
This document is the intellectual property of TrueNorth Consulting, Inc., Copyright © 1996-1999, all rights reserved.

The latest copy of this paper can usually be found at: http://home.att.net/~tbcox/
Page 1

The Low Administration Oracle Specification (LAOS), Part I:
Avoiding the Need for Administration

Version 1.6

Revised: 15-Mar-1999

Author: Thomas B. Cox

Purpose: This document describes the steps to configure an Oracle database for a near-zero maintenance environment
on Windows NT. (Many of these guidelines can be used on other operating system platforms.)

Acknowledgements: This paper was inspired by the work of Craig Shallahammer and Cary Millsap, among others
(see References), and has been influenced by many of my co-workers over the last several years. I am especially
pleased that Automatic Data Processing, Inc. implemented the first (to my knowledge) Low Admin commercial
product, ADP PC/Payroll for Windows, perfecting many of the same ideas found in this white paper, and I am
indebted to Inna Brovman of ADP for her faith in the LAOS ideal.

Part II is not currently available. Please check back at http://home.att.net/~tbcox/ for updates.

Please send your corrections, suggestions, and feedback to me at the address below, with your
return address so I may credit your contribution. Thank you.

-Thomas B. Cox
tbcox@worldnet.att.net

This document is the intellectual property of TrueNorth Consulting, Inc., Copyright © 1996-1999, all rights reserved.

The latest copy of this paper can usually be found at: http://home.att.net/~tbcox/
Page 2

LAOS describes the steps to configure an Oracle database for a near-zero maintenance environment on Windows
NT. (Many of these guidelines can be used on other operating system platforms.)

Scope
This specification is for reducing the overall administrative overhead required to keep a database running in
production. The goal is to allow some databases to run for years without active administration (other than normal
backups and occasional recovery).

Several sorts of databases are candidates for LAOS implementations. First, any database that will be
geographically remote, isolated, or located away from professional database administrators (databases run by service
bureau clients; databases on aircraft or ships; or departmental servers managed by central staff). Second, small
databases used for control or monitoring of other larger databases (these can include Enterprise Manager
repositories, RMAN Server Managed Backup and Recovery repositories, home-grown capacity planning databases,
etc.). Third, embedded databases that have extremely controlled and delimited functions and that may have no direct
human interaction.

First we review the tasks required to keep a database alive in a positive-maintenance environment. Then we
examine which tasks can be eliminated, how to do so, and what assumptions this makes about the target database and
the application running on it. For those tasks that may be eliminated in more than one way, we examine the design
trade-offs between the available options. (A separate document, LAOS Part II, describes how to automate those
tasks that Part I couldn’t eliminate.)

Tasks Throughout the Database Life Cycle
Below is an overview of the live cycle of a database, from the initial business analysis, through creation of an

application, on to maturity, and changes to the database after it goes production.

Database Life Cycle
Stage: Architect

Data Administrator
DBA

1. Strategy, Analysis Table Design,
Security Design

Data Ownership,
Security Policy

2. Design, Build Impact Analysis Change Management Installation, Datafile Creation, Table-to-Tablespace
Mapping, Table Creation, Backup/Recovery Planning,
Security Procedures

3. Youth Physical Reorganization, Performance Tuning
4. Maturity Exception Monitoring, Performance Monitoring,

Performance Tuning, Backup/Recovery Execution,
Datafile Management

A. Minor Change Impact Analysis Change Management Table Modification
B. Major Change Impact Analysis,

Table Re-design
Change Management Table Creation

The Low Maintenance issue can be seen as eliminating, simplifying, or automating each task in the ‘Maturity’
section above.

This document is the intellectual property of TrueNorth Consulting, Inc., Copyright © 1996-1999, all rights reserved.

The latest copy of this paper can usually be found at: http://home.att.net/~tbcox/
Page 3

Tasks to Support a Mature Oracle7 Database
Below is a list of all the tasks that a DBA would normally perform on a mature, production database, when each

task is performed, and steps to eliminate the task or minimize it.

Task When How to Avoid or Minimize
1. Backing up Depends on application profile;

anywhere from weekly to daily
Should only be eliminated for a read-only database;
even then, the ability to restore the data should still
exist; automate the backup function

2. Recovering a
Database

Disk failure; user error requiring
recovery of earlier data

mirror disks; limit user power; train users

3. Datafile
Management

Data outgrows existing
tablespaces; disk hot spots
require datafiles be moved to
different disks to balance I/O

1. use auto-extending datafiles, or, pre-allocate space
so data won’t outgrow space available

2. keep user load low or allocate enough hardware
resources so disk I/O is not a performance issue

3. put all user tables in a single tablespace with a
single datafile

4. use OFA
4. Exception

Monitoring
daily; examine logs for errors May be eliminated for a well behaved packaged

application, provided the database is not used for any
other work (especially not development)
[See Part II on how to automate this.]

5. Performance
Monitoring

To proactively tell if key tests of
database performance are
falling; allows corrective action
before users notice slowdown

keep user load low or allocate enough hardware
resources so performance is not an issue or manage
user expectations about performance under untested
conditions (i.e. workloads beyond what the system is
configured to support); automate sampling of
performance times of key queries
[See Part II on how to automate this.]

6. Performance
Tuning

If performance drops below user
acceptable levels, or when user
expectations exceed observed
performance

research how the growth of data affects the given
database; create canned process to rebuild unbalanced
indexes (rare); keep work load below maximum
hardware capability; change database configuration as
workload changes

7. Physical
Reorganization

Fragmentation is high, or
chaining is high, or data objects
in a given tablespace need to be
separated

don’t place an index in the same tablespace as its table;
follow OFA guidelines on object placement; size tables
so chaining is minimized; pre-allocate each table with
enough space so it should never extend; use a
standard NEXT extent size for a given tablespace, and
PCTINCREASE of zero, and unlimited extents
[See Part II on how to automate this.]

This document is the intellectual property of TrueNorth Consulting, Inc., Copyright © 1996-1999, all rights reserved.

The latest copy of this paper can usually be found at: http://home.att.net/~tbcox/
Page 4

Eliminating, Simplifying, and Automating Tasks
Assumptions made in this paper:
1. The database in question is Oracle release 7.3 or later, including Oracle8.
2. The database is running on the Windows NT operating system.
3. There is NOT a professional DBA on hand to manage the database.
4. The database is NOT running an application that is both mission critical and in need of high availability – i.e. we

assume the database can be down as much as 3 days a year.
5. The Export utility for logical backups will not be used. Only physical backups (or RMAN backups) will take

place.

Backing Up
All backups come in two types: physical and logical. A logical backup of a database consists of one or more files
that contain data from the database, usually in a file format useful for moving data between databases; the Export
and Import programs create and use logical backup files. A physical backup of a database consists of making a copy
of the database files; it must be possible to use this copy to re-create the database.

We would only want to re-create the database if it were somehow damaged; this re-creation process is described
in the next section, Recovering. The task of Backing Up is not a candidate for elimination. It is, however, a
candidate for simplification and automation.

We assume the database is running in NOARCHIVELOG mode, and that only Cold physical backups will be
performed. A version of LAOS for databases running in ARCHIVELOG mode is still being worked on for Part II of
this paper. If you need this, or if you think you need logical backups of your LAOS-enabled database, please contact
the author.

Simplifying Backup

Physical Backup
An Oracle7 database requires several files: at least one control file; at least two log files; and at least one data file.
It will also have an INIT.ORA file. A successful backup requires, at the very least, the copying of all the data files
and one control file, and should also contain a copy of the INIT.ORA file. For a cold backup, it also requires that the
database be shut down using either ‘Shutdown Normal’ or ‘Shutdown Immediate’. The ‘Shutdown Abort’ command
does not synchronize the data files with the control files, so a backup of the data files right after a ‘Shutdown Abort’
is useless – it cannot be restored from. (If you ever have to perform a Shutdown Abort, then you should right away
do a Startup Restrict and then a Shutdown Immediate.)

Logical Backup: Export
Oracle7 also allows ‘logical’ backups of data. This is done using the Export utility. This is typically useful when
one wishes to:
1. reorganize a table that takes up multiple extents into a single extent;
2. allow for restoring data in a single user table (rather than restoring the entire database), i.e. recovering from user

error;
3. migrate database objects from one user’s schema into another user’s schema
4. move data between databases without using database links

Since we assume that we do not want to perform the above tasks for a mature database, then the use of Export
for logical backups can be eliminated.

This document is the intellectual property of TrueNorth Consulting, Inc., Copyright © 1996-1999, all rights reserved.

The latest copy of this paper can usually be found at: http://home.att.net/~tbcox/
Page 5

Oracle8 Hot Backup: RMAN
Oracle8 allows the use of the RMAN utility to back up data. This is typically useful when one:
1. is managing multiple databases;
2. is willing to master the complexities of RMAN;
3. must run in ARCHIVELOG mode;
4. is willing to support an RMAN repository database in addition to all other databases.

Use of RMAN may be discussed in a future version of Part II of this paper.

Recovering
Several things can cause a need to recover the database from backup files. These include disk failure and user error.

Avoiding Recovery
To avoid recovery, avoid the errors that lead to it: disk failure and serious user mistakes. A simple (if somewhat
expensive) way to prevent disk failure from harming the database is to mirror all disks containing database files. If
mirroring (i.e. RAID 1, or better yet RAID 1+0) is too expensive, then RAID 5 can be used in a pinch. Any
important database that needs to stay up a lot and that cannot tolerate much data loss should be run on at least RAID
5.

To avoid the sort of serious user mistakes – e.g. deleting the master price list – that would force you to have to
recover from a backup, you should: use database security; train users carefully; and write applications so as to
prevent a user from erroneously trashing data. (Some DBAs use Export as a means to recover from certain user
errors.)

Automating Recovery
To automate recovery, make sure you have locked down the backup process, and make sure that backups are done
(a) regularly, (b) in the prescribed fashion, and (c) preferably using an automated backup process.

A simple automated recovery process would perform these steps:

1. Shut down the database

2. Copy the backed up data files back to their original locations, overwriting the ‘current’ data files; also copy
the backup control file so that it overwrites the ‘current’ control file

3. Start up the database

Note that, if the most recent backup took place after the database was damaged, then this ‘restore’ would not fix
the problem.

More on automating Recovery can be found in Part II.

Avoiding Datafile Management
Use auto-extending datafiles, or pre-allocate space (for both objects and datafiles) so that normal growth of data
won’t exceed available storage. Pre-configure datafiles on disks by following OFA guidelines [Millsap, 1994] to
avoid disk contention and the subsequent need to shuffle datafiles around. Part of OFA says “make your datafiles a
consistent size”. Doing this makes it vastly easier to re-locate datafiles if this should become needful.

Developers will have to know exactly which database objects will be used simultaneously by frequently executed
transactions, i.e. table A will be updated along with index B, master table M will be read along with detail table D,
etc., in order to place these objects on different disks. Developers should then test at various system loads to verify

This document is the intellectual property of TrueNorth Consulting, Inc., Copyright © 1996-1999, all rights reserved.

The latest copy of this paper can usually be found at: http://home.att.net/~tbcox/
Page 6

that the configuration does in fact minimize disk contention. This is a standard part of I/O tuning and will not be
dealt with in depth here.

Suffice it to say that if you don't know in advance what your application's I/O profile is, i.e. if you don't know
where to put datafiles on disks so as to minimize disk contention, then your application is not mature and you aren't
ready to create a low-admin database.

Monitoring Exceptions
Write a batch file to scan the alert.log file for ORA- errors. Write your application to handle exceptions well, and
report serious exceptions to a central monitoring file or table. See LAOS Part II for guidelines on automating
Exception Monitoring.

To minimize Exception Monitoring, first define levels of seriousness for different exceptions, and allow
monitoring to be done at different levels, similar to the Trace Levels of SQL*Net and Net8. If too much information
is gathered about a host of trivial exceptions, important ones could get lost in the pile.

Monitoring Performance
Write sample queries that are representative of real user work. Run these queries weekly and time them. (If
performance begins to fall off seriously, you may have failed to configure the system well enough to avoid having to
tune, or perhaps users are entering a lot more data than was anticipated.) See LAOS Part II for guidelines on
automating Performance Monitoring.

Tuning Performance
If you test sufficiently and use a configuration management tool such as the Oracle System Sizer, the initial
configuration should be sufficient to meet user expectations, and additional tuning (after the database has been placed
in production) will not be needed.

Avoiding Physical Reorganization
The most likely reason to physically reorganize objects in a database is to eliminate fragmentation [Shallahamer,
1994].

Avoiding Fragmentation
Fragmentation is easier to avoid than to fix, so this section focuses on prevention. There are five sorts of
fragmentation we consider:
1. Tablespace free space bubble fragmentation
2. Tablespace free space honeycomb fragmentation
3. Segment fragmentation
4. Table row fragmentation (chaining)
5. Table block fragmentation

We consider each of these in turn.

Avoiding Tablespace Free Space Bubble Fragmentation
Size every object in the tablespace to have the exact same NEXT extent size, and MAXEXTENTS set to
UNLIMITED. (Follow OFA guidelines so that objects with similar growth behavior will be stored in the same
tablespace with each other.)

This document is the intellectual property of TrueNorth Consulting, Inc., Copyright © 1996-1999, all rights reserved.

The latest copy of this paper can usually be found at: http://home.att.net/~tbcox/
Page 7

Avoiding Tablespace Free Space Honeycomb Fragmentation
Size every object in the tablespace to have the exact same NEXT extent size, and MAXEXTENTS set to
UNLIMITED. (This technically does not prevent free space honeycomb fragmentation, but it does prevent it from
being a problem.)

Avoiding Segment Fragmentation
When a database Segment consists of two or more Extents, it is technically fragmented. This may be due to natural
growth of data, or it may be performed manually to ‘stripe’ the object across multiple disks. We assume here that the
latter case is not going to occur in a near-zero-administration database. Therefore, only segment fragmentation
caused by growth is at issue.

Segment fragmentation caused by growth can be avoided by pre-allocating each object with an INITIAL extent
that is large enough to contain all of the growth that the object is likely to encounter.

Note that each Rollback Segment should be created with a minimum of 20 extents [Millsap, 1995]. Such
rollback segments are therefore fragmented, but this fragmentation is expected, and therefore should be ignored.

Finally, “[r]esearch clearly shows segment fragmentation does not impact real-life production system
performance” – [Shallahamer, 1994, page 13]. Therefore, the only reason to worry about segment fragmentation is
that in versions of Oracle prior to 7.3 it was possible to run out of extents, preventing the object from growing and
causing database work on that object to fail with an error. If objects (tables and indexes) are created with
MAXEXTENTS set to UNLIMITED then the only remaining concern is that the database might run out of free
space. If the application’s data growth is properly understood, this should not occur.

Avoiding Table Row Fragmentation (Chaining)
Chaining occurs whenever a given row cannot fit into its Oracle database block. Normally a row is only placed into
a block where it will fit. But if the row is later updated and made larger, then the extra data may be stored in one or
more additional data blocks. When the row is read, the Oracle server has to jump around to all the row pieces and
reconstruct the row – a process that wastes time.

(Additionally, if a table is defined such that every row will be larger than one Oracle database block, then every
row will become chained. Avoiding this is easy: define a larger Oracle database block size when creating the
database. This source of chaining is not of further concern to us in this context.)

It is very hard to avoid all chaining that is caused by growth of a row. Since such chaining only happens when a
row is Updated, the best way to avoid this is to carefully examine Update operations in the application, test whether
any of them cause much chaining in the lab, and carefully size the PCTFREE and PCTUSED parameters of that
table to minimize chaining.

Setting PCTFREE high and PCTUSED low will reduce chaining in a given table, at the cost of wasting some
space.

An exception to this discussion is the case where every row is always bigger than an Oracle data block. In such
a case, every row will be chained. The only fix in such a case is to create the database with a bigger Oracle block
size in the first place, or change the table to have smaller rows, or just live with it. (Oracle8 allows you the option to
store Large OBjects, LOBs, in storage that is separate from the rest of the row; this minimizes the chaining issue.
See the Oracle8 documentation for details.)

Finally, a special kind of chaining is “Row Migration”, which is so rare that, for our purposes, it can safely be
ignored.

This document is the intellectual property of TrueNorth Consulting, Inc., Copyright © 1996-1999, all rights reserved.

The latest copy of this paper can usually be found at: http://home.att.net/~tbcox/
Page 8

Avoiding Table Block Fragmentation
When rows in a table are deleted or are updated in such a way as to shrink, the table’s database blocks end up with
empty space in them. If enough blocks are affected, this can make the Oracle7 server retrieve a lot of empty blocks
in order to access a given number of rows.

Setting PCTUSED high will reclaim this space sooner. See Avoiding Chaining above. Table block
fragmentation is unlikely to be a source of serious performance problems for most applications. Only if problems are
detected during testing and a particular table found to be experiencing a lot of block fragmentation should any
corrective action be taken.

Common Mistakes
There are several errors that are commonly made by developers in configuring a database for embedded (and hence
low-admin) use. We consider several of these. Most fall under the general heading of “not testing enough”.
1. Bottlenecks during peak load times

If the users in the field subject the system to a volume of work (or perhaps just atypically high volume in one
particular area of the application), they may encounter built-in bottlenecks to system performance that were
not detected and corrected during shakedown testing. Consider a failure to create enough rollback segments.
If users submit a large enough number of updates rapidly enough and (say) only one rollback segment is
available for them, they may experience delays as each user gets exclusive access to his or her portion of the
rollback segment. Or, delays during updates may come from contention over redo log latches if too few
such latches are made available. In such cases, it’s common for users to see a dramatic drop in system
responsiveness, as if the system had “hit a wall” or “fallen off a cliff”. Such sudden changes are good
indicators of a bottleneck of this type.

2. Atypical growth of data
If users in the field enter more data in a particular table than the designers had anticipated, then several
problems can result.
a) index imbalance and a drop in index lookup performance
b) decreased full table scan performance
c) error inserting or updating: MAXEXTENTS reached
d) error inserting or updating: out of free space

3. Lack of Protection
Allowing other users onto the database, or using the database as a host for other applications, or allowing
users to log in with tools or applications other than the defined one, or allowing users to log in with DBA
privileges.

4. Missing a critical item
The theme of LAOS is “prevention not cure” – and anything you fail to anticipate, you will then fail to
prevent, and will then have to cure. The answer is to test, test, test, and always, when you find an error in
your LAOS implementation, fix both the implementation and the process.

Conclusions
A near-zero administration Oracle database can realistically be achieved if:
1. the user load is below the maximum user load that the hardware and software is capable of supporting (i.e. one

does not need to perform post-installation tuning tasks to coax additional performance from the hardware; the
configuration is fast enough without such intervention)

2. user expectations are met by the default installation provided by the application developers (i.e. the default
installation does not need to be modified in any custom, site-by-site fashion in order to meet user expectations)

This document is the intellectual property of TrueNorth Consulting, Inc., Copyright © 1996-1999, all rights reserved.

The latest copy of this paper can usually be found at: http://home.att.net/~tbcox/
Page 9

3. the developers take on the task of ensuring that the application database design is capable of being run in a
near-zero-administration fashion – this requires extra testing of the application on typical user hardware
through non-trivial data growth, particularly to determine proper sizing for INITIAL extents of tables

4. the developers take on the task of simplifying backup, recovery, and any other remaining administration tasks, to
the point that the application’s users can perform these tasks; any database administration task not automated
and not performed by a user or super-user has been eliminated

Bibliography
1. Millsap, Cary V. (1994). The OFA Standard, Oracle7 for Open Systems.
2. Shallahamer, Craig A. (1994). Avoiding A Database Reorganization.
3. Millsap, Cary V. (1995) Oracle7 Server Space Management Revision 1.4b (95/10/31) An Oracle Services

Advanced Technologies Research Paper
4. Millsap, Cary V. (1996) Designing your System to Meet Your Requirements

One note on this bibliography: each of the above papers is excellent, and will reward any DBA or developer who
cares to read them. Each is freely available from a variety of sources including the Oracle corporate web site,
typically in Adobe Acrobat’s Portable Document Format (PDF). If anyone reading the LAOS specification cannot
find the above papers, please write to me at <tcox@us.oracle.com> and I will e-mail you a ZIP file containing all
four.

Glossary
Back up To make a copy of (a database or file) as a potential replacement if the original becomes

lost or damaged
Backup A copy so made
OFA Optimal Flexible Architecture, a method for setting up a database to allow maximum DBA

flexibility with maximum ease and minimal effort and difficulty
Offline An object (i.e. database or file) not currently being looked at or changed
Online An object (i.e. database or file) that currently (or potentially) is being looked at or changed
Recover To make a restored file current, as by applying incremental backups, archived logs, or

online logs; also, to roll forward logged transactions to make a database current
Restore To replace a lost or damaged original file using a backup copy

