
  
 

 
Copyright © 2006 by Klee Associates, Inc.   Page 1 

www.ORAtips.com 

Database – SQL*Loader
Generating High-Quality Test Data 

with Oracle SQL*Loader 

By Blake Couch 
  
Editor’s Note:  Ask any Oracle® database administrator or developer the number one task they 
dislike, and two answers come immediately to mind: documentation and creating test data.  In 
this white paper, second time ORAtips contributor Blake Couch cannot help you with 
documentation, but he has developed a strategy to take the fear out of coming up with useful test 
data.  And not just some test data, but multi-million rows of dummy information.  Filled with best 
practices, sample scripts, tips, and tricks, this ORAtip is a winner! 
 
Introduction 
   
Most of us have used the Oracle SQL*Loader utility at one time or another to populate tables with 
data from an outside source.  SQL*Loader is a very powerful tool for loading large quantities of 
data from CSV or fixed-width ASCII files into an Oracle database in a hurry, but did you know that 
with SQL*Loader and a few common functions like MOD and DECODE, you can generate 
thousands or even millions of rows of good test data with just a few lines of code? 
 
Be a Volume Dealer 
 
Perhaps you are planning to test some procedure or application for high volume performance. 
You want a couple million rows to test against, and content is not important.  
 
If your table is defined as: 
 
 CREATE TABLE FOO_TABLE 
 ( 
   FOO_ID  NUMBER(9)  NOT NULL, 
   FOO_DATE  DATE, 
   FOO_USER  VARCHAR2(100), 
   FOO_MESSAGE VARCHAR2(4000) 
 ) 
 
you could create a control file for SQL*Loader that looks something like 
 
 LOAD 
 TRUNCATE 
 INTO TABLE FOO_TABLE 
 ( 
   FOO_ID  CONSTANT 9999, 
   FOO_DATE  SYSDATE, 
   FOO_USER  CONSTANT 'fake user name', 
   FOO_MESSAGE CONSTANT 'fake message' 
 ) 
 
then save it as mycontrol.ctl and read it into SQL*Loader using the command line: 
 
 sqlldr myuser/mypassword@mydb control=mycontrol.ctl load=2000000 
 
The load parameter tells SQL*Loader to create 2 million rows in mydb, while the control file tells it 
to put them in FOO_TABLE after first truncating (to load data into an empty table, change 
TRUNCATE to INSERT, or use APPEND to add to existing data), and to populate all 2 million 



  
 

 
Copyright © 2006 by Klee Associates, Inc.   Page 2 

www.ORAtips.com 

Database – SQL*Loader
Generating High-Quality Test Data 

with Oracle SQL*Loader 

rows with the same 4 values.  Note: SYSDATE is called for every insert, so that value will change 
as your load proceeds. 
 
Creating that many rows could take a while, therefore a direct path load is preferred. Add 

direct=true 
 
to the command line. It will speed up the process considerably. Keep in mind that doing a direct 
path load causes Oracle to disable automatically all triggers and constraints on the table in 
question before loading the data, and then re-enable them when the load is done. If you load data 
that violates your constraints, you will need to rethink the load process and start over. 
 
One constraint easily violated is the primary key constraint created for FOO_ID. You did declare a 
primary key for that table, didn't you? If FOO_ID is your primary key, you need SQL*Loader to 
insert unique values in that column. Therefore change the line in your control file for FOO_ID to 
 
 FOO_ID  SEQUENCE(1000), 
 
which will cause SQL*Loader to create its own sequence starting with 1000 and insert the values 
from that sequence into FOO_ID in your table. 
 
Variety Is the Spice of Life 
 
Not content with putting the same values in every row you create? Not a problem! SQL*Loader 
allows you to specify expressions as values instead of constants, and within those expressions, 
you can use a subset of Oracle's built-in functions. 
 
You are probably thinking, it would be nice to use the DBMS_RANDOM package to generate 
randomized values for your testing. So sorry! There is no way to call the INITIALIZE procedure 
from SQL*Loader, and remember, you only have access to a subset of Oracle's functions in your 
expressions. 
 
The fact is, random values may not be what you really want in the first place. Chances are you 
have a limited set of values for certain columns that you need to see in your tables. You will need 
to make sure your application works properly with known data. In other words, you have test 
cases you need to build and evaluate. SQL*Loader enables you to build those test cases in your 
data. 
 
Let's say you have five known values for FOO_USER to use in your test data: BillG, LewisL, 
GeorgeB, FreddieM, and OprahW. If you are content having equal numbers of each in your table, 
you could replace your FOO_USER line in your control file with 
 

FOO_USER EXPRESSION “DECODE(MOD(:FOO_ID,5), 0, 'BillG', 1, 'LewisL', 2, 
'GeorgeB', 3, 'FreddieM', 4, 'OprahW')” 

 
:FOO_ID is a reference to your sequence column. The sequence value for the row currently 
inserting will be plugged in there. MOD(:FOO_ID,5) gives you the remainder when you do an 
integer divide on FOO_ID by 5. Your five possible values are 0, 1, 2, 3, and 4, and since your 
FOO_ID values are integers in a straight sequence, you will get equal or nearly equal numbers of 
the five different values over a large data set. The DECODE allows you to replace the five 
integers with five values of your choosing. 
 
You are probably starting to see the power that sequence column gives you – but what if you do 



  
 

 
Copyright © 2006 by Klee Associates, Inc.   Page 3 

www.ORAtips.com 

Database – SQL*Loader
Generating High-Quality Test Data 

with Oracle SQL*Loader 

not have a column like that in your table? Perhaps you are thinking “hmmm, wonder if I could use 
ROWNUM?” Sorry again! SQL*Loader does have a value called RECNUM that can be used by 
itself as a column value, but it cannot be used in an expression. I recommend you simply add a 
numeric column to your table, temporarily, if you do not already have one you can use in this 
fashion, and then drop the column when you are done with your load process. You can use 
RECNUM in place of SEQUENCE, but you will still need a column in your table to hold that value. 
SEQUENCE also gives you some additional options. Specify an increment value, with the default 
being one, and direct SQL*Loader to start the sequence with either the current maximum value in 
the column or with the row count of the table, plus the increment value. 
 
Now back to our example:  if you want 7 different values in the table, do a MOD 7. If you have 23, 
do a MOD 23. It’s that simple. But what if you do not want an equal number of each value in your 
data? Add 2 to the MOD value and repeat a couple of your desired values, as shown here: 
 

FOO_USER EXPRESSION “DECODE(MOD(:FOO_ID,7), 0, 'BillG', 1, 'LewisL', 2, 
'GeorgeB', 3, 'FreddieM', 4, 'OprahW', 5, 'LewisL', 6, 'FreddieM')” 

 
and you will get an extra LewisL and FreddieM for every cycle through the values. 
 
For some added variability, consider that you can nest function calls, making one or more of your 
DECODE values the result of an embedded call to DECODE or some other function. 
 
To get some variation in date values, you can add or subtract from SYSDATE, remembering that 
the default unit when doing arithmetic on SYSDATE is “day.” 
 

FOO_DATE EXPRESSION "SYSDATE + MOD(:FOO_ID,18) – 9" 
 
This will generate a range of date values from nine days before to nine days after today. You can 
add or subtract fractions of days by dividing the operand by a number at least as large as your 
MOD value. By tweaking this expression, you can generate a range of date values that are only 
minutes or even seconds apart from each other, and, of course, you can create a range that is 
measured in years, if you so desire. 
 
Putting It All Together 
 
Applying these techniques to our control file, it now becomes:  
 

LOAD 
TRUNCATE 
INTO TABLE FOO_TABLE 
( 
  FOO_ID  SEQUENCE(1000), 
  FOO_DATE  EXPRESSION "SYSDATE + MOD(:FOO_ID,18) – 9", 
  FOO_USER  EXPRESSION “DECODE(MOD(:FOO_ID,7), 0, 'BillG', 1,  
   'LewisL', 2, 'GeorgeB', 3, 'FreddieM', 4, 'OprahW', 5,  
    'LewisL', 6, 'FreddieM')”, 
  FOO_MESSAGE CONSTANT 'fake message' 
) 

 
If you have loaded a few thousand rows using this control file, and later decide you want to 
generate a few thousand more using a different set of values, change the expressions. Set a new 
starting value for the sequence, and then change the TRUNCATE directive to APPEND. This will 
leave the existing rows intact and insert new ones. 



  
 

 
Copyright © 2006 by Klee Associates, Inc.   Page 4 

www.ORAtips.com 

Database – SQL*Loader
Generating High-Quality Test Data 

with Oracle SQL*Loader 

 
Another feature of SQL*Loader that is useful is its ability to load data into more than one table at 
a time. You can have as many “INTO TABLE xxx (…)” sections in your control file as you have 
tables to populate. Simply list them one after the other in the file, as follows: 
 

LOAD 
TRUNCATE 
INTO TABLE FOO_TABLE_1 
( 
  <column specifications for first table> 
) 
INTO TABLE FOO_TABLE_2 
( 
  <column specifications for second table> 
) 
INTO TABLE FOO_TABLE_3 
( 
  <column specifications for third table> 
) 

 
Each table loaded in this fashion can have its own independent sequence values, and, therefore, 
its own set of values generated by functions like the ones I described previously. 
 
To learn more about using SQL*Loader to generate test data, review: 
 

http://download-
west.oracle.com/docs/cd/B10501_01/server.920/a96652/ch06.htm#1008235
 

 
Conclusion 
 
There are any number of third-party tools you can use to accomplish the often-tedious task of 
populating Oracle tables with test data. They all come with their own price tag and learning curve. 
You have an excellent tool for this task already at your disposal in SQL*Loader, which comes 
standard with your Oracle database investment.  With a little imagination and this article as a 
guide, you should be able to generate tons of useful test data with ease. 
 
 
About the Author 
 
Blake Couch – Blake is a 25-year veteran of the computing wars who can be taught a new trick 
or two, but hasn't forgotten paper tape, punch cards, or Teletype machines. Blake resides in 
Colorado with his wife, daughter, and dog, Stanley Pup, who came along right after the 
Avalanche last captured Lord Stanley's trophy.  Blake may be contacted at 
Blake.Couch@ERPtips.com. 
 

mailto:Blake.Couch@ERPtips.com


  
 

 
Copyright © 2006 by Klee Associates, Inc.   Page 5 

www.ORAtips.com 

Database – SQL*Loader
Generating High-Quality Test Data 

with Oracle SQL*Loader 

 
The information on our website and in our publications is the copyrighted work of Klee Associates, Inc. and is owned by 
Klee Associates, Inc. 
 
NO WARRANTY: This documentation is delivered as is, and Klee Associates, Inc. makes no warranty as to its accuracy 
or use. Any use of this documentation is at the risk of the user. Although we make every good faith effort to ensure 
accuracy, this document may include technical or other inaccuracies or typographical errors. Klee Associates, Inc. 
reserves the right to make changes without prior notice. 
 
NO AFFILIATION: Klee Associates, Inc. and this publication are not affiliated with or endorsed by Oracle Corporation. 
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Klee Associates, Inc. is a member of the 
Oracle Partner Network.
 
All other company and product names used herein may be trademarks or registered trademarks of their respective 
owners.   
 

Owner
Text Box

This article was originally published by Klee Associates, Inc., publishers of
JDEtips and SAPtips.

For training, consulting, and articles on JD Edwards or SAP, please visit our
websites: www.JDEtips.com & www.SAPtips.com.


http://www.JDEtips.com
http://www.SAPtips.com

	Introduction
	Be a Volume Dealer
	Variety Is the Spice of Life
	Putting It All Together
	Conclusion
	About the Author



