431. All rights, including translation into other languages, reserved by the publisher in the U.S., Great Britain, Mexico, and all countries
participating in the International Copyright Convention and the Pan American Copyright Convention. Authorization to photocopy items for internal
or personal use, or the personal or internal use of specific clients, may be granted by CRC Press LLC, provided that $20.00 per article photocopied is
paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923 USA. The fee code for users of the Transactional Reporting Service
is ISSN 1522-8584/02/$20.00+$0.00. The fee is subject to change without notice. For organizations that have been granted a photocopy license by
the CCC, a separate system of payment has been arranged. Product or corporate names may be trademarks or registered trademarks, and are only used
for identification and explanation, without intent to infringe.

mail to: ro'hanley@crcpress.com
mail to: don@burleson.cc

Microstate Response-Time Performance Profiling (MRPP)
completed, OS kernel posts the waiting process and
makes it runnable.

Oracle uses gettimeofday() system call before and
after wait-event. The time difference between them is
updated in dictionary as wait-time of event. Exhibit 2
shows a sample output.

Oracle gets time by gettimeofday() system call before
and after pread() system call. The difference between
them is added to wait-time of wait-event.

Some wait-events that use the synchronous wait
mechanism include:

� db file scattered read
� db file sequential read
� SQL*Net message from client
� SQL*Net message to client

V$SESSION_EVENT.TOTAL_TIMEOUTS and
V$SYSTEM_EVENT.TOTAL_TIMEOUTS are always 0
for this type of wait-event.

Asynchronous Wait Mechanism. Async I/O rou-
tines provide the ability to do real asynchronous I/O in an
application. This is accomplished by allowing the calling
process or thread to continue processing after issuing a
read or write and receive notification either upon com-
pletion of the I/O operation or of an error condition that
prevented the I/O from being completed.7

Oracle uses the asynchronous wait mechanism in
asynchronous I/O (AIO) operations. By this mechanism,
process does not enter wait-queue immediately after the
AIO request is submitted. So, while the AIO operation is
continuing on disk, process continues its computations

on CPU. That is, service and wait can be implemented in
parallel.

From an Oracle perspective, the wait-time during AIO
is the actual wait-time in user level, not in OS level. The
process does not start waiting immediately; it starts wait-
ing if there is nothing to do on CPU.

Here are some wait-events that use the asynchronous
wait mechanism if AIO is available in both Oracle and OS:

� Direct path read
� Direct path write

Timed Out Wait Mechanism. In the timed-out
mechanism, process does not have to wait for posting by
OS kernel. Process wakes up after a specific timeout and
checks if resource is available. If resource is available,
process gets it; if not, process goes to sleep again. The
wait-time is updated in each timeout.

Process timer information is written to OS timer
queue, which includes process current timeout informa-
tion. This timeout information is calculated/updated at
each clock cycle by an OS-specific algorithm.

If there are a lot of timed-out based waits in a data-
base, OS kernel CPU usage may become high because OS
kernel calculates/updates OS timer queue.

V$SESSION_EVENT.TOTAL_TIMEOUTS and
V$SYSTEM_EVENT.TOTAL_TIMEOUTS are incre-
mented in each timeout.

There are two mechanisms to implement timeouts:

1. FIFO ordered timeouts
2. Non-ordered timeouts

Exhibit 2. Test Case: strace Command Output on SuSELinux 7.2/Oracle 8.1.7

15:26:02.348478 gettimeofday({1003530362, 348525}, NULL) = 0
15:26:02.348564 gettimeofday({1003530362, 348588}, NULL) = 0
15:26:02.348659 pread(409,
“\6\2\0\0\240\27\200\0\325\227\7\0\0\0\2\0\0\0\0\0\1\0\7\0_\f\0\0\210I
\7\0\0\0\24P\2\6\3\0\30/\200\0
\0\1\236\0\0\0
N\1\354\3R\6R\6\0\0\236\0\1\0\2\0\3\0\4\0\5\0”...,
2048, 12386304) = 2048
15:26:02.348995 gettimeofday({1003530362, 349035}, NULL) = 0
15:26:02.349174 gettimeofday({1003530362, 349209}, NULL) = 0
15:26:02.349260 write(6, “WAIT #1: nam=\'db file sequential read\'
ela= 0 p1=2 p2=6048 p3=1”, 63) = 63
15:26:02.349341 write(6, “\n”, 1) = 1
Copyright 2002 CRC Press LLC Oracle Internals
All Rights Reserved January 2003 3

4

Microstate Response-Time Performance Profiling (MRPP)
The FIFO (first-in, first-out) ordered timeout mechanism
is used by wait-events that need serializations. This mech-
anism uses the semaphore facilities of OS. Semaphore
operations include hardware-based atomic instructions to
protect critical sections in source code, and processes are
queued in FIFO order in semaphore operations.

Before waiting, process sets OS alarm clock (normally
three seconds, but changes according to wait events)
using setitimer() system call. When timeout occurs, a
SIGALRM signal is delivered by OS to waiting process. If
a SIGALRM signal is received by a waiting process and
resource is not still available, OS alarm clock is set again
for that process, so timer is restarted; if resource is avail-
able, timer is switched off using setitimer() system call
and process gets resource.

FIFO ordered timeouts are postable. That means
waiting process can be posted by OS kernel before time-
out occurs. This mechanism has the pseudo code shown
in Exhibit 3.

Here are the system calls of a process while waiting
for locked resources in enqueue (TX) wait-event. As
seen in Exhibit 4, there is a loop running around each
three seconds.

Some wait-events that use FIFO ordered timeouts
wait mechanism include:

� Free buffer waits
� Write complete waits
� Buffer busy waits
� Enqueue

A non-ordered timeout mechanism is used by wait-
event which requires timeout mechanism without an
order. A latch free wait event uses non-ordered timeouts.
Because latch operations do not need to be done in FIFO

order, there is no need for a semaphore queue for latch
free wait-event. Atomic instructions such as test-and-set,
compare-and-swap, etc. are sufficient, instead of expen-
sive semaphore operations. That is why Oracle does not
use semaphores in latch operations.

Exhibit 5 lists some assembly codes. The function
sskgslcas () includes a compare-and-swap instruc-
tion called lock cmpxchg.

The lock prefix invokes a locked (atomic) read-mod-
ify-write operation when modifying a memory operand.6

If a process tries to get a latch in willing-to-wait mode,
it spins CPU by _SPIN_COUNT times on multi-processor
systems. If _SPIN_COUNT is greater than 1 on single-
processor machines, it is ignored.

If a process cannot get latch after spinning, it sleeps by
using select() system call. The select() system call can
measure timeout values down to microseconds.

As seen in Exhibit 6, Oracle does not use file descriptors
in select() to check if there is available data for file descrip-
tors. Just the <timeout> value is used. By using select() sys-
tem call in this way, select() system call causes sleep until
<timeout> occurs unless process is interrupted by a signal.

There are two mechanisms to implement non-ordered
timeouts:

1. Postable non-ordered timeouts

2. Non-postable non-ordered timeouts

If _LATCH_WAIT_POSTING=1, which is the default,
waiting process can be interrupted for library cache and
shared pool latches only, and gets these latches. If
_LATCH_WAIT_POSTING>1, waiting process can be
interrupted for all latches, and gets latches. If

Exhibit 3. Pseudo Code for FIFO Ordered Timeouts Wait Mechanism

while (resource_not_available)
 {
 setitimer();
 if (semop()==0) break; // if TRUE resource is available,
 // otherwise sleeps by using semaphore
 if (SIGALRM) // signal handling
 {
 if (resource_is_available) break;
 }
 }
Oracle Internals Copyright 2002 CRC Press LLC
January 2003 All Rights Reserved

Microstate Response-Time Performance Profiling (MRPP)
_LATCH_WAIT_POSTING=0, process that is waiting for
latch is never posted, even if latch is free.

Measurement Errors
There are several types of measurement errors, including
OS measurement errors, Oracle measurement errors, and
user measurement errors. This section discusses perfor-
mance-related measurement errors on Oracle by examin-
ing OS, Oracle, and user measurement errors.

Service Measurement Errors
Active Service Measurement Error. active service
is the service of a process while it is running on CPU.

OS updates CPU usage of running process in each
clock tick. This update is not the time spent by process
on CPU; rather, it is just a clock tick. The clock tick value
of a process on CPU is incremented by one in each clock

Exhibit 4. Test Case: strace Command Output on SuSELinux 7.2/Oracle 8.1.7

19:56:00 --- SIGALRM (Alarm clock) ---
19:56:00 rt_sigprocmask(SIG_BLOCK, [], NULL, 8) = 0
19:56:00 gettimeofday({1000781760, 944916}, NULL) = 0
19:56:00 rt_sigprocmask(SIG_UNBLOCK, [], NULL, 8) = 0
19:56:00 rt_sigprocmask(SIG_SETMASK, [RT_0], NULL, 8) = 0
19:56:00 rt_sigprocmask(SIG_BLOCK, [ALRM], NULL, 8) = 0
19:56:00 setitimer(ITIMER_REAL, {it_interval={0, 0}, it_value={0, 0}}, NULL) = 0
19:56:00 rt_sigprocmask(SIG_UNBLOCK, [ALRM], NULL, 8) = 0
19:56:00 gettimeofday({1000781760, 945344}, NULL) = 0
19:56:00 gettimeofday({1000781760, 945446}, NULL) = 0
19:56:00 rt_sigprocmask(SIG_BLOCK, NULL, [RT_0], 8) = 0
19:56:00 rt_sigprocmask(SIG_BLOCK, [ALRM], NULL, 8) = 0
19:56:00 gettimeofday({1000781760, 945649}, NULL) = 0
19:56:00 setitimer(ITIMER_REAL, {it_interval={0, 0}, it_value={3, 70000}}, NULL) = 0
19:56:00 rt_sigprocmask(SIG_UNBLOCK, [ALRM], NULL, 8) = 0
19:56:00 semop(98304, 0xbfffa8f4, 1) = -1 EINTR (Interrupted system call)

19:56:04 --- SIGALRM (Alarm clock) ---
19:56:04 rt_sigprocmask(SIG_BLOCK, [], NULL, 8) = 0
19:56:04 gettimeofday({1000781764, 14912}, NULL) = 0
19:56:04 rt_sigprocmask(SIG_UNBLOCK, [], NULL, 8) = 0
19:56:04 rt_sigprocmask(SIG_SETMASK, [RT_0], NULL, 8) = 0
19:56:04 rt_sigprocmask(SIG_BLOCK, [ALRM], NULL, 8) = 0
19:56:04 setitimer(ITIMER_REAL, {it_interval={0, 0}, it_value={0, 0}}, NULL) = 0
19:56:04 rt_sigprocmask(SIG_UNBLOCK, [ALRM], NULL, 8) = 0
19:56:04 gettimeofday({1000781764, 15410}, NULL) = 0
19:56:04 gettimeofday({1000781764, 15498}, NULL) = 0
19:56:04 rt_sigprocmask(SIG_BLOCK, NULL, [RT_0], 8) = 0
19:56:04 rt_sigprocmask(SIG_BLOCK, [ALRM], NULL, 8) = 0
19:56:04 gettimeofday({1000781764, 15686}, NULL) = 0
19:56:04 setitimer(ITIMER_REAL, {it_interval={0, 0}, it_value={3, 70000}}, NULL) = 0
19:56:04 rt_sigprocmask(SIG_UNBLOCK, [ALRM], NULL, 8) = 0
19:56:04 semop(98304, 0xbfffa8f4, 1) = 0

Exhibit 5. Test Case: objdump -d Command Output of oracle Executable on SuSELinux 7.2 (x86)/Oracle 8.1.7

08c2c272 <sskgslcas>:
 8c2c272: 8b 4c 24 04 mov 0x4(%esp,1),%ecx
 8c2c276: 8b 44 24 08 mov 0x8(%esp,1),%eax
 8c2c27a: 8b 54 24 0c mov 0xc(%esp,1),%edx
 8c2c27e: f0 0f b1 11 lock cmpxchg %edx,(%ecx)
 8c2c282: 75 06 jne 8c2c28a <.failed_cmp>
 8c2c284: b8 01 00 00 00 mov $0x1,%eax
 8c2c289: c3 ret
Copyright 2002 CRC Press LLC Oracle Internals
All Rights Reserved January 2003 5

6

Microstate Response-Time Performance Profiling (MRPP)
tick. Whether or not running on CPU is not important. If
process is on CPU but waits for an event such as fetching
from memory, then clock tick is assigned to process.

When Oracle uses getrusages() system call, getru-
sages() converts tick numbers to time by dividing tick
numbers by HZ value of OS. A typical HZ value is 100
ticks per second, which means a typical clock tick rate is
10 milliseconds (ms) per tick.

This method causes some measurement errors called
active service measurement errors. Exhibit 7 shows the
measurement error samples.

Measurement errors include:

� Phase 1: process runs 5 ms. It starts after clock
tick 0 and relinquishes CPU before clock tick 1.
When clock tick 1 occurs, OS kernel will not be
able to update process CPU usage because pro-
cess is not running on CPU.

• Result: process CPU time, which is 5 ms, was
lost.

� Phase 2: process runs 5 ms. It starts before clock
tick 2 and relinquishes CPU before clock tick 3.
When clock tick 2 occurs, this clock tick is assigned
to current running process. This means that the
tick number of current running process is incre-
mented by one. Because each clock tick is 10 ms,
process CPU usage is incremented by 10 ms.

• Result: although process CPU time is 5 ms,
10 ms are measured. CPU time was measured
higher.

� Phase 3: process runs 15 ms. It starts before clock
tick 4 and relinquishes CPU before clock tick 5.
When clock tick 4 occurs, this clock tick is assigned
to current running process. That is, the tick num-
ber of current running process is incremented by
one. Because each clock tick is 10 ms, process CPU
usage is incremented by 10 ms. The process keeps

Exhibit 6. Test Case: strace Command Output on SuSELinux 7.2/Oracle 8.1.7

16:56:07.107143 gettimeofday({1003708567, 107165}, NULL) = 0
16:56:07.107199 gettimeofday({1003708567, 107221}, NULL) = 0
16:56:07.107251 gettimeofday({1003708567, 107271}, NULL) = 0
16:56:07.107525 gettimeofday({1003708567, 107585}, NULL) = 0
16:56:07.107698 select(0, [], [], [], {0, 10001}) = 0 (Timeout)
16:56:07.172634 gettimeofday({1003708567, 172688}, NULL) = 0
16:56:07.172787 gettimeofday({1003708567, 172815}, NULL) = 0
16:56:07.172866 write(6, “WAIT #1: nam=\'latch free\' ela= 7 p1=1343645620 p2=66 p3=0”, 57) = 57
16:56:07.172955 write(6, “\n”, 1) = 1

Exhibit 7. CPU Measurement Errors

10 ms 10 ms 10 ms 10 ms 10 ms

C
lo

ck
 ti

ck
 0

C
lo

ck
 ti

ck
 1

C
lo

ck
 ti

ck
 2

C
lo

ck
 ti

ck
 3

C
lo

ck
 ti

ck
 4

C
lo

ck
 ti

ck
 5

Measured: 00 ms
Real: 05 ms

Measured: 10 ms
Real: 05 ms

Measured: 10 ms
Real: 15 ms

5 ms 5 ms 15 ms

Phase 1 Phase 2 Phase 3
Oracle Internals Copyright 2002 CRC Press LLC
January 2003 All Rights Reserved

Microstate Response-Time Performance Profiling (MRPP)
running after clock tick 4, and this remaining time
is not measured because process relinquishes CPU
before clock tick 5.

• Result: although process CPU time is 15 ms,
10 ms are measured. CPU time was measured
lower.

The error is minimal at high usage levels, but ranges
up to 80 percent or more at low levels. The problem is
that usage is underreported, and the range of error
increases on faster CPUs. At a real usage level of 5 per-
cent busy, one will often see vmstat reporting that the
system is only 1 percent busy.3

Active Wait Measurement Errors. When a process
runs in OS perspective, but it seems like a wait in user
perspective, that process is in active wait. There are two
types of active waits in Oracle:

1. Latch-spinning

2. Wait-loop

Because the time spent for these operations is included in
service time, it may cause measurement errors. This type
of error is called an active wait measurement error.

Spinning time is included in the CPU used by this ses-
sion statistic. That is, although process is waiting in user
perspective, the time spent in spinning is included in
both OS perspective and Oracle perspective. This means
that latch-spinnings are seen as if running.

Oracle wait-events wake up in a loop for wait-events
that implement timed out wait mechanism until they get
resources. This loop occupies CPU.

Exhibit 8 shows a sample enqueue (TX) wait-event of
DELETE operation. Most CPU usage in a wait-loop is
done in kernel mode. There is little time spent in user
mode (see Exhibit 9).

CPU used by this session is updated after DELETE
statement is completed, and this statistic also includes
time spent in CPU during wait-loop. That is, CPU used
by this session includes CPU usage although process is
waiting.

Exhibit 8. Test Case: SuSELinux 7.2/Oracle 8.1.7 and strace Command for OS Side

TIME STATISTICS BEFORE DELETE OPERATION:

In Oracle side:

SID NAME VALUE
---------- -- ----------
 9 CPU used when call started 1
 9 CPU used by this session 1
 9 OS User time used 5
 9 OS System time used 1
4 rows selected.

In OS side:

21:19:57.303910 getrusage(RUSAGE_SELF, {ru_utime={0, 50000}, ru_stime={0, 10000}, ...}) = 0

A SNAPSHOT OF TIME STATISTICS IN WAIT-LOOP:

In Oracle side:

SID NAME VALUE
---------- --- ----------
 9 CPU used when call started 1
 9 CPU used by this session 1
 9 OS User time used 15
 9 OS System time used 114
4 rows selected.

In OS side:

22:36:18.468218 getrusage(RUSAGE_SELF, {ru_utime={0, 150000}, ru_stime={1, 140000}, ...}) = 0
Copyright 2002 CRC Press LLC Oracle Internals
All Rights Reserved January 2003 7

8

Microstate Response-Time Performance Profiling (MRPP)
Exhibit 10 shows a sample enqueue wait-event of the
DELETE operation. As seen, the wait-loop impact
increases while enqueued sessions are increased. Here are
the interpretations for the following timed terms:

� Average wait-loop elapsed time

� Average wait-loop CPU time
� Average wait-loop utilization
� Average wait-loop impact in system level

Wait-loop elapsed time shows the approximate time
spent in wait-loops. It includes time spent of all possible

Exhibit 9. Time Statistics after DELETE Operation

In Oracle side:

SID NAME VALUE
---------- --- ----------
 9 CPU used when call started 1
 9 CPU used by this session 124
 9 OS User time used 15
 9 OS System time used 114
4 rows selected.

In OS side:

22:36:33.101442 getrusage(RUSAGE_SELF, {ru_utime={0, 150000}, ru_stime={1, 140000}, ...}) = 0

Exhibit 10. Test Case: 766 MHz SuSELinux 7.2/Oracle 8.1.7

Total sessions: 10

Enqueued sessions: 1

Vmstat:

procs memory swap io system cpu
r b w swpd free buff cache si so bi bo in cs us sy id
0 0 0 30664 9628 1164 78580 0 0 0 8 103 84 0 0 100
Wait-loop impact per session: 1.670 ms

Total sessions: 60

Enqueued sessions: 51

Vmstat:

procs memory swap io system cpu
r b w swpd free buff cache si so bi bo in cs us sy id
0 0 0 57240 1396 520 45552 0 0 0 4 102 106 0 1 99
Wait-loop impact per session: 1.688 ms

Total sessions: 210

Enqueued sessions: 202

Vmstat:

procs memory swap io system cpu
r b w swpd free buff cache si so bi bo in cs us sy id
0 0 1 248948 1504 476 37776 0 0 0 12 110 187 1 5 94
Wait-loop impact per session: 1.752 ms
Oracle Internals Copyright 2002 CRC Press LLC
January 2003 All Rights Reserved

Microstate Response-Time Performance Profiling (MRPP)
events in wait-loops, such as CPU usage, OS activities
such page faults, context switches, etc.

Exhibit 11 shows a wait-loop that has average values.
The first instruction starts at 14:38:24.736238, and the
last instruction (semop) starts at 14:38:24.737990. The
time difference between them is 0.001752 seconds, equal
to 1.752 ms wall-clock time. This is an average value and
does not include time spent in the semop() system call.
So, the average wait-loop elapsed time is 1.752 ms.

Exhibit 12 shows a CPU usage summary of wait-loop
system calls that has average values. There are 13
semop() system calls. Because each loop includes one
semop() system call, there are 13 loops in this sample. It
was found that the kernel mode is predominantly used in
wait-loops. So, the time spent in system calls can be
approximately accepted as the average wait-loop CPU
time. Thus, the average wait-loop CPU time =
0.000443/13 = 0.034 ms.

Wait-loop utilization = 100* (average wait-loop
CPU usage) / (average wait-loop elapsed time)

= 100 * (0,034/1.752)

= 1.94%

The wait-loop utilization is too low. This means that
most of the time in the wait-loop was spent in OS-specific
tasks such as page faults, context switches, etc. These OS
tasks were recorded to enqueue wait-event by Oracle.

The wait-loop impact may be small in session level.
However, it becomes larger when the number of sessions
increases. For example:

wait-loop impact in system level = (wait-loop
impact per session) * (average timed out
sessions)

= 1.752 ms * (202)

= 353,904 ms

= 0.354 sec

Because enqueue timeout normally occurs every three
seconds in this test case, there will be 0.354 seconds total

Exhibit 11. Wait-Loop System Calls

14:38:24.736238 --- SIGALRM (Alarm clock) ---
14:38:24.736782 rt_sigprocmask(SIG_BLOCK, [], NULL, 8) = 0
14:38:24.736937 gettimeofday({944433504, 736967}, NULL) = 0
14:38:24.737007 rt_sigprocmask(SIG_UNBLOCK, [], NULL, 8) = 0
14:38:24.737091 rt_sigprocmask(SIG_SETMASK, [RT_0], NULL, 8) = 0
14:38:24.737183 rt_sigprocmask(SIG_BLOCK, [ALRM], NULL, 8) = 0
14:38:24.737269 setitimer(ITIMER_REAL, {it_interval={0, 0}, it_value={0, 0}}, NULL) = 0
14:38:24.737341 rt_sigprocmask(SIG_UNBLOCK, [ALRM], NULL, 8) = 0
14:38:24.737428 gettimeofday({944433504, 737452}, NULL) = 0
14:38:24.737531 gettimeofday({944433504, 737562}, NULL) = 0
14:38:24.737610 rt_sigprocmask(SIG_BLOCK, NULL, [RT_0], 8) = 0
14:38:24.737699 rt_sigprocmask(SIG_BLOCK, [ALRM], NULL, 8) = 0
14:38:24.737779 gettimeofday({944433504, 737806}, NULL) = 0
14:38:24.737844 setitimer(ITIMER_REAL, {it_interval={0, 0}, it_value={3, 70000}}, NULL) = 0
14:38:24.737912 rt_sigprocmask(SIG_UNBLOCK, [ALRM], NULL, 8) = 0
14:38:24.737990 semop(98304, 0xbfffa5c4, 1) = -1 EINTR (Interrupted system call)

Exhibit 12. CPU Usage Summary of Wait-Loop System Calls

oracle@linux:~/test5 > strace -p 714 -tt -c
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 52.82 0.000234 2 109 rt_sigprocmask
 22.57 0.000100 2 55 gettimeofday
 21.67 0.000096 3 28 setitimer
 2.93 0.000013 1 13 13 semop
------ ----------- ----------- --------- --------- ----------------
100.00 0.000443 205 13 total
Copyright 2002 CRC Press LLC Oracle Internals
All Rights Reserved January 2003 9

10

Microstate Response-Time Performance Profiling (MRPP)
wait-loop impact every three seconds. This means that
the total wait-loop impact will be increased every three
seconds. Because time spent in wait-loops is recorded as
relevant Oracle wait-events, it distorts Oracle wait-events.

Wait Measurement Errors
Inactive Wait Measurement Errors. If a running
process is stopped by Oracle process itself, its called pro-
cess is in inactive wait. Sleeping during inactive waits is
controlled by Oracle. That is, inactive waits are Oracle
wait-events.

If a process completes its waiting or wait-timeout
occurs, it does not get the CPU immediately. It is put into
the ready (runnable) queue first. Then, when a CPU is
assigned, the process is determined by CPU Scheduler.
Operations from taking the process from wait-queue to
assigning the CPU to a process are done by OS kernel.

When an Oracle process gets CPU, it updates its wait-
time. This wait-time includes wait-time in wait-queue,
wait-time in ready (runnable) queue, preemption latency
time, context switch time, and any operations such as
swapping, paging etc. during Oracle waits. This means
there are some other operations included in Oracle waits.
Time spent in these non-Oracle operations are called inac-
tive wait measurement errors. Inactive wait measurement
errors make Oracle waits distorted and overvalued.

Exhibit 13 shows a sample measurement error. An Ora-
cle process slept 1 centisecond (10,001 microseconds) on
wait-queue by select() system call. After getting CPU, pro-
cess measured elapsed time by gettimeofday() system call
(7 centiseconds) and updated the latch sleep time by 7 cen-
tiseconds. However, this is the total time and includes
latch-sleep time in wait-queue, wait-time in the ready
(runnable) queue, preemption latency time, and context

switch time. In fact, the time spent in latch-sleep was 1
centisecond. Other rounded 6 centiseconds were caused by
other components of the system, not by Oracle latch.

If there are bottlenecks in CPUs, the number of pro-
cesses in ready (runnable) queue increases. This mani-
fests as if problems are in Oracle wait-events.

Inactive Service Measurement Errors. If a run-
ning process is stopped by OS kernel, its called process is
in inactive service. A running process can be stopped by
OS for preempting, swapping, paging, etc.

Sleeping during inactive services are not controlled by
Oracle. Oracle processes do not know this state. Time
spent in inactive services is called an inactive service
measurement error. This error is not included in Oracle
waits. In other words, it is missed.

Recurring Waits. If a wait-event occurs for the same
resource in multiple sessions at the same time,it is called a
recurring wait. Adding up the time spent in each
wait-event to total wait-time may give distorted results.5

For example, let a log switch completion take 2 seconds.
If five processes wait for log file switch completion
wait-event at the same time through these 2 seconds,
the total time spent in the log file switch completion
wait-event will be 5 × 2 = 10 seconds. But, in fact,
 it takes 2 seconds in system.

The log file switch completion wait-event is a recur-
ring wait-event because it occurs one time in system
level, but recurrs multiple times in session level.

Exhibit 14 shows the recurring wait measurement
errors. While the number of sessions increases, cumulative
measurements may be distorted. Average waits per session

Exhibit 13. Test Case: strace Command Output on SuSELinux 7.2/Oracle 8.1.7

16:56:07.107143 gettimeofday({1003708567, 107165}, NULL) = 0
16:56:07.107199 gettimeofday({1003708567, 107221}, NULL) = 0
16:56:07.107251 gettimeofday({1003708567, 107271}, NULL) = 0
16:56:07.107525 gettimeofday({1003708567, 107585}, NULL) = 0
16:56:07.107698 select(0, [], [], [], {0, 10001}) = 0 (Timeout)
16:56:07.172634 gettimeofday({1003708567, 172688}, NULL) = 0
16:56:07.172787 gettimeofday({1003708567, 172815}, NULL) = 0
16:56:07.172866 write(6, “WAIT #1: nam=\'latch free\' ela= 7 p1=1343645620 p2=66 p3=0”, 57) = 57
16:56:07.172955 write(6, “\n”, 1) = 1
Oracle Internals Copyright 2002 CRC Press LLC
January 2003 All Rights Reserved

Microstate Response-Time Performance Profiling (MRPP)
may not give correct measurements because wait-times
among sessions may not be distributed uniformly. That
is, the reponse time performance modeling is not a proper
model in system level. Also, a system should be a serial
system for response time calculation; that is, the wait-
time should not include service time and service time
should not include wait-time. Both service time and wait-
time must be separate.

Microstate Accounting
Microstate accounting, on the other hand, takes a high-
resolution timestamp on every state change, every system
call, every page fault, and every scheduler change.4

The prusage structure of SunOS 5.5 (Exhibit 15)
shows the resource usage structure used in microstate
accounting. As seen in this structure, more detailed and
accurate time information is measured than that pro-
vided by getrusage(), times(), and gettimeofday() system
calls. By this mechanism it is possible to see the time
spent in several system components.

Oracle and Microstate Accounting
If the OS does not support microstate accounting, Oracle
cannot support it. Exhibit 16 shows some system calls
generated by the Oracle process when TIMED_OS_
STATISTICS is set. The ioctl() calls are used with the

parameter of PIOCUSAGE. If TIMED_OS_STATISTICS
is set 0, ioctl() disappears.

Applying PIOCUSAGE to a process that does not have
microstate accounting enabled will enable microstate
accounting and return an estimate of time spent in the
various states up to this point. Further invocations of
PIOCUSAGE will yield accurate microstate time account-
ing from this point.4

This means that Oracle uses microstate accounting for
the following timed OS statistics for this test case:

� OS User level CPU time
� OS System call CPU time
� OS Other system trap CPU time
� OS Text page fault sleep time
� OS Data page fault sleep time
� OS Kernel page fault sleep time
� OS User lock wait sleep time
� OS All other sleep time
� OS Wait-cpu (latency) time

Correcting Oracle
Measurement Errors
Test Environment
OS and Database. There are two types of statistics
used in this test:

1. Statistics obtained from Oracle timed statistics
2. Statistics obtained from Oracle timed OS statistics:

a. Database: Oracle 9.0 EE
b. OS: Solaris 8 with two CPUs
c. Process architecture: dedicated server

Exhibit 14. Recurring Waits Measurement Errors

Log file switch completion

Session 1

Session n - 1

Session n

t seconds

Real wait: t seconds

Recurring wait: [0, n * t] seconds

time
Copyright 2002 CRC Press LLC Oracle Internals
All Rights Reserved January 2003 11

12

Microstate Response-Time Performance Profiling (MRPP)
Test Scripts. The statements shown in Exhibit 17
were used in this test.

Infinite procedure testp1, testp2, testp3, testp4, testp5
are initiated from different sessions. Then the testp()
procedure is called to observe its statistics (Exhibit 18).
Exhibit 19 shows the microstate accounting-based pro-
cess status taken by prstat –ma.

Statistic Values. There are two types of statistics
used in this test:

1. Oracle timed statistics
2. Oracle timed OS statistics

Statistics of the test session were taken before and after the
test. That is, the differences between after and before the
test show the value of the statistics for the test interval.

Exhibit 15. prusage Structure of SunOS 5.5

typedef struct prusage {
 id_t pr_lwpid; /* lwp id. 0: process or defunct */
 u_long pr_count; /* number of contributing lwps */
 timestruc_t pr_tstamp; /* current time stamp */
 timestruc_t pr_create; /* process/lwp creation time stamp */
 timestruc_t pr_term; /* process/lwp termination time stamp */
 timestruc_t pr_rtime; /* total lwp real (elapsed) time */

 timestruc_t pr_utime; /* user level CPU time */
 timestruc_t pr_stime; /* system call CPU time */
 timestruc_t pr_ttime; /* other system trap CPU time */
 timestruc_t pr_tftime; /* text page fault sleep time */
 timestruc_t pr_dftime; /* data page fault sleep time */
 timestruc_t pr_kftime; /* kernel page fault sleep time */
 timestruc_t pr_ltime; /* user lock wait sleep time */
 timestruc_t pr_slptime; /* all other sleep time */
 timestruc_t pr_wtime; /* wait-cpu (latency) time */

 timestruc_t pr_stoptime; /* stopped time */
 u_long pr_minf; /* minor page faults */
 u_long pr_majf; /* major page faults */
 u_long pr_nswap; /* swaps */
 u_long pr_inblk; /* input blocks */
 u_long pr_oublk; /* output blocks */
 u_long pr_msnd; /* messages sent */
 u_long pr_mrcv; /* messages received */
 u_long pr_sigs; /* signals received */
 u_long pr_vctx; /* voluntary context switches */
 u_long pr_ictx; /* involuntary context switches */
 u_long pr_sysc; /* system calls */
 u_long pr_ioch; /* chars read and written */
 } prusage_t;

Exhibit 16. Test Case: truss Command Output on Solaris 8/Oracle 9.0

$ truss -p 907
read(8, 0x024F28D6, 2064) (sleeping...)
read(8, “\0BC\0\006\0\0\0\0\011 i”.., 2064) = 188
times(0xFFBED5C8) = 855271
ioctl(10, PIOCUSAGE, 0xFFBED18C) = 0
ioctl(10, PIOCSTATUS, 0xFFBED28C) = 0
times(0xFFBED560) = 855271
times(0xFFBED5C8) = 855271
times(0xFFBED420) = 855271
Oracle Internals Copyright 2002 CRC Press LLC
January 2003 All Rights Reserved

Microstate Response-Time Performance Profiling (MRPP)
Exhibit 17. Test Script

A table named test created.

connect dunal/dunal;
create table test(f1 number);
There are initially 8192 rows which have the value of –1.

The following 5 procedures were created. So that, they never caused a lock
and they did infinite loop to make CPU busy when they were called.

create or replace procedure testp1 is
begin
 loop
 insert into test values(1);
 delete test where f1=1;
 commit;
 end loop;
end;
/

create or replace procedure testp2 is
begin
 loop
 insert into test values(2);
 delete test where f1=2;
 commit;
 end loop;
end;
/

create or replace procedure testp3 is
begin
 loop
 insert into test values(3);
 delete test where f1=3;
 commit;
 end loop;
end;
/

create or replace procedure testp4 is
begin
 loop
 insert into test values(4);
 delete test where f1=4;
 commit;
 end loop;
end;
/

create or replace procedure testp5 is
begin
 loop
 insert into test values(5);
 delete test where f1=5;
 commit;
 end loop;
end;
/

The following procedure was created to observe its statistics.
It loops 5000 times and then exits.
Copyright 2002 CRC Press LLC Oracle Internals
All Rights Reserved January 2003 13

14

Microstate Response-Time Performance Profiling (MRPP)
Exhibit 17. Test Script (continued)

connect www/www
create or replace procedure testp is
begin
 for i in 1 .. 5000 loop
 insert into dunal.test values(0);
 delete dunal.test where f1=0;
 commit;
 end loop;
end;
/

Exhibit 18. Running the Test Procedures

Session# Commands Explanation

1 connect dunal/dunal

exec testp1; Runs infinite procedure testp1

2 connect dunal/dunal

exec testp2; Runs infinite procedure testp2

3 connect dunal/dunal

exec testp3; Runs infinite procedure testp3

4 connect dunal/dunal

exec testp4; Runs infinite procedure testp4

5 connect dunal/dunal

exec testp5; Runs infinite procedure testp5

6 connect www/www

exec testp; Runs procedure testp in order to observe its statistics

Exhibit 19. Microstate Accounting-Based Process Status Taken by prstat –ma

 PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/NLWP
1011 oracle 17 0.0 0.0 0.0 0.0 0.0 5.9 78 9 63 374 0 oracle/1
1093 oracle 16 0.0 0.0 0.0 0.0 0.0 8.9 75 8 70 393 0 oracle/1
1070 oracle 16 0.0 0.0 0.0 0.0 0.0 5.9 78 8 75 397 0 oracle/1
1091 oracle 16 0.0 0.0 0.0 0.0 0.0 5.7 78 7 69 426 0 oracle/1
1030 oracle 16 0.0 0.0 0.0 0.0 0.0 8.6 76 8 69 396 0 oracle/1
1050 oracle 14 0.0 0.0 0.0 0.0 0.0 12 73 7 59 287 0 oracle/1
 839 oracle 0.1 0.3 0.0 0.0 0.0 0.0 100 0.0 20 0 203 0 prstat/1
1099 oracle 0.1 0.0 0.0 0.0 0.0 0.0 100 0.0 5 2 90 5 se.sparcv9.5/1
 975 oracle 0.0 0.1 0.0 0.0 0.0 80 18 1.3 452 67 699 8 oracle/11
 977 oracle 0.0 0.0 0.0 0.0 0.0 82 18 0.1 18 8 1K 0 oracle/11
 952 oracle 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 5 0 10 0 script/1
1096 oracle 0.0 0.0 0.0 0.0 0.0 0.0 100 0.1 5 0 11 0 script/1
 346 root 0.0 0.0 - - - - 100 - 2 0 75 1 mibiisa/12
 971 oracle 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 6 0 22 0 oracle/1
 643 oracle 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 4 1 26 1 httpd/4
 NPROC USERNAME SIZE RSS MEMORY TIME CPU
 40 oracle 2937M 2125M 97% 0:53.16 97%
 37 root 104M 67M 3.0% 0:00.01 0.1%
 1 daemon 2488K 1712K 0.1% 0:00.00 0.0%

Total: 78 processes, 261 lwps, load averages: 5.16, 4.91, 4.64
Oracle Internals Copyright 2002 CRC Press LLC
January 2003 All Rights Reserved

Microstate Response-Time Performance Profiling (MRPP)
Some of the statistics used later are marked with a
number in parentheses. The statistics in Exhibit 20 are
obtained when TIMED_STATISTICS=TRUE.

The statistics in Exhibit 21 are obtained when
TIMED_OS_STATISTICS=1. These statistics are
obtained by Oracle using microstate accounting kernel
calls. These statistics will be accepted as accurate statis-
tics and will be compared with Oracle timed statistics to
compute measurement errors.

Correcting Service Measurement Errors
Formulas for Correcting Service Measurement
Errors. Exhibit 22 shows service time components. Ora-
cle service time also includes active wait measurement
errors.

The formula for the total service time in OS level is:

total_service_time_in_OS
= real_Oracle_service_time_ in_OS

+ active_wait_measurement_errors

Exhibit 20. TIMED_STATISTICS=TRUE

Statistic Before After Elapsed

CPU used by this session 0.03 201.36 201.33

total_service_time_in_Oracle (1a) 201.33

SQL*Net message to client 0.00 0.00 0.00

SQL*Net message from client 0.20 176.67 176.47

latch free (1d) — 1.26 1.26

buffer busy waits — 260.54 260.54

log file sync — 0.00 0.00

db file sequential read — 0.20 0.20

db file scattered read — 0.31 0.31

total_wait_time_in_Oracle (1b) 438.78

total elapsed time 640.11

Exhibit 21. TIMED_OS_STATISTICS=1

Statistics Before After Elapsed

OS User level CPU time 0.05 19865 198.60

OS System call CPU time 0.06 0.65 0.59

OS Other system trap CPU time 0.00 0.14 0.14

total_service_time_in_OS (2a) 199.33

OS Text page fault sleep time 0.00 0.00 0.00

OS Data page fault sleep time 0.00 0.00 0.00

OS Kernel page fault sleep time 0.00 0.00 0.00

OS User lock wait sleep time (2c) 0.00 0.00 0.00

OS All other sleep time (2e) 0.01 289.27 289.26

OS Wait-cpu (latency) time (2d) 0.00 955.65 955.65

total_wait_time_in_OS (2b) 1,244.91

total elapsed time 1,444.24
Copyright 2002 CRC Press LLC Oracle Internals
All Rights Reserved January 2003 15

16

Microstate Response-Time Performance Profiling (MRPP)
The formula for service measurement errors is:

service_measurement_errors
= | total_service_time_in_Oracle (1a)

– real_Oracle_service_time_in_OS |

total_service_time_in_OS is the total time of all
services in Oracle timed OS statistics. It can also be found
by the following formula:

total_service_time_in_OS
= OS User level CPU time

+ OS System call CPU time
+ OS Other system trap CPU time

= total_service_time_in_OS (2a)

active_wait_measurement_errors is the service
time spent in active waits, and real_Oracle_
service_time_in_OS indicates the real service time
of Oracle process after isolating active wait measurement
errors.

Applying Formulas to Services. Active wait-time
depends on the timeout values of wait-events (see Exhibit
23). Timeout occurred for the latch free (1d) wait-event
only. It is just 17 timeouts. Also, there is no timeout value
for other wait-events. This means that there are no active
wait CPU usages for other wait-events.

Normally, it is not possible to measure latch spinning
time. But, in the test, there is no high amount of latch free
wait-events in the system level, so it is expected that there
will be no high amount of latch spinning available in this
test. If it is expected to be high, it would not be possible to
isolate the active wait-time of latch free from service time.

Because latch spinning is expected to be low, latch
timeout is very small and timeout values of other events
are zero: active_wait_measurement_errors is
accepted as 0 for this test.

To find real_Oracle_service_time_in_OS:

total_service_time_in_OS
= real_Oracle_service_time_in_OS

+ active_wait_measurement_errors

Exhibit 22. Service Time Components

Exhibit 23. Timeout Values of Wait Events

Statistic Before After Timeout

SQL*Net message to client 0 0 0

SQL*Net message from client 0 0 0

Latch free (1d) — 17 17

buffer busy waits — 0 0

log file sync — 0 0

db file sequential read — 0 0

db file scattered read — 0 0

Total 17

time

total_service_time_in_OS

real_Oracle_service_time_in_OS active_wait_measurement_errors
Oracle Internals Copyright 2002 CRC Press LLC
January 2003 All Rights Reserved

Microstate Response-Time Performance Profiling (MRPP)
total_service_time_in_OS (2a)
= real_Oracle_service_time_in_OS

+ active_wait_measurement_errors

real_Oracle_service_time_in_OS

= 199.33 – 0

= 199.33 seconds

To find service_measurement_errors, the following for-
mula returns the impact of service measurement errors:

service_measurement_errors

= | total_service_time_in_Oracle (1a) –
real_Oracle_service_time_in_OS |

= | 201.33 – 199.33 |

= 2 seconds

Exhibit 24 shows the graph which includes service time
measured by Oracle timed statistic and service time com-
puted by formula. The service measurement error is min-
imal. This confirms the rule that “CPU measurement
error is minimal at high usage levels”3 because the test is
is done at high CPU usages. If active_wait_
measurement_errors was not ignored, this rule
would not be applicable because it would not be possible
to isolate active_ wait_measurement_errors
from total_service_time_in_OS.

Correcting Wait Measurement Errors
Exhibit 25 shows wait-time components:
inactive_wait_measurement_errors is assigned
to Oracle waits and inactive_service_
measurement_errors is missed by Oracle.

The formula for the total wait-time in OS level is:

total_wait_time_in_OS
= real_Oracle_wait_time_in_OS

+ inactive_wait_measurement_errors
+ inactive_service_measurement_errors

The total_wait_time_in_OS is the total time of all
waits in Oracle timed OS statistics. It can also be found
from the following formula:

total_wait_time_in_OS
= OS Text page fault sleep time

+ OS Data page fault sleep time
+ OS Kernel page fault sleep time
+ OS User lock wait sleep time
+ OS All other sleep time
+ OS Wait-cpu (latency) time

= total_wait_time_in_OS (2b)

real_Oracle_wait_time_in_OS indicates the real
wait-time of Oracle process after isolating wait measure-
ment errors.

Exhibit 24. Service Time Measured by Oracle Timed Statistic and Service Time Computed by Formula

0

50

100

150

200

250

Real Oracle
Service Time

in OS

Total Service Time
in Oracle

(1a)
Copyright 2002 CRC Press LLC Oracle Internals
All Rights Reserved January 2003 17

18

Microstate Response-Time Performance Profiling (MRPP)
real_Oracle_wait_time_in_OS

= OS User lock wait sleep time (2c)

+ OS All other sleep time (2e)

inactive_wait_measurement_errors is the non-
Oracle wait-time assigned to Oracle. That is, it shows the
distorted wait-time included in Oracle waits.

The difference between the total wait-time measured
in Oracle timed statistics and the real wait-time mea-
sured in Oracle timed OS statistics gives the minumum
distorted wait-time assigned to Oracle. It is called “minu-
mum” because there may be other non-Oracle-related
sleeps in OS All other sleep time.

Min. inactive_wait_measurement_errors

= total_wait_time_in_Oracle –

real_Oracle_wait_time_in_OS

inactive_service_measurement_errors is the
wait-time that cannot be measured by Oracle. That is, it
shows the wait-time missed by Oracle.

The difference between the total wait-time measured
in Oracle timed OS statistics and the total wait-time
measured in Oracle timed statistics gives the maximum
wait-time missed by Oracle. It is called “maximum”
because there may be other non-Oracle-related sleeps in
OS All other sleep time.

Max. inactive_service_measurement_errors

= total_wait_time_in_OS –

total_wait_time_in_Oracle

Applying Formulas to Waits. To find
real_Oracle_wait_time_in_OS:

real_Oracle_wait_time_in_OS

= OS User lock wait sleep time (2c) + OS All other
sleep time (2e)

= 0.00 + 289.26
= 289.26 seconds

To find Min. inactive_wait_measurement_errors:

Min. inactive_wait_measurement_errors
= total_wait_time_in_Oracle (1b) –

real_Oracle_wait_time_in_OS
= 438.78 – 289.26
= 149.52 seconds assigned to Oracle waits

Exhibit 26 depicts the graph, which includes the statis-
tics in this formula. The difference between them gives
the wait distortions assigned to Oracle.

To find Max. inactive_service_measurement_errors:

Max. inactive_service_measurement_errors
= total_wait_time_in_OS(2b) –

total_wait_time_in_Oracle (1b)
= 1,244.91 – 438.78
= 806.13 seconds missed by Oracle

Exhibit 27 shows the graph, which includes the statistics
in this formula. The difference between them gives the
wait misses that cannot be measured by Oracle.

Exhibit 25. Wait Time Components

time

real_Oracle_wait_
time_in_OS

total_wait_time_in_Oracle

total_wait_time_in_OS

inactive_wait_
measurement_errors

inactive_service_
measurement_errors
Oracle Internals Copyright 2002 CRC Press LLC
January 2003 All Rights Reserved

Microstate Response-Time Performance Profiling (MRPP)
Breaking Down Wait Measurement Errors to
Timed OS Statistics. Because elapsed time for all OS
waits, except OS Wait-cpu (latency) time, are zero, the
wait distortions assigned to Oracle come from OS Wait-
cpu (latency) time (see Exhibit 28).

Wait Distortion Ratios. Normally, it is not possible
to find wait distortions for individual Oracle wait-events,

but it is possible to find overall wait distortion for Oracle
ratios. If a wait-event predominantly sleeps in real_
Oracle_wait_time_in_OS, there is a low probabil-
ity of wait distortion error because it is already accounted
for in Oracle. That is why there are two formulas to find
the wait distortion ratio:

1. Distortion ratio with ignorable Oracle waits

2. Distortion ratio with all Oracle waits

Exhibit 26. The Difference: Wait Distortions Assigned to Oracle

Exhibit 27. The Difference: Wait Misses that Cannot Be Measured by Oracle

0

100

200

300

400

500

Real Oracle
Wait Time
in OS (2e)

Total Wait Time
in Oracle

(1b)

0

300

600

900

1200

1500

Total Wait Time
in Oracle (1b)

Total Wait Time
in OS (2b)
Copyright 2002 CRC Press LLC Oracle Internals
All Rights Reserved January 2003 19

20

Microstate Response-Time Performance Profiling (MRPP)
Exhibit 29 shows the number of calls of Oracle wait
events.

In this test, the SQL*Net message from client wait-event
is the idle form of the SQL*Net message from client wait-
event because it is waited in the SQL*Net message from cli-
ent wait-event before starting the test script. So, sleep time
in this wait-event is predominantly included in the OS All
other sleep time statistic. That is, it has predominantly no
wait distortions, so it is ignored (see Exhibit 30).

Min. ratio_for_inactive_wait_measurement_errors
= 100 * (Min. inactive_wait_measurement_errors

 / total_non_idle_wait_time_in_Oracle (3a))
= 100 * (149.52 / 262.31)
= 57%

If the SQL*Net message from client wait-event is a
non-idle form of the SQL*Net message from client wait-
event, it will not be possible to ignore them easily. For
example, high amounts of waits enter ready (runnable)

queue frequently and cause wait distortions. So, some of
its wait-time will be included in the OS Wait-cpu
(latency) time. In that case, the following formula should
be used:

Min. ratio_for_inactive_wait_measurement_errors

= 100 * (Min. inactive_wait_measurement_errors

/ total_wait_time_in_Oracle (1b))

Exhibit 28. Breaking Down Wait Measurement Errors to Timed OS Statistics

Statistics Elapsed
inactive_wait_
measurement_errors

inactive_service_
measurement_errors

OS Text page fault sleep time 0.00 0.00 0.00

OS Data page fault sleep time 0.00 0.00 0.00

OS Kernel page fault sleep time 0.00 0.00 0.00

OS Wait-cpu (latency) time (2d) 955.65 149.52 806.13
Total

Exhibit 29. Number of Calls of Oracle Wait Events

Statistic Before After Call

SQL*Net message to client 38 39 1

SQL*Net message from client (idle) 37 38 1

latch free — 18 18

buffer busy waits — 2622 2622

log file sync — 2 2

db file sequential read — 1187 1187

db file scattered read — 1064 1064

Total 4895

Exhibit 30. non_idle_wait_time_in_Oracle (3a)

Statistic Elapsed

SQL*Net message to client 0.00

latch free 1.26

buffer busy waits 260.54

log file sync 0.00

db file sequential read 0.20

db file scattered read 0.31

total_non_idle_wait_time_in_Oracle (3a) 262.31
Oracle Internals Copyright 2002 CRC Press LLC
January 2003 All Rights Reserved

Microstate Response-Time Performance Profiling (MRPP)
Overall Impact of Measurement Errors
Exhibit 31 shows the overall measurement errors. There
are significant amounts of time missed by Oracle. Also,
there are significant amounts of distorted wait-time
assigned to Oracle wait-events. There is no significant
amount of measurement in service time because it is min-
imal at high usage level3 and there is no high amount of
active_wait_measurement_errors.

Microstate Response-Time
Performance Profiling (MRPP)
Decision Tree
Using the correct modeling is the most important part of
problem solving. If there is a problem, there is a cause of
the problem. Deductive decision tree takes users to solu-
tion by constructing cause-consequence relationships
tree.

Exhibit 32 shows a combined Deductive-Inductive
tree. Suppose that Circle A is a symptom of the problem.
It is located at the root of the tree. Circles C1, C2, and C3
are the leaves. One of them is the cause of the problem,
say C1. How can the cause of the problem (C1) be
reached?

There are two walking ways in this tree: deductive
(downward) and inductive (upward). In the deductive
method, root is broken into sub-components. Components

are broken down repeatedly until the component that is
the cause of problem is found. If a component does not
have an effect on the problem, the breaking process is
stopped on that component, but continues on other com-
ponents. If the cause of the problem is found, the break-
ing process is stopped. The component on which the
breaking process is finally stopped is the cause of prob-
lem. The path from root to solution component is called
solution path or critical path.

In this method, the possibility of reaching the cause of
the problem is 100 percent because if there is a problem,
there is a cause; and finding the possibility of the cause
of the problem is 100 percent by going backward from
the symptom (root) to causes (components). For
Exhibit 32, path (A,B2,C1) is the solution path (or the
critical path).

In the inductive method, root is reached by combining
components. That is, the symptom (root) is reached by
assuming that the possible causes (components) are the
starting point. In this method, finding the cause of prob-
lem is not 100 percent because possible starting compo-
nents may not be the real cause of the problem, or
possible starting components may not be known yet. This
method is similar to the Test-and-See method, and it
wastes time. As a result, a Deductive Solution tree should
be used in problem solving by walking from root to
leaves.

Exhibit 31. Overall Measurement Errors

0

200

400

600

800

1000

Service
Measurement

Errors

Inactive Wait
Measurement

Errors

Inactive Service
Measurement

Errors
Copyright 2002 CRC Press LLC Oracle Internals
All Rights Reserved January 2003 21

22

Microstate Response-Time Performance Profiling (MRPP)
If problem-solving modeling wants to be accurate
modeling, it must be compatible with deductive model-
ing.

Applying MRPP to Oracle
Exhibit 33 shows the components of the Deductive
Response-Time Decision tree having all the components

of response time. Exhibit 33 used microstate accounting
in Solaris; other systems that provide microstate
accounting may use different fields for their events, but
the concept is the same.

Each leaf on the tree is located at a particular depth,
or level. Walking on the tree should start from the root of
tree, which is the response time, and it should be broken

Exhibit 32. Deductive-Inductive Decision Tree

Exhibit 33. Deductive Response-Time Decision Tree

A

B1 B2 B3

C1 C2 C3
Deductive Inductive

B2 is a component of A, root of C1.

response

service wait

active
service

active
wait

inactive
wait

inactive
service

User
mode

System
calls

System
traps

Text page
fault sleep

Data page
fault sleep

Kernel page
fault sleep

User lock
wait sleep

Wait-cpu
(latency)

All other
sleep

recursive
statement

user
statement

latch
spinningparse execute fetch latch

spinning
wait
loop parse execute fetch wait

loop
Oracle Internals Copyright 2002 CRC Press LLC
January 2003 All Rights Reserved

Microstate Response-Time Performance Profiling (MRPP)
down to its sub-components (e.g., service time and wait
time). High impact components (e.g., service time)
should be broken down into sub-components (e.g.,
parse, fetch, execute); low impact component (e.g., wait
time) should be ignored. This walking on tree process
should be continued until the problem is found. Because
all components are more accurately available in the tree,
it is easy to find the cause of the problem.

MRPP offers some parameters and formulas for sev-
eral layers. Although some of these parameters may be
merged into single parameters by the provider, this arti-
cle shows all possible parameters.

Levels
High response time is a symptom of a performance prob-
lem. Thus, it is the root of deductive tree. Each leaf at the
same depth has the same level. The root of the tree is
level 0. Its components and sub-components are levels 1,
2, 3, 4, 5, and OSD.

Level 0

response_time = service_time + wait_time

� response_time: time spent on completing a
unit of work, including waits.

� service_time: time spent on CPU while ser-
vicing in system perspective.

� wait_time: time spent while waiting in system
perspective.

Level 1

service_time = active_service_time + active_wait_time

wait_time = inactive_wait_time + inactive_service_time

All statistics starting with “active” imply that they are
running on CPU. All statistics starting with “inactive”
imply they are waiting.

� active_service_time: time spent on CPU
while servicing.

� active_wait_time: time spent on CPU while
waiting in user perspective.

� inactive_wait_time: time spent while
sleeping on Oracle wait-event.

� inactive_service_time: time spent while
sleeping on non-Oracle wait-event.

Level 2

active_service_time

= active_service_time for PARSE

+ active_service_time for EXECUTE

+ active_service_time for FETCH

active_wait_time

= active_wait_time for LATCH-SPINNING

+ active_wait_time for WAIT-LOOP

inactive_wait_time

= inactive_wait_time for recursive_statement

+ inactive_wait_time for user_statement

inactive_service_time

= inactive_service_time for PARSE

+ inactive_service_time for EXECUTE

+ inactive_service_time for FETCH

+ inactive_service_time for LATCH-SPINNING

+ inactive_service_time for WAIT-LOOP

Recursive statements are generated by Oracle to perform
data dictionary operations (e.g., extent allocations) on
behalf of the user process.

� active_service_time for PARSE, EXE-
CUTE, FETCH: time spent on CPU for parsing,
executing, and fetching, respectively.

� active_wait_time for LATCH-SPINNING,
WAIT-LOOP: time spent on CPU while spinning
latches or doing wait-loops. Although they are
the waits in user perspective, they occupy CPU in
OS perspective.

� inactive_wait_time for recursive statement,
user statement: time spent while sleeping on Ora-
cle wait-events for recursive and user statements,
respectively. It shows the real wait time. It does
not include active wait time.

� inactive_service_time for PARSE, EXE-
CUTE, FETCH, LATCH-SPINNING, WAIT-
LOOP: time spent while sleeping on non-Oracle
wait-events for PARSE, EXECUTE, FETCH,
LATCH-SPINNING, and WAIT-LOOP, respec-
tively.
Copyright 2002 CRC Press LLC Oracle Internals
All Rights Reserved January 2003 23

24

Microstate Response-Time Performance Profiling (MRPP)
Level 3

active_service_time for PARSE
= active_service_time for recursive PARSE

+ active_service_time for user PARSE

active_service_time for EXECUTE

= active_service_time for recursive EXECUTE
+ active_service_time for user EXECUTE

active_service_time for FETCH

= active_service_time for recursive FETCH

+ active_service_time for user FETCH

active_wait_time for LATCH-SPINNING
= active_wait_time for recursive LATCH-SPINNING

+ active_wait_time for user LATCH-SPINNING

active_wait_time for WAIT-LOOP

= active_wait_time for recursive WAIT-LOOP
+ active_wait_time for user WAIT-LOOP

inactive_service_time for PARSE

= inactive_service_time for recursive PARSE

+ inactive_service_time for user PARSE

inactive_service_time for EXECUTE
= inactive_service_time for recursive EXECUTE

+ inactive_service_time for user EXECUTE

inactive_service_time for FETCH

= inactive_service_time for recursive FETCH
+ inactive_service_time for user FETCH

inactive_service_time for LATCH-SPINNING

= inactive_service_time for recursive
LATCH-SPINNING

+ inactive_service_time for user
LATCH-SPINNING

inactive_service_time for WAIT-LOOP

= inactive_service_time for recursive WAIT-LOOP

+ inactive_service_time for user WAIT-LOOP

Definitions are the same as parameter names.

Level 4

active_service_time for recursive PARSE

= user level CPU time for active_service_time for
recursive PARSE

+ system call CPU time for active_service_time for
recursive PARSE

+ other system trap CPU time for
active_service_time for recursive PARSE

active_service_time for user PARSE

= user level CPU time for active_service_time for
user PARSE

+ system call CPU time for active_service_time for
user PARSE

+ other system trap CPU time for
active_service_time for user PARSE

active_service_time for recursive EXECUTE

= user level CPU time for active_service_time for
recursive EXECUTE

+ system call CPU time for active_service_time for
recursive EXECUTE

+ other system trap CPU time for
active_service_time for recursive EXECUTE

active_service_time for user EXECUTE

= user level CPU time for active_service_time for
user EXECUTE

+ system call CPU time for active_service_time for
user EXECUTE

+ other system trap CPU time for
active_service_time for user EXECUTE

active_service_time for recursive FETCH

= user level CPU time for active_service_time for
recursive FETCH

+ system call CPU time for active_service_time for
recursive FETCH

+ other system trap CPU time for
active_service_time for recursive FETCH

active_service_time for user FETCH

= user level CPU time for active_service_time for
user FETCH
Oracle Internals Copyright 2002 CRC Press LLC
January 2003 All Rights Reserved

Microstate Response-Time Performance Profiling (MRPP)
+ system call CPU time for active_service_time for
user FETCH

+ other system trap CPU time for
active_service_time for user FETCH

active_wait_time for recursive LATCH-SPINNING
= user level CPU time for active_wait_time for

recursive LATCH-SPINNING
+ system call CPU time for active_wait_time for

recursive LATCH-SPINNING
+ other system trap CPU time for

active_wait_time for recursive LATCH-SPIN-
NING

active_wait_time for user LATCH-SPINNING
= user level CPU time for active_wait_time for user
LATCH-SPINNING

+ system call CPU time for active_wait_time for
user LATCH-SPINNING

+ other system trap CPU time for
active_wait_time for user LATCH-SPINNING

active_wait_time for recursive WAIT-LOOP
= user level CPU time for active_wait_time for recur-
sive WAIT-LOOP

+ system call CPU time for active_wait_time for
recursive WAIT-LOOP

+ other system trap CPU time for
active_wait_time for recursive WAIT-LOOP

active_wait_time for user WAIT-LOOP
= user level CPU time for active_wait_time for user
WAIT-LOOP

+ system call CPU time for active_wait_time for
user WAIT-LOOP

+ other system trap CPU time for
active_wait_time for user WAIT-LOOP

inactive_wait_time for recursive_statement
= text page fault sleep time for inactive_wait_time
for recursive_statement

+ data page fault sleep time for
inactive_wait_time for recursive_statement

+ kernel page fault sleep time for
inactive_wait_time for recursive_statement

+ user lock wait sleep time for inactive_wait_time
for recursive_statement

+ wait-cpu (latency) time for inactive_wait_time
for recursive_statement

+ all other sleep time for inactive_wait_time for
recursive_statement

inactive_wait_time for user_statement
= text page fault sleep time for inactive_wait_time
for user_statement

+ data page fault sleep time for
inactive_wait_time for user_statement

+ kernel page fault sleep time for
inactive_wait_time for user_statement

+ user lock wait sleep time for inactive_wait_time
for user_statement

+ wait-cpu (latency) time for inactive_wait_time
for user_statement

+ all other sleep time for inactive_wait_time for
user_statement

inactive_service_time for recursive PARSE
= text page fault sleep time for inactive_service_time
for recursive PARSE

+ data page fault sleep time for
inactive_service_time for recursive PARSE

+ kernel page fault sleep time for
inactive_service_time for recursive PARSE

+ user lock wait sleep time for
inactive_service_time for recursive PARSE

+ wait-cpu (latency) time for
inactive_service_time for recursive PARSE

+ all other sleep time for inactive_service_time for
recursive PARSE

inactive_service_time for user PARSE
= text page fault sleep time for inactive_service_time
for user PARSE

+ data page fault sleep time for
inactive_service_time for user PARSE

+ kernel page fault sleep time for
inactive_service_time for user PARSE

+ user lock wait sleep time for
inactive_service_time for user PARSE

+ wait-cpu (latency) time for
inactive_service_time for user PARSE

+ all other sleep time for inactive_service_time for
user PARSE
Copyright 2002 CRC Press LLC Oracle Internals
All Rights Reserved January 2003 25

26

Microstate Response-Time Performance Profiling (MRPP)
inactive_service_time for recursive EXECUTE
= text page fault sleep time for inactive_service_time
for recursive EXECUTE

+ data page fault sleep time for
inactive_service_time for recursive EXECUTE

+ kernel page fault sleep time for
inactive_service_time for recursive EXECUTE

+ user lock wait sleep time for
inactive_service_time for recursive EXECUTE

+ wait-cpu (latency) time for
inactive_service_time for recursive EXECUTE

+ all other sleep time for inactive_service_time for
recursive EXECUTE

inactive_service_time for user EXECUTE
= text page fault sleep time for inactive_service_time
for user EXECUTE

+ data page fault sleep time for
inactive_service_time for user EXECUTE

+ kernel page fault sleep time for
inactive_service_time for user EXECUTE

+ user lock wait sleep time for
inactive_service_time for user EXECUTE

+ wait-cpu (latency) time for
inactive_service_time for user EXECUTE

+ all other sleep time for inactive_service_time for
user EXECUTE

inactive_service_time for recursive FETCH
= text page fault sleep time for inactive_service_time
for recursive FETCH

+ data page fault sleep time for
inactive_service_time for recursive FETCH

+ kernel page fault sleep time for
inactive_service_time for recursive FETCH

+ user lock wait sleep time for
inactive_service_time for recursive FETCH

+ wait-cpu (latency) time for
inactive_service_time for recursive FETCH

+ all other sleep time for inactive_service_time for
recursive FETCH

inactive_service_time for user FETCH
= text page fault sleep time for inactive_service_time
for user FETCH

+ data page fault sleep time for
inactive_service_time for user FETCH

+ kernel page fault sleep time for
inactive_service_time for user FETCH

+ user lock wait sleep time for
inactive_service_time for user FETCH

+ wait-cpu (latency) time for
inactive_service_time for user FETCH

+ all other sleep time for inactive_service_time for
user FETCH

inactive_service_time for recursive LATCH-SPINNING
= text page fault sleep time for inactive_service_time
for recursive LATCH-SPINNING

+ data page fault sleep time for
inactive_service_time for recursive LATCH-
SPINNING

+ kernel page fault sleep time for
inactive_service_time for recursive LATCH-
SPINNING

+ user lock wait sleep time for
inactive_service_time for recursive LATCH-
SPINNING

+ wait-cpu (latency) time for
inactive_service_time for recursive LATCH-
SPINNING

+ all other sleep time for inactive_service_time for
recursive LATCH-SPINNING

inactive_service_time for user LATCH-SPINNING
= text page fault sleep time for inactive_service_time
for user LATCH-SPINNING

+ data page fault sleep time for
inactive_service_time for user LATCH-
SPINNING

+ kernel page fault sleep time for
inactive_service_time for user LATCH-
SPINNING

+ user lock wait sleep time for
inactive_service_time for user LATCH-
SPINNING

+ wait-cpu (latency) time for
inactive_service_time for user LATCH-
SPINNING

+ all other sleep time for inactive_service_time for
user LATCH-SPINNING
Oracle Internals Copyright 2002 CRC Press LLC
January 2003 All Rights Reserved

Microstate Response-Time Performance Profiling (MRPP)
inactive_service_time for recursive WAIT-LOOP
= text page fault sleep time for inactive_service_time
for recursive WAIT-LOOP

+ data page fault sleep time for
inactive_service_time for recursive WAIT-
LOOP

+ kernel page fault sleep time for
inactive_service_time for recursive WAIT-
LOOP

+ user lock wait sleep time for
inactive_service_time for recursive WAIT-
LOOP

+ wait-cpu (latency) time for
inactive_service_time for recursive WAIT-
LOOP

+ all other sleep time for inactive_service_time for
recursive WAIT-LOOP

inactive_service_time for user WAIT-LOOP
= text page fault sleep time for inactive_service_time
for user WAIT-LOOP

+ data page fault sleep time for
inactive_service_time for user WAIT-LOOP

+ kernel page fault sleep time for
inactive_service_time for user WAIT-LOOP

+ user lock wait sleep time for
inactive_service_time for user WAIT-LOOP

+ wait-cpu (latency) time for
inactive_service_time for user WAIT-LOOP

+ all other sleep time for inactive_service_time for
user WAIT-LOOP

Definitions are the same as parameter names.

Level OSD. The Operating System Dependent (OSD)
level is the lowest level in deductive tree. This level pro-
vides base parameters to higher levels. Higher-level
parameters can be defined as real parameters, or as vir-
tual parameters derived from the OSD level.

This level provides time information to Oracle, and
may be different in different OS.

The following timed statistics of prusage structure of
SunOS 5.5 are used in this article:

timestruc_t pr_utime; /* user level CPU time */
timestruc_t pr_stime; /* system call CPU time */
timestruc_t pr_ttime; /* other system trap CPU time

*/

timestruc_t pr_tftime; /* text page fault sleep
time */

timestruc_t pr_dftime; /* data page fault sleep
time */

timestruc_t pr_kftime; /* kernel page fault sleep
time */

timestruc_t pr_ltime; /* user lock wait sleep time *
timestruc_t pr_slptime; /* all other sleep time */

timestruc_t pr_wtime; /* wait-
cpu (latency) time */

all other sleep time (pr_slptime) includes
I/O waits from disk, net, and terminal.

Sleep Fields
All sleep fields in struct prusage were used to keep mod-
ularity. Some of prusage sleep fields are not used by some
operations, and their values will be 0.

Conclusion
Oracle wait time statistics are distorted, especially when
OS activities such as paging, swapping, context switch-
ing is high. These OS activities are usually high on busy
systems.

Oracle service time statistics are not distorted on busy
systems unless there is no high amount of latch spinning
time or wait-loops time.

This article offered a new approach to response time
modeling for Oracle by using microstate accounting of
OS. This approach is more accurate and will be applica-
ble when Oracle supports microstate accounting.

With MRPP, any level of users — from beginners to
experts — will be able to easily identify the level of per-
formance problems. Also, MRPP can be embedded into
Oracle kernel by Oracle to make more accurate perfor-
mance decision making for Optimizer. �

Acknowledgments
The author would like to thank to following reviewers of
this article for their valuable reviews:

� Jonathan Lewis, the author of “Practical
Oracle8i” at http://www.jlcomp.demon.co.uk/

� K. Gopalakrishnan (kgopalakrishnan@usa.net),
one of the leading Oracle database performance
consultants in the world

� Tim Gorman (http://www.evdbt.com), the co-
author of Essential Oracle8i Data Warehousing
and Oracle8 Data Warehousing
Copyright 2002 CRC Press LLC Oracle Internals
All Rights Reserved January 2003 27

http://www.jlcomp.demon.co.uk
http://www.evdbt.com
mail to: kgopalakrishnan@usa.net

Microstate Response-Time Performance Profiling (MRPP)

28
� Kirtikumar Deshpande, one of the authors of Ora-
cle Performance Tuning 101

� Craig Shallahamer (http://www.orapub.com), an
Oracle performance philosopher who has a special
place in the history of Oracle performance man-
agement

� Mehmet Ugÿ ur Kuzu (mehmetugurkuzu@yahoo.
com), a valuable technical support analyst

The author would also like to thank Erdinç Başl1k,
Mehmet Ugÿ ur Kuzu, Esin Y1lmaz, Sebahattin Demir,
Tolga I

.
ngenç, Fatih Er, Ahmet Güvel, and Yahya Agÿ a for

their administrative support.

References

1. Response Time Analysis for Oracle Based Systems,
by Craig Shallahamer, http://www.orapub.com/.

2. Yet Another Performance Profiling (YAPP), by
Anjo Kolk, Shari Yamaguchi, and Jim Viscusi,
http://www.oraperf.com/.

3. How Busy Is the CPU, Really?, by Adrian
Cockrofts, http://www.itworld.com/Net/3603/
UIR980601perf/.

4. Prying into Processes and Workloads, by Adrian
Cockrofts, http://www.itworld.com/Net/3138/
UIR980401perf/.

5. A warning from Jonathan Lewis.
6. Intel Architecture Software Developer’s Manual,

Volume 3: System Programming, order number
243192.

7. Asynchronous I/O and large file support in Solaris,
http://sunsite.uakom.sk/sunworldonline/swol-07-
1998/swol-07-insidesolaris.html.

Danisment Gazi Unal is an Oracle database consultant
based in Adana, Turkey. He develops and hosts Web-based
Oracle database utilities at http://www.ubTools.com. Ques-
tions concerning this article can be asked at http://www.
ubTools.com.

iStatsPackAnalyzer is a web based tool which analyzes
STATSPACK files of Oracle; finds bottlenecks and offers information
Oracle Internals Copyright 2002 CRC Press LLC
January 2003 All Rights Reserved

Name __

Title ___

Company ___

Street Address __

City, State, ZIP __

Country/Postal Code ___________________________________

Phone ___

E-mail address __

Customers in CA, DC, FL, GA, IL, MA, MO, NJ, NM, NY, and TX, please add
applicable sales tax. Canadian customers, please add GST.

❑ 1 year (12 issues), $145

❑ 2 years (24 issues), $260 Best Deal — Save $30

❑ Bill my purchase order # ___________________ attached

❑ Check for $ _______ enclosed, payable to CRC Press LLC

❑ Charge my: ❑ Visa ❑ Mastercard ❑ Amex

Card No. ___________________________ Exp. Date ________

Signature (required) ___________________________________

Phone your order to: 1-800-272-7737
Fax: 1-800-374-3401

Mail: CRC Press LLC, 2000 NW Corporate Blvd.
Boca Raton, FL 33431

E-mail: orders@crcpress.com

Start (or extend) my subscription to Oracle Internals. Your subscription includes access to Oracle OnLine, a searchable archive.

on how to tune them. It can also correct Oracle measurement
errors
if Microstate Accounting statistics are available.

Copyright
No part of this document may be reproduced in any form by any
means without authorization of ubTools.

http://www.orapub.com
http://www.orapub.com
http://www.oraperf.com
http://www.itworld.com/Net/3603/UIR980601perf
http://www.itworld.com/Net/3138/UIR980401perf
http://www.ubTools.com
http://www.ubTools.com
http://sunsite.uakom.sk/sunworldonline/swol-07-1998/swol-07-insidesolaris.html
mail to: orders@crcpress.com
mail to: mehmetugurkuzu@yahoo.com
mail to: mehmetugurkuzu@yahoo.com
http://www.ubTools.com
http://www.ubTools.com

	ORACLE INTERNALS
	Microstate Response-Time Performance Profiling (MRPP)
	Goal
	Measurement of Oracle Services and Waits in OS Level
	Measurement of Oracle Services in OS Level
	Measurement of Oracle Waits in OS Level
	Synchronous Wait Mechanism
	Asynchronous Wait Mechanism
	Timed Out Wait Mechanism

	Measurement Errors
	Service Measurement Errors
	Active Service Measurement Error
	Active Wait Measurement Errors

	Wait Measurement Errors
	Inactive Wait Measurement Errors
	Inactive Service Measurement Errors
	Recurring Waits

	Microstate Accounting
	Oracle and Microstate Accounting

	Correcting Oracle Measurement Errors
	Test Environment
	OS and Database
	Test Scripts
	Statistic Values

	Correcting Service Measurement Errors
	Formulas for Correcting Service Measurement Errors
	Applying Formulas to Services

	Correcting Wait Measurement Errors
	Applying Formulas to Waits
	Breaking Down Wait Measurement Errors to Timed OS Statistics
	Wait Distortion Ratios

	Overall Impact of Measurement Errors

	Microstate Response-Time Performance Profiling (MRPP)
	Decision Tree
	Applying MRPP to Oracle
	Levels
	Level 0
	Level 1
	Level 2
	Level 3
	Level 4
	Level OSD

	Sleep Fields

	Conclusion
	Acknowledgments
	References

