
ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4On Database

Editor’s Note: Grid computing,
what’s all the buzz? We asked Todd
Morley to give us his view on demys-
tifying the process for load balanc-
ing across subgrids. The result is an
informative piece that discusses the
challenges of a scheduling system that
manages a grid over multiple servers,
each running multiple Xen virtual
machines and the scripts to make it
a seamless exercise. Todd’s naïve PL/
SQL and test seed data scripts are
enough for two database articles, so
we posted them to our Website www.
ORAtips.com Document Library
under Database – Grid Computing.

Introduction
Virtual-machine technologies cre-

ate new opportunities and chal-
lenges for managing utility-comput-
ing grids. When the grid consists of
several racks of servers, each serviced
by a dedicated network switch, one
challenge is balancing loads across
the racks (subgrids). This article
describes an Oracle®-based approach
to balancing virtual-machine loads
across subgrids. The author devel-
oped the approach as part of a sched-
uling system that manages a grid of
over 400 physical servers, each run-
ning multiple Xen virtual machines.
The virtual machines can start and
end at arbitrary points in time, and
can support loads of arbitrary mag-
nitudes.

Assumptions
This article makes the following

assumptions:

1. A subgrid is a rack of several
physical servers, serviced by a
dedicated network switch.

2. A grid consists of several sub-
grids.

3. Each physical server can host
several virtual machines.

4. Each subgrid is assigned a sched-
ulable percentage of its servers’
total physical RAM.

5. A load on the grid, or instance,
has the following characteristics:
 a. start datetime

 b. end datetime
 c. nominal RAM requirement
 d. instance type.

6. Each subgrid is allocated a fixed
range of IP addresses and host-
names for each instance type.

The scheduling

algorithm

implements a mini-

max heuristic to

balance the

subgrids’ loads.

7. Instances are allocated to sup-
port events (such as training
classes, product demonstrations,
and system tests). For our pur-
poses, an event is a collection of
instances. Each instance’s start
time is the event’s start time, less
an instance-specific lead time
(“pre-gap”). Each instance’s
end time is the event’s end time,
plus an instance-specific lag time
(“post-gap”). (The lead and lag
times are presumably sufficient
to set up and clear software and
data in whatever disk space
is allocated to the instance—a
technical issue that this article
glosses over.)

8. The scheduling algorithm
is responsible for assigning
instances to subgrids.

9. Requests to allocate instances
appear in a single queue, and
are processed in serial.

This article’s discussion suggests
how the architecture can be extended
to

• balance loads within subgrids

• use lists (rather than ranges) of
instance numbers for instances
types

• handle concurrent requests.

For purposes of illustration, this
article assumes that there are three
instance types, labeled “ab”, “cd”,
and “ef”. (This article makes no
assumptions about instance-type
semantics. In the author’s context,
there are different instance types for
production, test, and development
instances, among others.)

Subgrid Load Balancing for Utility Computing
By Todd Morley

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

Schema
The load-balancing architecture

requires two database tables. One
table represents subgrids:

create table subgrid(
id integer,
name varchar2(100),
rack varchar2(100),
physical_ram_capacity_gb number,
max_percent_ram_to_schedule number,
ab_lower_limit integer,
ab_upper_limit integer,
cd_lower_limit integer,
cd_upper_limit integer,
ef_lower_limit integer,
ef_upper_limit integer,
online_yn varchar2(1)
);

Most of the columns in the sub-
grid table should be self-explanatory.
The lower- and upper-limit columns
define mutually exclusive ranges of
instance numbers allocated to each
instance type, for a given subgrid. An
instance’s number and type combine
to produce a hostname. For example,
at Foo Incorporated, the instance
number 101 and instance type ab
might combine to produce the host-
name “ab101.foo.com”, which would
be assigned to the instance’s virtual
machine. Presumably the network is
configured so the network switch on
the subgrid having ab_lower_limit
<= 101 and 101 <= ab_upper_limit
services that hostname.

Here is the definition of the table
representing scheduled instances:

create table subgrid_load(
event_id integer,
event_utc_start_date date,
event_utc_end_date date,
load_utc_start_date date,
load_utc_end_date date,
ram_requirement_in_gb number,
instance_type varchar2(2),
subgrid_id integer,
instance_number integer,
instance_name varchar2(50)
);

Note that the subgrid_load table
only captures an instance’s lead and
lag times implicitly, by subtract-
ing (resp. adding) each to the event
start and end dates, and storing the
results as load start and end dates.
How these tables are indexed will
vary with the implementation of the
algorithm described in the sequel, so
we gloss over the issue here.

Algorithm
The scheduling algorithm imple-

ments a minimax heuristic to bal-
ance the subgrids’ loads. When pre-
sented with an instance to assign
to a subgrid, the algorithm chooses
a subgrid that minimizes the maxi-
mum difference between the least-
and most-loaded subgrids, over the
input instance’s lifespan. This greedy
approach is relatively simple and
efficient.

Here is pseudocode for the mini-
max algorithm:

01 for each subgrid {
02 if {
03 the subgrid is offline or
04 the subgrid has no schedulable RAM or
05 the subgrid has no schedulable instances of

the required type
06 }
07 then {
08 continue
09 }
10 maxLoad = 0
11 for each load start time within the input load’s

lifespan {
12 if {
13 the total load at the load start time >

maxLoad
14 }
15 then {
16 maxLoad = the load start time
17 }
18 }
19 normalizedMaxLoad =
20 maxLoad / the current subgrid’s max sched-

ulable RAM
21 if {
22 (no optimal subgrid has been found or

23 normalizedMaxLoad < optimalNormalized-
MaxLoad) and

24 the current subgrid has an unscheduled
instance and

25 the current subgrid has sufficient unscheduled
RAM

26 }
27 then {
28 optimalNormalizedMaxLoad = normalized-

MaxLoad
29 optimalSubgrid = current subgrid
30 }
31 }
32 choose an instance number that is unscheduled

over the input lifespan on optimalSubgrid, for
the input instance type

33 return the chosen instance number (or the
related instance name)

The algorithm has two loops: an
outer loop starting at line 01, and
an inner loop starting at line 11.
The outer loop iterates through the
subgrids, looking for an optimal sub-
grid—that is, a subgrid that satisfies
the minimax heuristic. The if state-
ment in lines 02-09 filters out sub-
grids that are offline or lack resources
(allocated or not). Lines 10-20 iden-
tify a subgrid’s maximal load, over
the lifespan of the instance to be
assigned. Lines 21-30 set the optimal
subgrid to the current subgrid, if the
current subgrid is optimal and has
sufficient available resources.

The algorithm has four main sub-
tleties:

1. Note the distinction between
schedulable resources in lines
4-5 and unscheduled resources
in lines 24-25. A subgrid has
schedulable resources (instance
numbers and RAM) in the
abstract, independent of any
given instance. A subgrid has
unscheduled resources if the
resources are available during a
specific instance’s lifespan.

2. The algorithm determines the
current subgrid’s maximal load,
within the input instance’s lifes-

4On Database

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

pan, by checking the load at
only a subset of the times at
which the load can change. To
understand why it suffices to
check just the subset, consider
that a subgrid’s load over an
input instance’s lifespan is a step
function. Its set of distinct values
can be exhausted by examining
the subgrid’s load at four kinds
of points in time:

 • the input instance’s start date

 • the input instance’s end date

 • the start dates of previously
scheduled instances (falling in
the input lifespan)

 • the end dates of previously
scheduled instances (falling in
the input lifespan).

 An elementary case analysis
demonstrates that the load at
the input end date and previ-
ously scheduled end dates are
weakly dominated by the load
at the input start date and pre-
viously scheduled start dates.
That is, some load in the latter
set will at least equal all loads in
the former set. So it suffices to
examine the load for the latter
set. This is the set identified at
line 11 of the pseudocode.

3. The pseudocode does not speci-
fy (at line 32) how to choose an
instance number that is unsched-
uled over the input load’s lifes-
pan, for the optimal subgrid
and the input instance type.
To make this choice, one must
identify all scheduled instances
of the input type that overlap
the input instance’s lifespan,
on the optimal subgrid. These
instance numbers are unavail-
able for assignment to the input
instance. One can then choose
(say) the lowest unscheduled
instance number in the optimal

subgrid’s instance-number range
for the input instance type.

 To identify previously scheduled
instances of the input type that
overlap the input lifespan on
the optimal subgrid, another
case analysis suffices. Let SI and
EI represent the start and end
datetimes of the input instance,
and let SO and EO represent the
start and end datetimes of some
previously scheduled instance.
There are six possible orderings:

SI EI SO EO
SI SO EI EO
SI SO EO EI
SO EO SI EI
SO SI EO EI
SO SI EI EO

 Four of these six cases represent
overlapping lifespans. In two of
these cases, the other instance’s
start date (in bold) falls in the
input instance’s lifespan (in ital-
ics); in the other two, the reverse
is true. So, to query for instance
numbers (and names) that are
in use during an input instance,
the following where-clause con-
ditions suffice:

load_utc_start_date between
 (eventUtcStartDateIn - preGapInDaysIn)
and
 (eventUtcEndDateIn + postGapInDaysIn)
or
 (eventUtcStartDateIn - preGapInDaysIn)
between
 load_utc_start_date and
 load_utc_end_date)

 This article’s PL/SQL imple-
mentation of the algorithm uses
these conditions.

4. Finally, it is important to recog-
nize that the pseudocode is nei-
ther efficient nor inefficient. It
merely communicates the logical
structure of the minimax heu-
ristic. The heuristic has many

expressions, each more or less
efficient, in many programming
languages. One must focus on
efficiency in a particular imple-
mentation of the heuristic.

Tests
The following tables store a set of

test cases for the algorithm:

create table subgrid_load_test(
id integer,
description varchar(100)
);

create table subgrid_load_test_subgrid_up(
test_id integer,
subgrid_id integer
);

create table subgrid_load_test_instance(
test_id integer,
event_id integer,
event_utc_start_date date,
event_utc_end_date date,
ram_requirement_in_gb number,
instance_type varchar2(2)
);

In the white paper version of
ths article found at http://www.
oratips.com/AccessDocumentCategories.
asp?menuID=�4, Appendix 2 contains
code that seeds 15 tests into these
tables. The tests probe a variety of
possible logical errors in an imple-
mentation of the algorithm. Table 1
gives brief descriptions of the tests.
(Each of the tests starts with no pre-
viously scheduled instances.)

4On Database

The subgrid_load

table only captures

an instance’s lead

and lag times

implicitly…

ORAtips

Pa
ge

 4

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

Discussion
Four aspects of the approach

described in Table 1 deserve further
discussion.

Performance and scalability. With
elementary indexing on the subgrid_
load table, in a modest development
environment, and no other optimiza-
tions, the algorithm executed in at
most 0.06 seconds of real time (mea-
sured using dbms_utility.get_time,
so these measurements are upper
bounds on actual execution times)
in all of the test cases. The execution
times were 0.00 or 0.01 seconds in
most cases.

Clearly, however, the test cases
are too small to probe performance
under realistic load conditions. The
author’s team schedules instances
up to three months in advance. The
typical instance lasts one week, and
may require 10-100% of a physi-
cal server’s schedulable RAM, with
a typical instance requiring perhaps
25%. For a grid of (say) 500 physi-
cal servers, this works out to a total
load of up to 2,000 instances oper-
ating at any given time, and up to
24,000 instances scheduled at any
given time.

The author’s team is currently
migrating its grid to a subgrid archi-
tecture, bringing one subgrid online
every week or so.

Balancing loads within subgrids.
It is desirable to assign instances to
subgrids several weeks in advance,
so that their instance numbers (and
hence the hostnames of their virtual
machines) are known. It is neither
necessary nor desirable to assign
instances to fixed physical servers
with the same lead time. One rea-
son is, a physical server may have
an unscheduled downtime as an
instance’s start time approaches.
Delaying assignment of an instance to
a physical server until the instance’s

start time arrives minimizes the
impact of unscheduled downtimes.

Having said that, it is possible to
adapt this article’s approach to bal-
ance loads within a subgrid. In the
adaptation, the physical server takes
the role of a subgrid. So, a physi-
cal-server table replaces the subgrid
table, and the physical-server ID
replaces the subgrid ID. A virtual
machine on the physical server is then
started and bound to the instance.
This article omits details.

Handling arbitrary instance types.
The architecture described in this
article can be made more robust by
adding to it the following table:

create table subgrid_instances(
subgrid_id integer,
instance_type varchar2(2),
instance_number integer
);

Each row in subgrid_instance
would represent an instance name
(the combination of type and num-
ber) assigned to a subgrid. (It is pos-
sible further to normalize the archi-
tecture by introducing a separate
instance_type table, but one ques-
tions whether a table with so few
rows would justify the extra join it
would require at runtime.) The code
in Appendix 1 as part of the white
paper version of this article located
at http://www.oratips.com/AccessDocument-
Categories.asp?menuID=�4 would be
altered to query subgrid_instances in
the code that realizes line 32 of the
pseudocode (the choice of minimal
available instance number), in par-
ticular. The lower- and upper-limit
columns would be dropped from the
subgrid table, and there would be no
requirement that a subgrid support
a range of instance numbers. A sub-
grid could support an arbitrary set of
instance numbers, and a grid could
support an arbitrary, extensible set of
instance types, at the cost of an addi-
tional join in some queries.

Handing concurrent requests. This
article’s ninth assumption essentially
limits instance-scheduling requests
to a single source. In practice, such
requests may come from several
sources—a Web interface for ad-hoc
requests, as well as an automated
scheduling system, for example. The
author expects to investigate using
Oracle Advanced Queuing and sev-
eral other approaches to the concur-
rency problem in the near future,
and hopes to report his results along
with performance-related results in a
subsequent article.

Conclusion
This paper has described an Ora-

cle-based minimax heuristic for bal-
ancing loads across subgrids in a grid
running Xen virtual machines. The
described naive code runs quite effi-
ciently for all of the tests, but scal-
ability may require modifications to
the naive implementation. Multiple
scheduling-request sources may also
require modifications. Another inter-
esting question is how well the mini-
max heuristic utilizes grid resources,
compared to a batch-scheduling
algorithm that attacks the load-bal-
ancing problem from a more global
perspective.

Todd Morley, Oracle Corporation
- Todd has been with Oracle since
1995. He is currently an architect
in Oracle’s Global IT organization.
Previously he was the sole archi-
tect of Oracle Approvals Manage-
ment (AME) for the first five years
of that product’s existence. His
AME architecture earned two pat-
ents (one granted, the second pend-
ing). Todd did his doctoral work
(ABD) in industrial engineering at
Stanford. Todd may be contacted at
Todd.Morley@ERPtips.com.

4On Database

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

The information on our website and in our publications is the copyrighted work of Klee Associates, Inc. and is owned by Klee Associates, Inc. NO WARRANTY: This
documentation is delivered as is, and Klee Associates, Inc. makes no warranty as to its accuracy or use. Any use of this documentation is at the risk of the user. Although
we make every good faith effort to ensure accuracy, this document may include technical or other inaccuracies or typographical errors. Klee Associates, Inc. reserves
the right to make changes without prior notice. NO AFFILIATION: Klee Associates, Inc. and this publication are not affiliated with or endorsed by Oracle Corporation.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Klee Associates, Inc. is a member of the Oracle Partner Network

Journal

This article was originally published by Klee Associates, Inc., publishers of JDEtips and SAPtips.
For training, consulting, and articles on JD Edwards or SAP, please visit our websites:
www.JDEtips.com and www.SAPtips.com.

