Estimate the size of B-tree Indexes

ORACLE

10g Certified Professional

Estimate size of B-tree Indexes steria

VERSION

Version

Date

Description

0.1

03/11/2005

First Edition

0.2

29/11/2005

Correction comment on “analyze
index index_name validate
structure” command. (thanks to
Mr Sergio Menoyo)

0.3

27/12/2005

Correction comment on
relationship ITL & ASSM
Improved regarding indexing
numeric fields (precision)
Local Partititioned Indexes
Global Partitioned Indexes
Non Partitioned Indexes on
Partitioned tables

Density of leaf blocks with
sys_op_lbid

[27/12/2005

Guy Lambregts OCP DBA Steria Benelux | Page:2

ORACLE

10g Certified Professional

Estimate size of B-tree Indexes

Version : 0.3

ste ria~ |

1. INTRODUCTION

2. HOW MANY LEAF BLOCKS WILL THERE BE ?

2.1 OVERHEAD AT THE LEAF BLOCK LEVEL
2.2 OVERHEAD PER INDEX ENTRY (ANALYSIS)
2.2.1 The overhead on a varchar2 column
2.2.2 The overhead on a char column
2.2.3 The overhead on a sequenced primary key column
2.2.4 The overhead for numeric datatypes
2.2.5 The overhead of a composite index
2.2.6 PARTITIONED INDEXES
2.2.7 NON PARTITIONED INDEXES ON A PARTITIONED TABLE
2.3 OVERHEAD PER INDEX ENTRY (FORMULA)

3. TEST

4. HOW MANY BRANCH BLOCKS WILL THERE BE ?

5. CONCLUSION

6. SPARSENESS OF LEAF BLOCKS

7. REFERENCES

17

18

19

21

[27/12/2005

Guy Lambregts OCP DBA Steria Benelux

| Page:3

ORACLE

10g Certified Professional /
Version : 0.3)

Estimate size of B-tree Indexes steria

1. INTRODUCTION

One of our database designers asked me how she should estimate the size of btree
indexes. According the documentation there is an overhead per index entry and an
overhead per indexed column. Another source speaks from the lock byte of each
index entry and a byte in which we store the byte length of the indexed value. Since I
found nowhere documentation about the exact sizing of the overhead per index entry
neither about the overhead per leaf block and branch block I decided to benchmark it
and I feel free to publish my benchmarked results. (benchmarking done with release
10.1 and 10.2))

The btree index consists of leaf blocks, branch blocks and one root block. The root
block at the lowest level (level 0) points to branch blocks at level 1, these branch
blocks point to other branch blocks at level 2, finally at the highest level we find the
leaf blocks. The branch blocks at the highest level - 1 point to these leaf blocks. Each
leaf block contains a set of index entries. You can find more info about the index
structure in the concept manuals or in Mr Tim Gorman' s “Understanding Indexes”
(you can download this excellent white paper at http://www.evdbt.com). The views
dba_indexes, dba_ind_columns and index_stats are usefull in order to understand, to
learn about, to tune the btree structure. Please note index_stats only gets populated by
the command "analyze index index_name validate structure" and that this view only
contains one row, info of the latest analyzed index. Please note as well that the
command "analyze index index_name validate structure" requires a TM lock on the
underlying table and although shortly this locking might be unwanted in a production
database. If these TM locks are unwanted in a 24x7 system one can use the "analyze
index index_name validate structure online" command.

[27/12/2005 Guy Lambregts OCP DBA Steria Benelux | Page:4

ORACLE

10g Certified Professional ‘/)
Version : 0.3)

Estimate size of B-tree Indexes steria

2. HOW MANY LEAF BLOCKS WILL THERE BE ?

Maybe a lot ! Each index entry in a leaf block has got two columns.
A. the - old Oracle 7 format - 6 byte rowid

B. the indexed value.

There is an overhead per index entry, this overhead consists of

C. arow header

D. a column header

There is not only an overhead per index entry, there is as well an overhead per leaf
block (O), and this overhead consists of

Ol. Fixed block header (size depends on RDBMS version)
02. Variable transaction header (23 bytes per ITL slot)
03. The leaf blocks are never fully used.

So the entire formula we are looking for becomes

[(A+vsize(B)+C+D) * n indexed table rows

01+02+03

2.1 OVERHEAD AT THE LEAF BLOCK LEVEL

Every new table entry has got it' s index entry. Since the index is sorted -ascending or
decending- the new index entry has a specific location, a specific leaf block to go to.
If the leaf block is full and a new entry should fit in it ... there will be a leaf block
split (mostly 50/50) meaning that half of the part of the index entries in that leaf block
move to another leaf, meaning the index becomes less dense. New index entries will
fill up these 50 pct of free space whereas other leaf blocks might split at that time'.
With the "create index index_name on table_name (column_name) pctfree 20 pct" we
can only control at creation time the density of the leaves. With the "alter index
index_name rebuild pctfree 20" we can only control at rebuild time the density of the

' V$sysstat has statistics for both leaf and branch node splits

[27/12/2005 | Guy Lambregts OCP DBA Steria Benelux | Page:5

ORACLE

10g Certified Professional ‘,))
Version : 0.3)

Estimate size of B-tree Indexes steria

leaves. For rather read only systems we can achieve a 90 pct density for the leaves,
whereas for OLTP databases a 70 - 75 pct density seems to be more realistic.

Since release 9 Oracle encourage us to implement ASSM tablespaces. With ASSM
Oracle has introduced a new free block management. Using the old method of manual
segment space management a dba should consider freelists of table segments and
pct_used of table blocks as well freelists for index segments. However even with
ASSM tablespaces a dba should still configure manually the ITL' s . (with initrans and
maxtrans). According to the Oracle documentation 1 ITL slot takes 23 bytes. If more
ITL’s are required then initially created in both table and index blocks Oracle expand
dynamically the ITL list assuming there is free space left in the block®. As such we are
not exactly sure about the number of ITL’ s in an index leaf block. I was dumping
both leaf and branch block and found a variable number of ITL' s in it. So Ol + O1 +
O3 in the above formula is empiric. I created a couple of indexes on varchars,
numbers, chars, a combination of these and I dumped the leaf blocks with the "alter
system dump datafile n block n" command. I found back the tracefiles in the
userdump directory and however it is out of the scope to document leaf blockdumps. I
post here a part of it

Leaf block dump

header address 182413412=0xadf6864

kdxcolev 0

KDXCOLEV Flags = - - -

kdxcolok O

kdxcoopc 0x80: opcode=0: iot flags=--- is converted=Y

kdxconco 3

kdxcosdc 0

kdxconro 172 >> These are the number of index entries in this leaf block
kdxcofbo 380=0x17c

kdxcofeo 2020=0x7e4

kdxcoavs 1640

kdxlespl O

kdxlende 0

kdxlenxt 16860134=0x10143e6 >> This seems to be the next leaf block
kdxleprv 0=0x0

kdxledsz O

kdxlebksz 8036 >> This seems to be a part from the O1 + O2 (but not O3)

In order to estimate the number of possible index entries per leaf block I assumed -
based on benchmarking- an overhead of 30 pct for OLTP databases (O1+02+03=0,7
), whereas the overhead might be 20 pct for rather read only systems with an initial
index build with let’ s say pctfree 10 (O1+0O2+03=0,8). The blocksize of the
tablespace in which the index will be created / rebuild is offcourse another parameter.
The higher the blocksize the higher factor O.

2 Mr Thomas Kyte warned me that maxtrans is obsolete in 10g, it defaults to a single value of
255 (Mr Thomas Kyte has however NOT read this document and as such is NOT responsible
for what | write)

® v$segment _statistics can be queried in order to list segments suffering from ITL waits
(rather uncommon)

[27/12/2005 | Guy Lambregts OCP DBA Steria Benelux | Page:6 |

ORACLE Estimate size of B-tree Indexes steria

10g Certified Professional

Version : 0.3)

[(A+vsize(B)+C+D) * n indexed table rows

____________ (for rather OLTP databases)

0,7

[(A+vsize(B)+C+D) * n indexed table rows

____________ (for rather read only databases)

0,8

[27/12/2005 Guy Lambregts OCP DBA Steria Benelux | Page:7

ORACLE Estimate size of B-tree Indexes Ste ria

10g Certified Professional

Version : 0.3)

2.2 OVERHEAD PER INDEX ENTRY (ANALYSIS)

Since I dumped the leaf blocks with the "alter system dump datafile n block n"
command I tried to find back the overhead per index entry, I tried to find the C + D.

2.2.1 The overhead on a varchar2 column

This is a part from an index leaf block dump on a varchar(20) column of which the
byte length of the indexed value is 3 bytes. (select vsize(indexed_column) from table)

row#0[8023] flag: ------ , lock: 0, len=13
col 0; len 3; (3): 34 31 30
col 1; len 6; (6): 01 00 10 de 00 Of

The col 1 is the 6 byte rowid. The col 0 the indexed value. The overhead per index
entry seems to be 4 bytes here. (I kept in mind overhead on a varchar : 4 bytes)

2.2.2 The overhead on a char column

This is a part from an index leaf block dump on a char(20) column of which the byte
length of the indexed value is 20 bytes. (select vsize(indexed_column) from table)

row#191[2276] flag: ------ , lock: 0, len=30

col 0; len 20; (20): 30 33 32 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
col 1; len 6; (6): 01 00 07 62 00 0d

The col 1 is the 6 byte rowid. The col 0 the indexed value. The overhead per index
entry seems to be 4 bytes here. (I kept in mind overhead on a char : 4 bytes)

2.2.3 The overhead on a sequenced primary key column

This is a part from a sequenced primary key index dump. The vsize(pk) is either 2
either 3 bytes (depending on the value of the numeric field off course).

row#0[8001] flag: ------ , lock: 0, len=11, data:(6): 01 00 77 27 00 00
col 0;len 2; (2): cl 4d

row#45[7482] flag: ------ , lock: 0, len=12, data:(6): 01 00 77 28 00 03
col 0; len 3; (3): c2 0f 22

Somewhat different ordered. But again 12 -3 - 6 = 11 - 2 - 6 = 3. (I kept in mind
overhead on a number : 3 bytes)

[27/12/2005 Guy Lambregts OCP DBA Steria Benelux | Page:8

ORACLE Estimate size of B-tree Indexes Ste ria

10g Certified Professional

Version : 0.3)

2.2.4 The overhead for numeric datatypes

2.2.4.1 The overhead on a unique numeric value column (not primary key)
number(10)

This is a part from a unique index numeric value dump. The vsize(unique numeric
value) is 2 bytes (depends on the value of the numeric field off course).

row#0[8001] flag: ------ , lock: 0, len=11, data:(6): 01 00 77 27 00 00
col 0; len 2; (2): c1 17

Somewhat different ordered. But again 11 - 2 - 6 = 3. (I kept in mind overhead on a
number(10) : 3 bytes)

2.2.4.2 The overhead on a unique numeric value column (not primary key)
number(10,2)

I created a empty copy of the table on which I created my number(10) index. Then I
modified the datatype, instead of number(10) I made it number(10,2), and this is what
the dump us show.

row#423[2528] flag: ------ , lock: 0, len=13
col 0; len 3; (3): ¢2 1927
col 1; len 6; (6): 01 0036 ¢3 00 10

Again coll represents the rowid whereas colO represents the indexed value. Hence we
see an overhead of 4 bytes. The precision of the numeric field is apparently a
factor. (I kept in mind overhead on a number(10,2) : 4 bytes)

2.2.5 The overhead of a composite index

Please note I haven’ t benchmarked yet compressed composite indexes as such in this
version of my document you cannot use the below findings for compressed indexes.

2.2.5.1 NUMBER + VARCHAR2

This is a part from a composite index leaf block dump, composite : number +
varchar(20). The vsize(number_column) is here 4 bytes. The vsize on the varchar(20)
column is 3 bytes.

row#317[2317] flag: ------ , lock: 0, len=18
col 0; len 4; (4): c307 19 3a

[27/12/2005 | Guy Lambregts OCP DBA Steria Benelux | Page:9

ORACLE Estimate size of B-tree Indexes Ste ria

10g Certified Professional

Version : 0.3)

col 1;len 3; (3): 37 33 30
col 2; len 6; (6): 01 00 07 ¢5 00 07

The col 2 is the 6 byte rowid. The col O the indexed value part number, whereas col 1
is the indexed value part varchar(20) . The overhead per index entry seems to be 5
bytes here. (I kept in mind overhead on a number + varchar = 5 bytes overhead)

2.2.5.2 NUMBER + CHAR

This is a part from a composite index leaf block dump, composite : number +
char(20). The vsize(number_column) is here 4 bytes. The vsize on the char(20)
column is off course 20 bytes.*

row#171[2020] flag: ------ , lock: 0, len=35

col 0; len 4; (4): ¢3 07 18 Oc

col 1; len 20; (20): 3533 30 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
col 2; len 6; (6): 01 00 07 96 00 01

The col 2 is the 6 byte rowid. The col 0 the indexed value part number, whereas col 1
is the indexed value part char(20) . The overhead per index entry seems to be 5 bytes
here. (I kept in mind overhead on a number + char = 5 bytes overhead). Also I tracked
down the overhead on a number + varchar = 5 bytes)

2.2.5.3 VARCHAR2 + CHAR

This is a part from a composite index leaf block dump, composite : varchar2(20) +
char(20). The vsize(varchar2_column) is here 3 bytes. The vsize on the char(20)
column is off course 20 bytes.

row#168[2290] flag: ------ , lock: 0, len=34

col 0; len 3; (3): 3033 32

col 1; len 20; (20): 30 33 32202020 20 20 202020 20 20 20 20 20 20 20 20 20
col 2; len 6; (6): 01 00 07 48 00 04

The col 2 is the 6 byte rowid. The col 0 the indexed value part varchar2, whereas col 1
is the indexed value part char(20) . The overhead per index entry seems to be 5 bytes
here. (I kept in mind overhead on a varchar2 + char = 5 bytes overhead)

2.2.5.4 VARCHAR?2 + VARCHAR2

This is a part from a composite index leaf block dump, composite : varchar2(20) +
varchar2(20). The vsize(varchar2_column) is here 3 bytes for the first column and 14
bytes either 7 bytes on the second column (depending on the indexed value).

row#41[7107] flag: ------ , lock: 0, len=28

col 0; len 3; (3): 34 31 30

col 1; len 14; (14): 34 30 30 2f 30 30 30 2f 56 34 32 30 32 31
col 2; len 6; (6): 01 00 7b 98 00 12

* Be carefull when multibyte charactersets comes into play

[27/12/2005 | Guy Lambregts OCP DBA Steria Benelux | Page: 10

ORACLE Estimate size of B-tree Indexes steria

10g Certified Professional

Version : 0.3)

row#28[7387] flag: ------ , lock: 0, len=21
col 0; len 3; (3): 34 31 30

col 1;len 7; (7): 34 30 30 2f 30 30 30

col 2; len 6; (6): 01 00 78 87 00 06

The col 2 is the 6 byte rowid. The col 0 the indexed value part varchar2, whereas col 1
is the other indexed value part varchar2. The overhead per index entry seems to be 5
bytes here. (I kept in mind overhead on a varchar2 + varchar2 = 5 bytes overhead)

2.2.5.5 VARCHAR?2 + VARCHAR?2 + CHAR

This is a part from a composite index leaf block dump, composite : varchar2(20) +
varchar2(20) + char(20). The vsize(varchar2_column) is here 3 bytes for the first
column and 14 bytes whereas the vsize(char(20)) is off course 20 bytes.

row#123[1921] flag: ------ , lock: 0, len=49

col 0; len 3; (3): 3033 32

col 1; len 14; (14): 33 30 30 2f 30 30 37 2f 50 30 32 32 32 30

col 2; len 20; (20): 30 33 32202020 20 20 20 20 20 20 20 20 20 20 20 20 20 20
col 3; len 6; (6): 01 00 07 6a 00 14

The col 3 is the 6 byte rowid. The col 0 the indexed value part varchar2, whereas col 1
is the other indexed value part varchar2 and col2 is the indexed value part char(20).
The overhead per index entry seems to be 6 bytes here. (I kept in mind overhead on a
varchar? + varchar2 + char = 6 bytes overhead)

2.2.6 PARTITIONED INDEXES

In the examples below we consider table T_ALERT , partitioned by RANGE and
subpartitioned by HASH

SQL> desc t_alert;

ALERT_NB NUMBER(9)
COUNTRY CHAR(2 CHAR)
ALERT_TYPE VARCHAR2(50 CHAR)
ALERT_REASON VARCHAR2(50 CHAR)
ALERT_DATE DATE

REASON_TYPE NUMBER(S,2)

PARTITION BY RANGE ("REASON_TYPE")
SUBPARTITION BY HASH ("COUNTRY")
SUBPARTITIONS 20

SQL> select table_name,partition_name,subpartition_count from user_tab_partitions where
table_name = 'T_ALERT";

TABLE_NAME PARTITION_ SUBPARTITION_COUNT

T_ALERT P2 20
T_ALERT P3 20
T_ALERT P4 20

[27/12/2005 | Guy Lambregts OCP DBA Steria Benelux | Page: 11

ORACLE Estimate size of B-tree Indexes steria

10g Certified Professional

Version : 0.3)

T_ALERT P5 20
T_ALERT P6 20
T_ALERT pP7 20
T_ALERT P8 20
T_ALERT P9 20
T_ALERT P10 20

2.2.6.1 LOCAL PARTITIONED INDEXES (SINGLE COLUMN)

The local partitioned index has been created on a char(2) column.
SQL> select dbms_metadata.get_ddI('INDEX','T_ALERT_IDX3') from dual;
CREATE INDEX "MY_UTF"."T_ALERT_IDX3" ON "MY_UTF"."T_ALERT" ("COUNTRY")
PCTFREE 10 INITRANS 2 MAXTRANS 255
STORAGE (BUFFER_POOL DEFAULT) LOCAL (PARTITION "P2"
PCTFREE 10 INITRANS 2 MAXTRANS 255 STORAGE(BUFFER_POOL DEFAULT)
(SUBPARTITION "SYS_SUBP249" TABLESPACE "USERS",
SUBPARTITION "SYS_SUBP250" TABLESPACE "USERS",

... SUBPARTITION "SYS_SUBP428" TABLESPACE "USERS"))

This is a part from a local partitioned index leaf block dump on the table T_ALERT.
row#0[8024] flag: ------ , lock: 0, len=12
col 0;len 2; (2): 41 4c¢

col 1;len 6; (6): 01 00 1a 54 00 Oc

The col 1 is the 6 byte rowid. The col 0 the indexed value part char(2). The overhead
per index entry seems to be 4 bytes here. (I kept in mind overhead on a char column =
4 bytes overhead) Seems no difference compared with non partitioned indexes.

2.2.6.2 LOCAL PARTITIONED INDEXES (MULTIPLE COLUMNS)

The composite local partitioned index has been created on a char(2) and on a number.
SQL> select dbms_metadata.get_ddI('INDEX','T_ALERT_IDX2') from dual;

CREATE INDEX "MY_UTF"."T_ALERT_IDX2" ON "MY_UTF"."T_ALERT" ("COUNTRY",
“REASON_TYPE")

PCTFREE 10 INITRANS 2 MAXTRANS 255 STORAGE (BUFFER_POOL DEFAULT) LOCAL
(PARTITION "p2"
PCTFREE 10 INITRANS 2 MAXTRANS 255 STORAGE (BUFFER_POOL DEFAULT)

(SUBPARTITION "SYS_SUBP249"

[27/12/2005 Guy Lambregts OCP DBA Steria Benelux | Page: 12

ORACLE Estimate size of B-tree Indexes Ste ria

10g Certified Professional

Version : 0.3)

This is a part from a composite local partitioned index leaf block dump on the table
T_ALERT

row#239[8021] flag: ------ , lock: 0, len=15
col 0; len 2; (2): c1 02

col 1;1len 2; (2): 41 4c

col 2; len 6; (6): 01 00 1a 55 0093

The col 2 is the 6 byte rowid. The col O the indexed value part char(2) whereas col 1
is the indexed value part number. The overhead per index entry seems to be 5 bytes
here. (I kept in mind overhead on a char column + number column = 5 bytes
overhead) Seems no difference compared with non partitioned indexes.

Hence we see the overhead of a local partitioned index is similar compared with
the overhead for non partitioned indexes on non partitioned tables. (assuming
datatype and precision is identical) There are however particular and
interesting situations which needs special attention : global partitioned indexes
on a partitioned table and non partitioned indexes on a partitioned table.

2.2.6.3 GLOBAL PARTITIONED INDEXES

The global partitioned index has been created on a number(8,2).

CREATE INDEX T_ALERT_IDX4 ON T_ALERT (reason_type)
GLOBAL PARTITION BY RANGE (reason_type)
(PARTITION pl1 VALUES LESS THAN (2),
PARTITION p2 VALUES LESS THAN (3),

PARTITION p3 VALUES LESS THAN (4),

PARTITION p4 VALUES LESS THAN (5),

PARTITION p5 VALUES LESS THAN (6),

PARTITION p6 VALUES LESS THAN (7),

PARTITION p7 VALUES LESS THAN (8),

PARTITION p8 VALUES LESS THAN (9),

PARTITION p9 VALUES LESS THAN (MAXVALUE));

This is a part from a global partitioned index leaf block dump on the table T_ALERT

row#398[1652] flag: ------ , lock: 0, len=16
col 0;len 2; (2): c1 09
col 1; len 10; (10): 0003 7b 88 01 00 1e b6 00 06

The col 1 is the 6 byte rowid. The col O the indexed value part char(2). The overhead
per index entry seems to be 4 bytes here. (I kept in mind overhead on a number(8,2)
column = 4 bytes).

Hence we see the overhead of a global partitioned index is similar compared with
the overhead for non partitioned indexes on non partitioned tables. (assuming
datatype and precision is identical) , HOWEVER THE 10 BYTE FORMAT
ROWID IS STORED IN THE INDEX LEAF BLOCK !!!

[27/12/2005 Guy Lambregts OCP DBA Steria Benelux | Page:13

ORACLE

10g Certified Professional ‘/)
Version : 0.3)

Estimate size of B-tree Indexes steria

2.2.7 NON PARTITIONED INDEXES ON A PARTITIONED
TABLE

I dropped t_alert_idx4 and I created another t_alert_idx5 on the same column, same
precision, when we look at our leaf block dumps we see something interesting, the
rowid is this time the 10 byte format (format since release 8.03)

row#352[2388] flag: ------ , lock: 0, len=16
col 0; len 2; (2): c1 02
col 1; len 10; (10): 00 03 7a fc 01 00 1a 55 00 94

For non partitioned indexes on partitioned tables we face the same overhead
compared with the local/global partitioned indexes on partitioned tables,
HOWEVER THE 10 BYTE FORMAT ROWID IS STORED IN THE INDEX
LEAF BLOCK !!!°

2.3 OVERHEAD PER INDEX ENTRY (FORMULA)

Since my findings didn’ t permit to be sure of the exact overhead per index entry and
per indexed column header I decided to change the C + D to X + 1, as such the
empiric formula becomes

[(A + vsize(B) + x + 1) * n indexed table rows

X is a variable depending on the datatype and the number of indexed columns.
varchar2 = x =4

char=>x =4

number (without decimal precision) = x =3

number (with decimal precision) = x =4

varchar? + varchar2 = x =5

varchar2 + char = x =5

char + varchar2 = x =5

char + char => x =5

® Mr Tim Gorman has described this in his “Understanding Indexes”

[27/12/2005 | Guy Lambregts OCP DBA Steria Benelux | Page: 14

ORACLE Estimate size of B-tree Indexes Ste ria

10g Certified Professional

Version : 0.3)

number (without decimal precision) + char = x =5
number (without decimal precision) + varchar2 = x =5
varchar2 + varchar2 + char = x =6

varchar2 + varchar2 + varchar2 = x =6

char + char +char=>x=6

A is a variable depending on the number of bytes of the rowid (6 or 10)
Non partitioned tables = A =6

Local partitioned indexes on partitioned tables = A =6

Global partitioned indexes on partitioned tables = A = 10

Non partitioned indexes on partitioned tables = A = 10

[27/12/2005 Guy Lambregts OCP DBA Steria Benelux | Page:15

ORACLE Estimate size of B-tree Indexes Ste ria

10g Certified Professional

Version : 0.3)

3. TEST

Assume we have a table eqp_topo with 899.645 entries and assume we have a column
eq_zone a varchar2 column with the not null attribute. We wanna create a non unique
btree on eq_zone. We now the average indexed value = 3 bytes. (select
avg(vsize(eq_zone)) from eqp_topo). Question how big will the index be ?

Let' s create that index in a 8K tablespace

SQL> create index ix_eq_zone on eqp_topo (eq_zone) pctfree 20;
Index created.

SQL> analyze index ix_eq_zone validate structure;®
Index analyzed.

SQL> select If_blks*8192,If rows,del_If_rows,pct_used,height from index_stats;
LF_BLKS*8192 LF_ROWS DEL_LF_ROWS PCT_USED HEIGHT

17.383.424 899645 0 80 3

And with the formula, since eq_zone is a varchar x = 4 and the vsize(b) = 3
(6+3+1+4)*899.645
------ -=17.992.900

0.7

Well that' s not bad , but far from exact science would Isaac Newton have said.
(1+1=2 and not 1,98). The btree doesn' t only consist of leaf blocks ... we have branch
blocks and 1 root block as well.

® analyze index ix_eq_zone validate structure ONLINE can be used if no TM lock of the
underlying table can or may be acquired.

[27/12/2005 | Guy Lambregts OCP DBA Steria Benelux | Page:16 |

ORACLE Estimate size of B-tree Indexes steria

10g Certified Professional

Version : 0.3)

4. HOW MANY BRANCH BLOCKS WILL THERE BE ?

Not a lot ! Here' s an example from a part of a branch block dump although it is
totally out of the scope to document branch blockdumps. A branch block refers to a
leaf block or to another branch block (depends on the height of the index) the
contents of a branch will vary depending on to which kind of block -leaf or branch- it
refers.

Branch block dump

header address 207251532=0xc5a684c¢

kdxcolev 2

KDXCOLEV Flags = - - -

kdxcolok 0

kdxcoopc 0x80: opcode=0: iot flags=--- is converted=Y

kdxconco 4

kdxcosdc 0

kdxconro 47 >> seems to be the number of branch block entries (entries in this branch block)
kdxcofbo 122=0x7a

kdxcofeo 5673=0x1629

kdxcoavs 5551

kdxbrlmc 16836786=0x100e8b2 >> seems to be the rdba of first leaf block to which the branch block
refers (still to find out whether it can also be the first branch block of the level + 1 to which this branch
block refers)

kdxbrsno 0

kdxbrbksz 8060 >> seems to be the block size minus the overhead (O1+02)

kdxbr2urrc 10

row#0[8009] dba: 16836942=0x100e94¢e

col 0; len 3; (3): 34 31 30

col 1; len 14; (14): 34 30 30 2f 30 32 32 2f 49 32 32 30 33 31

col 2; len 20; (20): 34 31 3020 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

col 3;len 6; (6): 01 0021 d6 00 16

Let us take a look on the number of branch blocks compared with the number of leaf
blocks.

SQL> select If_blks,br_blks,pct_used,height,If _rows from index_stats;

LF_BLKS BR_BLKS PCT_USED HEIGHT LF_ROWS

7251 49 80 3 899645
Oh yes there is also 1 root block. What will the ratio branch+root / leaf be ?
SQL> select round((49+1)*100/7251,2) ' RATIO BRANCH/LEAF " from dual;

RATIO BRANCH/LEAF

.69

[27/12/2005 Guy Lambregts OCP DBA Steria Benelux | Page:17

ORACLE

10g Certified Professional ‘/)
Version : 0.3)

Estimate size of B-tree Indexes steria

0.69% is that a lot ? Should we calculate the size, pctfree of them keeping in mind that
we never can achieve exact science with the leafs ? To my opinion no. I tracked down
that the formula I posted above gave me almost everytime a positive delta and 1
decided since this positive delta covers the branch + root extra bytes to leave it for
leafs + branch + root. (or should I have said to "leaf" it)

5. CONCLUSION

In order to estimate the size of the indexes I will use

[(A + vsize(B) + x + 1) * n indexed table rows

A = 6 bytes or
A =10 bytes for non partitioned indexes on partitioned tables.

Is this exact science ? No it is to be used as an estimation. (1 + 1 =2 and not 1,98 +
branch + root = 1,99). I decided to do a set of tests. Please find back the results of
different tests at the next page.

It seems the formula is reliable for single column indexes whereas it is a bit less
accurate for composite indexes. It is also a bit less accurate when indexes are build in
a 16K tablespace. Up to you to adjust the factor O to 0,75 or not.

The formula can very likely also be used for reverse key indexes whereas It
CANNOT be used for

1. compressed indexes
2. function indexes (depends on the function)

3. domain indexes.

b

bitmap indexes

[27/12/2005 Guy Lambregts OCP DBA Steria Benelux | Page:18

ORACLE Estimate size of B-tree Indexes Ste ria

10g Certified Professional

Version : 0.3)

6. SPARSENESS OF LEAF BLOCKS

Since we can dump leaf blocks we can become aware of the number of index entries
per leaf block. Assume we have a small index IDX_GUID_OBJECT on a table
T_OBIJECT, an index with only 233 leaf blocks. Right now we wonder how many
index entries there are for each leaf block. Interesting to dump 233 leaf blocks ? Say
no. Mr Jonathan Lewis has shown us how we can use the undocumented function’
sys_op_lbid in order to find out the density of the 233 leafs. Please feel free to look
here http://www.jlcomp.demon.co.uk/index efficiency.html. I became aware of this
function by a tip from Mr Don Burleson. You can sign in here . http:/www.dba-
oracle.com/ in order to receive this tips from him and from Mr Mike Ault. 8

Back to work.

SQL> analyze index idx_guid_object validate structure;
Index analyzed.

SQL> select If_blks from index_stats;
233

SQL> select /*+ cursor_sharing_exact dynamic_sampling(0) no_monitoring no_expand in
IDX_GUID_OBJECT) */ sys_op_lbid(55192 ,'L',T_OBJECT.rowid) as block_id,count(*) as
from MY_UTF.T_OBJECT group by sys_op_lbid(55192 ,'L',T_OBJECT.rowid)

AAANeYAAFAAAPuOAAA 110
AAANeYAAFAAAPuPAAA 105
AAANeYAAFAAAPuQAAA 107
AAANeYAAFAAAPuRAAA 95
AAANeYAAFAAAPuSAAA 106
AAANeYAAFAAA6sHAAA 98
AAANeYAAFAAAGSIAAA 86

233 rows selected.

By using sys_op_lbid in the above way we can list the number of index entries per
leaf block. If we are interested to know how many leaf blocks there are with n number
of index entries we can use this one :

” You may want to be prudent in a production db with sys_op_lbid since it is undocumented

® | have in this document referred to several masters of who | learned a lot by reading their
excellent white papers, forums, books : Mr Tim Gorman, Mr Thomas Kyte, Mr Jonathan
Lewis, Mr Don Burleson, Mr Mike Ault. However no one of them have any responsibility
regarding the correctness of this document.

[27/12/2005 | Guy Lambregts OCP DBA Steria Benelux | Page:19 |

ORACLE

10g Certified Professional

Estimate size of B-tree Indexes

Version : 0.3

steria

SQL> select

sys_op_lbid(55192 ,'L',T_OBJECT.rowid)) group by rows_per_block;

76

77

79

80

155

158

rows_per_block, count(*) blocks from (select /*+ cursor_sharing_exact
dynamic_sampling(0) no_monitoring no_expand in IDX_GUID_OBJECT) */ sys_op_lbid(55192
,'L',T_OBJECT.rowid) as block_id,count(*) as rows_per_block from SISILT_OBJECT group by

2

1

2

2

52 rows selected.

So we have 2 leaf blocks with 76 index entries, 1 with 77 entries and 2 with 158, ...
By using sys_op_lbid in the above described ways we can maybe become aware
whether it can maybe interesting to rebuild the index. (in a lot of cases it is not)
Again, this is something I didn’ t find myself. All the honour is for Mr Jonathan

Lewis.

[27/12/2005

Guy Lambregts OCP DBA Steria Benelux

| Page:20

ORACLE Estimate size of B-tree Indexes Ste ria

10g Certified Professional

Version : 0.3)

Please feel free to mail me if you have comments both positive and negative.
guy.lambregts @telenet.be I offer a free Belgian Abbey Beer for you if you help me to
improve the quality of my white paper.9

7. REFERENCES

“Online Operations on Indexes and Tables in Oracle 91" : Metalink doc id 159063.

“Understanding Indexes” Mr Tim Gorman http://www.evdbt.com/2004_paper _549.doc

Oracle9i Space Management Demystified White Paper : Metalink doc id 247752.1

“Inside Oracle 9i Tablespace Management” Mr Don Burleson http://www.dbazine.com/oracle/or-
articles/burleson11

“Interested Transaction List (ITL) Waits Demystified” Mr Arup Nanda
http://www.dbazine.com/oracle/or-articles/nanda3

“Index Efficiency” Mr Jonathan Lewis http://www.jlcomp.demon.co.uk/index_efficiency.html

® Belgium, country of Kim Clijsters and many, many good beer.

[27/12/2005 | Guy Lambregts OCP DBA Steria Benelux | Page:21

ORACLE

10g Certified Professional

Estimate size of B-tree Indexes

Version : 0.3

steria

ESTIMATION BASED ON FORMULA

INDEX_NAME

IX_EQ_ZONE
IX_EQ_STRINGI12
IX_EQ_ZONE_STRINGI2
PK_EQP_TOPO
PK_EQP_TOPO_ZONE
PK_EQP_TOPO_STRING12
IX_WO_ZONE
IX_WO_COSC
IX_WO_ZONE_COSC
PK_WIP_WO

IX_EQ_ZONE
IX_EQ_STRINGI12
IX_EQ_ZONE_STRINGI2
PK_EQP_TOPO
PK_EQP_TOPO_ZONE
PK_EQP_TOPO_STRING12
IX_WO_ZONE
IX_WO_COSC
IX_WO_ZONE_COSC
PK_WIP_WO

PK_T_OBIJECT
IDX_GUID

DATA_TYPE

VARCHAR?2

CHAR(20)
VARCHAR2+CHAR
NUMBER(S)
NUMBER(8)+VARCHAR
NUMBER(8)+CHAR
VARCHAR2

VARCHAR2
VARCHAR2+VARCHAR?2
NUMBER(8)

VARCHAR?2

CHAR(20)
VARCHAR2+CHAR
NUMBER(8)
NUMBER(8)+VARCHAR
NUMBER(8)+CHAR
VARCHAR2

VARCHAR?2
VARCHAR2+VARCHAR?2
NUMBER(8)

NUMBER(10)
VARCHAR?2

avg(sum
(col
size))

in bytes X Num_rows Calc. Size

20

23

24

13,73
16,73

20
23
24
13,73

16,73

3,88
38

W L B B U LW WOK B B

W W B B O LW UK B

H W

899645
899645
899645
899645
899645
899645
322121
322121
322121
322121

899645
899645
899645
899645
899645
899645
322121
322121
322121
322121

19873
23545

17992900
39841421
44982250
17992900
24418936
46267457

6442420
11380075
13220766

6442420

17992900
39841421
44982250
17992900
24418936
46267457

6442420
11380075
13220766

6442420

394053
1648150

Column Calc. Size is the calculated size (by the formula)

[(A + vsize(B) + x + 1) * n indexed table rows

A=6,0=07

(A =10 for non partitioned indexes on partitioned tables and for global

partitioned indexes)

Block Size Blocks

8192
8192
8192
8192
8192
8192
8192
8192
8192
8192

16384
16384
16384
16384
16384
16384
16384
16384
16384
16384

8192
8192

INDEX STATS INFO

2122
4544
5112
2138
2839
5242

760
1307
1507

761

1045
2233
2513
1052
1398
2583
375
643
743
375

44
183

Column Index Stats Size is (leaf blocks+branch blocks+root block) * block size

6
21
26

_—) W = W W=] O W W 3 N WO AN B

—_

[27/12/2005

Guy Lambregts OCP DBA Steria Benelux

Page : 22

Index Stats
Branch Size
Blocks (leaf+branch+root)

17440768
37404672
42098688
17555456
23314432
43024384

6258688
10764288
12410880

6266880

17186816
36700160
413040064
17268736
22970368
42385408
6176768
10600448
12238848
6176768
0

376832
1515520

