

Development - Standards

Oracle Development - Part III:
Coding Standards

By Cheetah Solutions

Editor’s Note: In this final of a three-white-paper series on Oracle® Custom Development,
Cheetah Solutions tackles the issue of coding standards. In their concluding white paper,
Cheetah rounds out the development topic by offering best practices advise for Explain Plans,
variable usage conventions, and quality control, to name a few.

Introduction
This document is intended to serve as a blue print for standards requirements for coding and
setting up customizations and modifications in Oracle.

File Naming Conventions

All custom objects should start with a meaningful prefix plus underscore at the start and so will
the filenames as shown in Table 1.

File Type Extension Example
Stored Packages pkb PREFIX_<package name>.pkg
Anonymous block sql PREFIX_<testtrg>.sql
Table creation statement tab PREFIX_<table_name>.tab

Table 1: File Naming Conventions

Identifier Naming Conventions

Think of all identifiers as consisting of 4 parts:

• <Scope>
• <Type>
• <Primary Identifier>
• <Suffix>

By default, all variables are local. If they are global, they will be prefixed with the letter “g” as
shown in Table 2.

Scope
Scope is the locality of reference. Knowing this is invaluable to the maintenance programmer.
Notice that “p” is added as the scope of a parameter. This is an excellent method for denoting
that a variable is a parameter to the procedure.

Locality Description Example
G Global g_temp
L Local l_temp
P Parameter p_temp

Table 2: Identifier Naming Conventions

Copyright © 2006 by Klee Associates, Inc. Page 1
www.ORAtips.com

Emil Marx
Text Box
Development - Standards

Development - Standards

Oracle Development - Part III:
Coding Standards

Type
In addition to scalar types, there are other data types that are supported by the PL/SQL
language. They are aggregate data types, which are listed in Table 3.

Type Description Example
c Cursor gcur_employee or c_employee
vcr Cursor(variable) vc_employee
tbl Table gtbl_employee
Rec or r Record r_address

Table 3: Aggregate Data Types

Primary Identifier
The primary identifier is the most important part of a name. It can be a single word or a phrase.
We will talk of lengths of names later but it is always a trade off between length for documentation
and brevity for typing purposes. The name should be optimal meeting both requirements. The
name should tell the reader the purpose of the identifier. Some examples are account, student,
company, phone, etc. We will later on discuss some abbreviating rules.

Suffix
The suffix is used to qualify the identifier further to document the usage of the variable. For
example, the suffix is used to denote the type of parameter, as in IN, OUT, or INOUT as shown
in Table 4.

Type Description Example
i Input only parameter pv_num_items_i
o Output only parameter pv_sum_o
io Both input and output pv_sum_io

Table 4: Suffix Examples

Variable Usage Conventions

Now that some basic standards are defined, let us look at how some of these standards are used
in practice.

Cursor Declarations

Cursors are usually named after the table or a view that is being processed. Use the letter “c” as
the prefix for the variable as shown in Table 5. You would still specify the scope of the variable as
usual. What happens if you pass the cursor in as a parameter? You would end up with two
suffixes. Although this is unusual, it works fine.

Scope Type Primary Identifier Modifier Suffix Example
Local cur Account New Null c_new_account

Table 5: Cursor Declarations

Copyright © 2006 by Klee Associates, Inc. Page 2
www.ORAtips.com

Development - Standards

Oracle Development - Part III:
Coding Standards

Record Based on Table or Cursor

Records are defined from the structure of a table or cursor as shown in Table 6.

Scope Type Primary Identifier Modifier Suffix Example
Local rec Account Null r_account
Parameter rec Account IN pr_account_i
Global rec Account gr_account
Table 6: Cursor Declaration Records

FOR Loop Index

Typical format should be:

FOR r_emp IN c_emp -- Record in cursor
OR
FOR v_people_idx IN 1..12 -- follows variable naming

standards
PL/SQL table TYPE

Whenever possible, do not use PL/SQL table data type.

Programmer Defined Subtype

In PL/SQL subtypes can be defined from base data types as shown in Table 7.

Scope Type Primary Identifier Modifier Suffix Example
Local stp Primary_key stp_primary_key
Global stp Large_string gstp_large_string
Table 7: Sub Types

SUBTYPE lstp_primary_key IS BINARY_INTEGER;
SUBTYPE gstp_large_string IS VARCHAR2;

Use sensible abbreviations for table and column aliases

Instead of a code segment such as:

SELECT … select list …
 FROM employee A, Company B, History C, Bonus D, Profile E, Sales F
 WHERE A.company_id = B.company_id
 AND A.employee_id = C.employee_id
 AND B.company_id = F.company_id
 AND A.employee_id = D.employee_id
 AND B.company_id = E.company_id;

Copyright © 2006 by Klee Associates, Inc. Page 3
www.ORAtips.com

Development - Standards

Oracle Development - Part III:
Coding Standards

Use a code segment such as:

SELECT … select list …
 FROM employee EMP, Company CO, History HIST, Bonus, Profile PROF, Sales
 WHERE EMP.company_id = CO.company_id
 AND EMP.employee_id = HIST.employee_id
 AND CO.company_id = SALES.company_id
 AND EMP.employee_id = BONUS.employee_id
 AND CO.company_id = PROF.company_id;

Code Format

How you format your code in your source code is an intensely personal issue. Most people use
conventions that are imposed by corporate standards. But when there is no standard available,
then most programmers feel lost. They end up using a mish-mash of techniques that makes the
resulting code hard to read. So it is important that every programmer develop a consistent and
cohesive coding style that is easy to read and maintain.

There are two points of view to formatting. One is the developer’s view. The other is the
maintainer’s view. A good standard should meet the needs of both views. There is really one
fundamental reason for formatting your code: Reveal and reinforce the logical structure of
your program. Writing code to please the eye is a waste of time. Code never stays that way for
long. What is more important is to show the structure and the intent of the program. We truly
believe that the machine should do this for the programmer. So if you follow the rules set forth
here, there will be a tool in the future that will magically transform your program into a listing that
could be framed as a work of art.

Indentation

Indentation is one of the most common and effective ways to display a program’s logical
structure. Programs that are indented are lot easier to read than those that are not. Be aware that
indentation is a double-edged sword. It is very easy to mislead with inconsistent indentation.

General Indentation Rules

• Indent and align nested control structures, continuation lines, and embedded units
consistently.

• Distinguish between indentation for nested control structures and for continuation lines.
• Use spaces for indentation, not the tab character.

Commenting Style

Functional comments always appear in code. They should appear in the pseudo-code in the
header and should have corresponding comments in the blocks below. Custom object
commenting should be MANDATORY and the reason for the custom object should be
documented in the code.

Copyright © 2006 by Klee Associates, Inc. Page 4
www.ORAtips.com

Development - Standards

Oracle Development - Part III:
Coding Standards

Comment As You Code

• Explain Why - Not the How
• Maintain Indentation

Syntax Guidelines

1. Do not use “gotos”
2. Do not use conditional statements
3. Avoid unnecessary nested Ifs
4. Never Declare the FOR Loop Index
5. Avoid Unstructured Exits from Loops
6. Do not EXIT or RETURN out of a FOR loop.

The following statements are equivalent. The flat structure expresses the logic more clearly and
with less code.

Nested Flat
IF <condition1> IF <condition1>
THEN THEN
 ... …
ELSE ELSIF <Condition2>
 IF <Condition2> THEN
 THEN …
 … ELSIF <Condition3>
 ELSE THEN
 IF <Condition3> …
 THEN ELSIF <Condition4>
 … THEN
 ELSE …
 IF <Condition4> END IF;
 THEN
 …
 END IF;
 END IF;
 END IF;
END IF;

If you have to use Nested IF..THEN..ELSE statements, then they should have identifiers that
clearly establish the END IF and ELSE statements corresponding to each IF.

For example:

IF <cond> -- Check for existence condition 1
ELSE -- Else for condition 1
 IF <cond2> -- Check for existence condition 2
 END IF -- End IF for condition 2
END IF -- END IF for condition 1
REPETITION

Copyright © 2006 by Klee Associates, Inc. Page 5
www.ORAtips.com

Development - Standards

Oracle Development - Part III:
Coding Standards

PL/SQL Programming Guidelines

Now that naming standards are defined, here are some general guidelines for good programming
practices. Most of them are universal and would apply to any type of a programming effort. But
we are only speaking in terms of PL/SQL here.

• Use named constants to avoid hard-coding values
• Convert variables into named constants
• Name subtypes to self-document code
• Remove unused variables from programs
• Use %TYPE when a variable represents a column
• SQL Guidelines
• Use sensible abbreviations for table and column aliases
• Add hints after you are done with the code and optimize to a reasonable degree

Naming Standards

• All value sets and flexfields, and custom programs should be prefixed.
• ALL custom tables should be created within a custom schema.
• All procedures should be created using the user id of apps.
• Access rights should be granted for the programs to be executed from apps.

The following GRANTS should be packaged along with the SQL:

• GRANT ALL to apps
• GRANT SELECT to IAMATOAD
• GRANT SELECT, INSERT, UPDATE, DELETE to EXPDEVL. This is not valid in all

cases, depending upon if the table needs to be touched in production.

Packaging the Code

After the object is created in the custom schema, the appropriate synonyms for the object should
be created in apps. Also, userids and passwords should be “accept”- ed in the same script. This
would ensure proper packaging of SQL code.

QA Process

Commenting Example

Header
This should exist after the CREATE OR REPLACE command and not before the command.

Procedure: get_users

Purpose: This procedure populates the global variables

g_transactionuserid and g_witnessuserid.

Tables Accessed: users

Copyright © 2006 by Klee Associates, Inc. Page 6
www.ORAtips.com

Development - Standards

Oracle Development - Part III:
Coding Standards

Tables Modified:

Passed Variables:
p_transactionusername The user performing the transaction.
p_witnessusername The user witnessing the transaction.
p_callingprogramname Program calling this program.
p_status Status message to check for errors.
p_error_message The actual error message.
p_debug Debug flag for debug mode.

Modification History
Date By Reason and description of modification
05/16/02 John Doe User wanted to add a new sales region

automatically
Pseudo code:
{ Select userid for witnessname. }
{ Select userid for transactionusername. }
{ Exception }

Other things to consider

Please, no DBMS_OUTPUT.put_line statements; replace them with FND_FILES.

No Block comments – The old code should be stored as a backup and comments eliminated as
much as possible.

ALL programs must have a header comment.

Exception handlers should exist for all blocks of code.

No SYSDATE or constants being returned from functions. Inoptimal code must be eliminated
wherever possible.

EXPLAIN PLAN for all SQLs.

Look particularly for FULL TABLE scans on HUGE tables. Optimize as much as reasonable for
user acceptance and use the guidelines mentioned in the Guidelines document. The reasonable-
ness of code optimization will be determined as a part of the code review process.

Package the code. For example, if you have to log out as one user and log in as another user,
then you should have accept commands in the script. In other words, the statements should be
rightly packaged.

Eliminate using a lot of flags. Flags must have a proper reason for being used (useful for readers
of your code – does not have any major performance impact).

Check if registration process is right.

Full table “Delete” statements should not exist; replace with a “Truncate” or “execute immediate
‘truncate …’ ” statement.

Copyright © 2006 by Klee Associates, Inc. Page 7
www.ORAtips.com

Development - Standards

Oracle Development - Part III:
Coding Standards

If there are multiple SQL statements that do INSERT, UPDATE, or DELETE statements with a
COMMIT at the end of a transaction block, then the EXCEPTION for the transaction block MUST
have a ROLLBACK.

For example:

BEGIN
 INSERT …
 UPDATE..
 INSERT
 COMMIT;
 EXCEPTION
 ROLLBACK; --- This is necessary
 END;

All comments should have good functional description, in case the query needs more tuning.

Back Out Procedures

Always provide a description of what the procedure does and the objects that could get impacted

When doing explain plans, always convert the variable that is in the package to a bind variable.
Oracle can evaluate a bind variable and a hard coded value differently.

While dropping tables inside a table creation package, CASCADE CONSTRAINTS should be
used.

A grant script must exist with the code. This should not have GRANT ALL to any specific
responsibility.

All reports must use the views and not the _all tables.

Inserts, updates, and deletes can use the _all tables depending on the requirement.

Temporary objects (tables, views, procedures, packages, functions, etc.) should be dropped after
use.

The methodology to change a RULE hinted query back to a COST based query is as follows:
Perform an explain plan on the query with the RULE based hint.

Order the FROM clause according to the order of execution of the RULE based hint.
Insert the ORDERED hint into the SELECT clause.

Insert the INDEX hint for the innermost table and index of the RULE based explain plan.

Insert the USE_NL hint for all the other tables in the FROM clause.

All custom indexes should be created on separate tablespace.

Make sure that all CURSORs are closed both in the logic as well as in the EXCEPTION block.
Also, make sure that transactions are handled properly both in the block as well as in the

Copyright © 2006 by Klee Associates, Inc. Page 8
www.ORAtips.com

Development - Standards

Oracle Development - Part III:
Coding Standards

EXCEPTION block. All files must be closed in the code and EXCEPTION block. For example:
COMMIT in a loop, must have a corresponding ROLLBACK in the EXCEPTION block.

Conclusion

There's no getting around it and that is a good thing. If you are going to take the time to develop
custom Oracle Application enhancements, then it is in your best interest to develop them for
readability, maintenance and efficiency.

The information on our Website and in our publications is the copyrighted work of Klee Associates, Inc. and is owned by
Klee Associates, Inc.

NO WARRANTY: This documentation is delivered as is, and Klee Associates, Inc. makes no warranty as to its accuracy
or use. Any use of this documentation is at the risk of the user. Although we make every good faith effort to ensure
accuracy, this document may include technical or other inaccuracies or typographical errors. Klee Associates, Inc.
reserves the right to make changes without prior notice.

NO AFFILIATION: Klee Associates, Inc. and this publication are not affiliated with or endorsed by Oracle Corporation.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Klee Associates, Inc. is a member of the
Oracle Partner Network.

All other company and product names used herein may be trademarks or registered trademarks of their respective
owners.

Copyright © 2006 by Klee Associates, Inc. Page 9
www.ORAtips.com

Owner
Text Box

This article was originally published by Klee Associates, Inc., publishers of
JDEtips and SAPtips.

For training, consulting, and articles on JD Edwards or SAP, please visit our
websites: www.JDEtips.com & www.SAPtips.com.

http://www.JDEtips.com
http://www.SAPtips.com

	Introduction
	File Naming Conventions
	Identifier Naming Conventions
	Primary Identifier
	Suffix

	Variable Usage Conventions
	Code Format
	Indentation
	Commenting Style
	Syntax Guidelines
	PL/SQL Programming Guidelines
	Naming Standards
	Packaging the Code
	QA Process
	Back Out Procedures
	Conclusion

