Hunting Down CPU related issues with Oracle: A
functional Approach

Nilendu Misra
nilendu@nilendu.com

This article discusses several functional approaches one might take while analyzing, diagnosing and
solving CPU related problem issues. The discussion covers most flavors of Unix and Oracle 8i. TOAD is
the only third party software used for test cases while this document was prepared.

INTRODUCTION

Most of the Operating System related bottlenecks could be tracked down to one or a
combination of the following:

1. Disk I/O Contention
2. Memory Problem
3. CPU Issues

This article will confine the discussion to approach the CPU related issues only.

An easy way to solve the issue is to increase the capacity of the machine. For instance, to
solve an ongoing CPU spike, the CPU count is improved. This works somewhat
satisfactorily on a scaled-down system. A scaled-down system is one that was not
designed to withstand the full load as it experiences today. But for carefully designed
system, which tried to look forward to the load limit, this ‘adding capacity’ is a bane! It
either proves the earlier design faulty or it cannot stop recurrence of the problem that
caused one to go for added capacity. Thereby it renders the entire design activity and cost
incurred as a bad decision.

For carefully designed systems, often the design phase is horizontally split. A consultant
expert in the particular area designs each component among Network, Operating System,
Database and Application separately. Later, the whole thing is integrated in a bottom-up
approach. This more than often leaves a blazing hole between two design areas. For
instance, the scale of application might not match the scale of Operating System. So for
this type of system it is imperative that one spends considerable time and effort after
dissecting the problem before doubling (or quadrupling) the capacity. The issue has to be
understood, analyzed, diagnosed and finally resolved to take a decision. The
resolution might be a correction of error that led to extra consummation of resource, or a
change in design or increased spending after infrastructure.

In this paper we will discuss how to go with these four stages mentioned above with
respect to a CPU problem.

Page 1 of 9 http://www.oracledoc.com/ Aug’ 2001

UNDERSTANDING of the CPU issue

The traditional way to tune starts from the point of receiving complaints! It works just
well if most of the system actions are already being taken in a proactive basis. The issue
starts either followed by a distinct complaint from the user of the system or as a result of

the regular maintenance scheme exercised by the DBA on the system.

A standard checklist to detect if everything is OK regarding CPU could be:

= Know what’s your CPU configuration — How many and what MHz (or

GHz)!
= Ifthe Server Side CPU is heavily used
= If'the client side CPU is heavily used

= Ifthe CPU ‘spike’ happens on some particular point in time (i.e., during
night when no one does anything on the database a CPU usage of over

15% could be worrisome)
= What’s the CPU usage on peak load?
= What’s the CPU usage on idle state?

= [f'the issue is known not to be generic, i.e., spike reported during

particular query execution — even then these points should be checked for

the system

In this particular case, [used a web-based traffic-reporting tool called MRTG (Multi
Router Traffic Grapher) that is freely available under GNU license. This was activated to
keep track of CPU load on the system (on all the tier) to report the CPU busy activities
after a given time interval. On the single machines, Unix commands like vmstat 10 10, sar -

qu 5 5, top were used to watch on both during peak load and off-peak load.

MRTG can be worked upon to produce graph like this online. The statistics can be taken

in various intervals and graphs can be produced for archival value.:

100,50

73.0

g0.0

23.0

CPU Busuy (22

1] :
Wer Tue Mon SR Sat Fri Thi

A command shows the output in the following format —

$ vmstat 5 5

Page 2 of 9 http://www.oracledoc.com/

Aug’ 2001

procs memory page disk faults cpu
rbw swap free re mfpipo frde sr fOmOml m3 in sy csussyid
00022869362916721 6 6 0 0 0 0 04294967260 224 80 6 1 93
0002106152 1152880 1 292 224 116 2 198
0002106152 1152880 0 292 86 49 1 396
0002106152 1152880 0 306 233 77 3 097

0

000
000
020
000
0002106152 1152880 0000252123 50 0 099

0
0
0
0

Here the first line is the average for each statistic since the start. The last few columns
report CPU activity.

us — reports % of time spent for user cycles
sy - reports % of time spent for system cycles
id - reports % of time that went unutilized during this time

For instance, in the above the CPU was idle for around 93% of the time vmstat was run
for. A good thumb rule is to aim for less than 50% of CPU time spent in system mode.
That would indicate that the system spends too much time in kernel mode servicing
interrupts, swapping processes etc.

top 1s another useful command which can be used to track down CPU usage. It shows
CPU statistics in the following format :

CPU states: 96.4% idle, 1.2% user, 0.6% kernel, 1.8% iowait, 0.0% swap

However, decision to use should be carefully taken as that itself is a resource-intensive
process.

As a matter of fact, high usage of CPU should not be a bad thing in itself. It could just
mean the system is well utilized for which it was built. But a consistently high CPU value
without much load or the general system performance problem coupled with high CPU
usage definitely makes the issue worth a look.

Other commands that are just as useful are ps —ef and uptime.

While the server side CPU might almost always indicate problem with query, a CPU
spike in one of the ‘client machines’ (for instance, web server) might indicate there is a
problem in network, or the client does some extra database processing which should be
traced.

Before analyzing the issue further baseline CPU usage has to be found. A baseline CPU

usage of 15% indicates that if the peak CPU usage is around 85% then the load itself
causes around 70% usage on the CPU.

Page 3 of 9 http://www.oracledoc.com/ Aug’ 2001

ANALYZING the CPU issue

A checklist in this area could contain the following:

= [fthere is a problem to be addressed!

= Was the system behaving ‘well” at any point before?

= How much of the CPU load is attributed to Oracle (our discussion will
concentrate on this area from now on)

= How much CPU load is extra-Oracle?

= (Can somehow the ‘spike’ be reproduced to happen?

= Ifon Oracle, does it generally slow down the database and all
transactions?

= Does it happen on peak load, usual load or even in off-peak load?

= (Can running a particular application module could cause the spike?

Analysis phase would help us to focus on the ‘core’ area of the problem — which the
paper would assume to be some Oracle process!

DIAGNOSING the CPU issue

This can be done in various ways.

Method ONE — To see the particular session using a Tool

By doing a general 'sar' or 'top' on the server find out the session which consumes
maximum of CPU slice. Please be careful with 'top' on the production server, as you will
often notice 'top' itself consumes the most resource.

PID USERNAME THR PRINICE SIZE RES STATE TIME CPU COMMAND
14763 oracle 1 59 -20 280M 261M sleep 12:02 12.75% oracle

11670 oracle 1 59 -20 281M 261M ssleep 6:24 7.70% oracle

8369 oracle 1 58 02664K 1720K cpu/2 0:00 2.45% top

9554 oracle 1 59 -20 280M 261M ssleep 0:39 1.08% oracle

Now the PID in this report (14763 for instance) can be mapped with a particular SQL
statement! I personally prefer TOAD. Login TOAD as a DBA user. Go to Kill / Trace
Session. It will be a window like this —

Page 4 of 9 http://www.oracledoc.com/ Aug’ 2001

DAD - [Kill/Trace Session SYSTEM@BOMDB]
Fle Edt Gid SOLWindow Create Database Tools View DBA Defiug Window Help

BAAEY%BR00 KDL/ o

el s ll% @ @ Reheshfecy [0 _U [" AutoRiefieshdata? W Auto fetch data for biottam panels

ICesses l All Locks ‘ Blacking Locks] Aocess]

5131

o NoFle] Like | ¥ Exchuck NULL and SYSTEM 05 Users
Dracle . |C. Sewer M. T P 0. | Correct Time L..| Physical Reads | Block Gets | Consistent Gets | Block Changes| Consistert Changes| Process | SRID | PID| Serial | SID. :J
APP_WEl sz DEDICATED. bor 7 ora B/Z7/00 TI157 @M I T I 19 RN 15 1% B
ADMIN Y ngz DEDICATED bor 7 ara 8/27/00 11:51:57 AM B199 134851 11209264 1] 2 TRI02 9562 % BB B
APP WEl nsz DEDICATED bor 7 i 8/27/00 11:51:57 AM M0 17 £4309 10740 768 1609 464 W OERI0 40
ADMIN Y ngz DEDICATED bor 7 ara 8/27/00 11:51:57 AM 0 4 I 0 0 16102 9566 0 BT R
APP WEl nsz DEDICATED bor 7 o 8/27/00 11:5209 AM IR 43T Fh47BEE 829 63 16143 390 4 045 78
ADMIN Y nsz DEDICATED bor 7 ara 8/27/00 11:5257 AM 12602 244821 15819409 39508 2 16118 9673 R4 3 16
ADMIN Y nsz DEDICATED bor 7 i 8/27/00 11:85:31 AM 087 17418 1312607 1304 0 1617599 BB 863 5B
AUTH W nez DEDICATED bor 7 ara 8/27/01 1225055 PM 20 27RNE 1228711 2287 1 1R4B147R3 B7 2308 R
APP WEl nsz DEDICATED bor 7 i 8/27/00 1:00:42 PM n46 BIME 477482 106184 §182 ET447ERN B3 1m0 1B
ADMIN Y ngz DEDICATED bor 7 ara 8/27/00 125350 PM 1198 G748 B181885 5556 0 16151 15481 BE 2789 28
APP WEl nsz DEDICATED bor 7 o 8/27/00 11:58:23 AM M9 4T B264268 134033 TR0 IET43TM4D B0 3943 W
ADMIN Y nsz DEDICATED bor 7 ara 8/27/01 118519 AM 0 B0 43 4] 0 16142 9585 710023 49
AUTH W nsz DEDICATED bor 7 o 8/27/00 11:5219.4M a0 4616 157763 i 0 TRI37 %602 TR T
APP WEl nsz DEDICATED bor 7 ara 8/27/00 11:5208 AM 0 il 40 780 0 16143 %588 LT .
AUTH W nsz DEDICATED bor 7 i 8/27/00 11:51:59 AM 433 126662 FhR3048 1038 0 16135 %76 43 1473
APP WEl ngz DEDICATED bor 7 o 8/27/00 11:51:04 AM R 19749 2200207 12686 4 2769 3R a0 BN TR
ADMIN Y nsz DEDICATED bor 7 i 8/27/00 11:51:04 AM 241 BR3AD 157628 il 0 27697 9554 s B oa
APP WEl ngz DEDICATED bor 7 ora 8/28/00 G17:11 PM 0 B0 i £l 0 gz 7w R &
APP WEl nsz DEDICATED bor 7 ora 8/28/00 7551 AM TH0R1 26AARdE 03326 165N LR T RS N]
ADMIN Y ngz DEDICATED bor 7 ora 8/27/00 1:01:54 PM m B F2446 180 0 27746 15691 o 5L 3
APP WEl nsz DEDICATED bor 7 o 8/27/01 124209 P WIS AT 1532634 3308 08 27213984 BE TRED 9+
| ;
nient Statement] Opert Cursors] Explain Plan
SF Fornatied on SO0TERE (3058 (FewealNet Farmadtar wf 4 01 %
Select COUNT [45 count FROM ab_user_sessions WHERE user_id ='9138'
AND ticket = RraBYICIwBChSp1 S AFKEHuwM g UnftzL'

Note: the PID gotten from TOP (14763) is the SPID in the TOAD window. We also get the SID of the
session (61) and the SQL statement this session is executing! Now you can even explain plan it by
clicking the right menu bar on the lower window and tune the SQL.

Page 5 of 9

http://www.oracledoc.com/

Aug’ 2001

Method TWO — To see the particular session writing queries

(1) The first step is same as before. After getting the PID of the most CPU cosuming
Oracle process we have got to match that with SPID (a column in Data Dictionary view
VS$PROCESS). VSSESSION contains SID- Session Identifier which Oracle understands
and uses to manipulate with individual sessions.

(2) So the query to get the session details (SID) from OS PID (SPID) would look like :

select s.sid from v$process p, v8session s
where s.paddr=p.addr and p.spid = 14763;

(3) After we get to know SID, we can easily track down the SQL statement that is being
executed by that session. VSSQLTEXT contains the information about SQL statement
each session is running. VSSQLTEXT WITH NEWLINES can store even bigger
statements.

SELECT SQL TEXT from VSSQLTEXT WITH NEWLINES where HASH VALUE
= (select sql_hash value from v$session
where SID = <problem_SID you got from last step>) ;

Now we have the SQL statement which is caused us burn the oil on weekends! Trace and
Tune it accordingly!!

Note : Remember for a PL/SQOL code the CPU statistics are available to Oracle only after
full execution of the same. So you will be lucky only if you are running a SQL. For
PL/SQL there are other processes.

Method THREE — To see the session consuming most amount of CPU
(1) Find out the session consuming most amount of CPU by executing

SELECT * FROM v$sesstat WHERE statistic# = 12 order by value;

(2) Since now we have SID we can easily verify what SQL the particular session is
executing (look at Step# 3 of Method 2 above).

Method FOUR — To see the session consuming most amount of CPU

Oracle has given few very useful and powerful scripts to be used by experienced DBA.
However, officially Oracle doesn’t support use of these scripts but as read-only scripts
they are just fine to be run on any system. The script in the present context is named
hSession.sql, Full set of h*.sql scripts may be downloaded from the Metalink site.

Page 6 of 9 http://www.oracledoc.com/ Aug’ 2001

These scripts together creates several packages in SYS schema. The usage for hSession is
as follows :

set serverout on
execute hsession.top('CPU used by this session',interval);

The package snapshots the statisic value for ALL sessions when called, sleeps for
<interval> seconds and then samples the statistic a second time. The output is the top 10
sessions for the given <statistic name> in the given <interval>. All statistics name exactly
as given in VSSTATNAME could be used as parameter.

Method FIVE — To see the details of CPU consumption own session

select n.name,s.value

from v$statname n,V$sesstat s

where n.statistic# = s.statistic#

and value > 0

and s.sid = (select a.sid from v$process p,v$session a
where p.addr =a.paddr

and a.terminal = userenv('terminal’))

order by n.class,n.name

/

Once CPU consumed by a particular session is known, the WAIT statistics for the session
(time the session waits for various resources) should be read from VSSESSTAT. Then
the event that makes the session wait for maximum % of time of the total CPU time for
that session probably is the key problem area. It could be — for example — the wait for
enqueue. In that case the session might be having an issue with locking!

Note: V8SYSSTAT and VSSESSTAT keep CPU related statistics on System- and Session-
level respectively.

RESOLVING the issue

Rest of the process deals with tuning activity for the particular SQL statement. Which is
beyond scope of current discussion. But to go ahead, the easiest way is to Time the SQL
statement execution. Compare the time of execution (SQL> SET TIMING ON) with the
CPU time for parsing, fetch and execution of the statement. The later data could be
collected from the analyzed trace files. TIMED STATISTICS must be on to get the CPU
statistics from the trace file through TKPROF.

What are the reasons Oracle could consume much of CPU?

Page 7 of 9 http://www.oracledoc.com/ Aug’ 2001

1. High amount of Parsing — Parsing accounts for almost 80% of the cost involved with
execution of a SQL statement. Parsing should be as much avoided as possible. Re-
parsing similar SQL statements is an unnecessary load for the system. However,
while analyzing trace files it should be remembered that at least one parse in the trace
files cannot be avoided. This one is called ‘soft parse’. After a SQL is fired it’s
hashed and the hashed value is matched with the hash values present in Library Cache
(Shared SQL Area). This is ‘soft parse’. As evident a soft parse in inevitable. All
SOFT parses ARE counted and listed in TKPROF trace files! So at least ONE parse
per statement in the TRACE file is just for hashing the statement and comparing the
hashed value with those present in Library Cache.

To find out statements which are doing too many parses, following query can be
executed -

select sql_text, parse_calls, executions from v$sqlarea order by parse calls desc;

To see total number of hard parsing against total number of Parsing happening in the
system -

select name, value from v§sysstat where name = 'parse count%';

Remember, only HARD parse count can be reduced. Parsing could be reduced by
using bind variables, increasing number of cached cursors per session etc.

2. Badly written SQL. Even main memory access is very expensive in terms of CPU
cycles, and accounts for most of Oracle's CPU usage. SQL that has excessive /O
requirements will also heavily load on CPU. This is because most of the overhead of
Oracle logical I/O occurs in memory. In many times, a query that doesn’t use an
Index will cause huge CPU load. Proper indexing will decrease the load manifold.

Similarly, too big sorts taking place in memory could also spike CPU. This is why
statements with large numbers of buffer gets as these are typically heavy on CPU. To
find those query VSSQLAREA for buffer gets.

3. Other Wait Events. If the parse CPU is only a small percentage of the total CPU
used then the next task is to determine where the CPU is being consumed the most.
Query the VSSESSTAT and VSSYSSTAT to compare the wait_events against the
total CPU time. Ignore waits for idle events like SQL*Net Message, SMON and
PMON timer etc.

Page 8 of 9 http://www.oracledoc.com/ Aug’ 2001

A Real Life Example

UNDERSTANDING

I have had experience of dealing with a system which used to consume around 20% CPU
on even completely idle state (baseline CPU utilization). This was really strange as the
peak-load CPU utilization didn’t usually go above 70%. This is where a graphic
monitoring tool comes really handy. Thanks to MRTG the baseline CPU statistics and
peak CPU statistics were observed. Standard Unix tools were run again and again to take
a sample on the server over a long-enough time interval.

ANALYZING

It was noted that CPU utilization was within the range 4-8% if the interval is long. But on
a short interval it shot up very high occasionally. Some more trial runs revealed the
interval to be roughly around 5 minutes. It was also confirmed that Oracle consumes
more than 12% of the CPU load even on idle off-peak hours. The process ids that
consumed most of the CPU slice were traced on Oracle. The SQL statements that were
mapped to those PIDs were laid out. One statement was SELECT SYSDATE from
DUAL,; This statement was executed every 5 minutes by the High Availability software
that was monitoring Oracle. But CPU usage for this session came nowhere near the
ultimate value. Even trace results suggested so.

Also by running different scripts that query Data Dictionary tables (some given by Oracle
itself like hSession.sql) the session utilizing maximum of CPU was noted.

DIAGNOSING

There was another statement however. This one was found to take roughly 6%~8% of the
CPU slice. On questioning developers it was found to be one statement that was run
every 5 minutes (again!) to time-out an already logged inactive user. This statement was
run separately and traced in the session it was run. Trace files were read. The statement
execution time against CPU time was noted. Being run every five minutes, there was the
maximum chance for the statement to be found on the buffer. The PCU time taken during
execute phase of the statement was high. Form the explain plan it was observed that
during a Nested Loop join, one of the tables (both similar sized) was doing a full scan.

As it often happens, lack of proper Indexing is often reflected as a huge load on CPU!
RESOLUTION

An index was created on the table. The query started running in 0.35 seconds down from
5.36 seconds. CPU slice was down from 8% to less than 1%.

In less than 15 minutes of creating the index MRTG generated graphs started flattening!

Page 9 of 9 http://www.oracledoc.com/ Aug’ 2001

