
ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

Editor’s Note: Oracle by design
comes with the utility tools to help
manage your database operations.
SQL*Loader is one such utility and in
terms of data loading/unloading pro-
grams, it is one of the best. Regular
ORAtips contributor Natalka Roshak
presents several case studies to high-
light the power of using SQL*Loader.
As Natalka states, “once you’ve used
SQL*Loader a few times, you’ll won-
der how you ever lived without it.”

Introduction
One common Oracle DBA duty is

getting heterogeneous data from any
number of sources in and out of the
database. There are a lot of expensive
data loading and unloading programs
available, but every Oracle install
includes a utility that will load any
data you can extract to the file sys-
tem, at no extra cost. Yet
many DBAs and develop-
ers are unpracticed with,
or even unaware of, this
powerful tool.

This tool is Oracle’s
SQL*Loader. In this arti-
cle, we’ll look at using
SQL*Loader to load data
from a variety of hetero-
geneous sources. First,
though, we’ll cover the
basics.

SQL*Loader Basics
SQL*Loader is a com-

mand-line utility, run
by invoking the sqlldr
executable in the $ORA-
CLE_HOME/bin direc-
tory. Because it’s a com-
mand-line utility, it’s
easily scriptable; however,
because it’s also very flex-

ible, the plethora of available options
can make sqlldr syntax daunting at
first approach.

In a nutshell, each SQL*Loader
session requires three types of input:

• data;

• a control file, which tells
SQL*Loader how the data is for-
matted and where to put it;

• and a set of parameters, such as
the database connect string, the
location of the control file and
data, etc.

A single SQL*Loader session can
write data to up to four separate
places:

• the database;

• a log of the session is written to
the log file;

• any rows that don’t fit the data
format specified in the control
file get written to the bad file;

• and any rows that don’t fit the
optional row-loading criteria you
may specify in the control file get
written to the discard file.

The SQL*Loader inputs and out-
puts are summarized in Figure 1.

The simplest way to see how
SQL*Loader uses these inputs is to
work through a case study. Our first
case study will cover the SQL*Loader
basics.

 Simplify Your Life with Oracle® SQL*Loader
By Natalka Roshak

4On Database

Figure 1: SQL*Loader Inputs and Outputs

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

Case Study 1: The Basics
Suppose we have a file named

DEPARTMENTS.TXT, which con-
tains the following data about depart-
ments:

SAL SALES DEPARTMENT
HRD HUMAN RESOURCES
ACT ACCOUNTING
OPS BUILDING OPERATIONS
FCY FACTORY FLOOR
MGT MANAGEMENT

and that we need to load this data
into an Oracle database.

The first step is to make sure that
the database contains a target table;
SQL*Loader never creates tables,
but only loads into existing ones. For
this example, assume the following
target table:

CREATE TABLE REF_DEPT_ID
(DEPT_ID CHAR(3),
 DEPT_NAME VARCHAR2(100));

The next step is to create the control
file. This file must tell SQL*Loader:

• where to find the data (DEPART-
MENTS.TXT);

• where to put the data (REF_
DEPT_ID);

• whether to append or replace the
new data to any data already in
REF_DEPT_ID;

• how to parse the data into fields;
and

• which fields in the datafile go to
which fields in REF_DEPT_ID.

With a fixed-length data file like
DEPARTMENTS.TXT, where the
records can be parsed simply by
counting characters, the last two
requirements are simple: the con-
trol file only needs to specify which
column positions in the datafile hold

the data destined for each field in the
target table. In our example, charac-
ters 1-3 on each line hold the depart-
ment ID, characters 4-5 are blank,
and characters 6 and higher hold the
department name.

In the following control file, the
comments in red show how each
line satisfies one of the requirements
above. (In SQL*Loader control files,
as in SQL and PL/SQL, all text after
a double hyphen is treated as a com-
ment.)

LOAD DATA
 INFILE ‘DEPARTMENTS.TXT’ --Where to find the
data;
 APPEND --Whether to append to or replace the
data in the target tbl;
 INTO TABLE REF_DEPT_ID --Where to put the
data; and
--Which col. pos. in the datafile hold the data
-- for each field in the target table:
(DEPT_ID POSITION (01:03) char(3),
 DEPT_NAME POSITION (06:105) char(100))

Save this control file as depart-
ments.ctl . Now that we’ve got
the control file set up, invoking
SQL*Loader is simple. The only
parameters we need to supply are the
userid and the location of the control
file. Here’s the command:

 [oracle@mysrv tmp]$ sqlldr userid=scott/tiger
control=departments.ctl

 SQL*Loader: Release 10.2.0.2.0 - Production on
Sun Aug 13 20:15:21 2006

 Copyright (c) 1982, 2005, Oracle. All rights
reserved.

Commit point reached - logical record count 6

That’s all there is to it! The data
in DEPARTMENTS.TXT has been
loaded. If you look in the working
directory, you’ll see that SQL*Loader
automatically created a log file with
the default name of departments.log
(based on the name of the control
file):

[oracle@ mysrv tmp]$ ls
 DEPARTMENTS.TXT departments.ctl departments.
log

The log file contains a good deal
of useful information about the
SQL*Loader session:

4On Database

SQL*Loader never

creates tables, but

only loads into

existing ones.

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

We can double-check that the rows
were loaded into the target table in
the database by querying it:

SQL> select * from ref_dept_id ;

DEP DEPT_NAME
--- ------------------------------
SAL SALES DEPARTMENT
HRD HUMAN RESOURCES
ACT ACCOUNTING
OPS BUILDING OPERATIONS
FCY FACTORY FLOOR
MGT MANAGEMENT

6 rows selected.

This load ran without errors, so
SQL*Loader did not write anything
to the bad or discard files. If there
had been any bad rows, i.e., rows
that SQL*Loader was unable to
parse according to our instructions,
SQL*Loader would have created a
default-named file DEPARTMENTS.
bad; if there had been any discards,
and if we had specified a discard file
name to collect them, SQL*Loader
would have copied the discarded
rows to the discard file. (We’ll see
how discards are generated later in
this article.)

We can specify the names of the
log, bad, and discard files on the
command line instead of using the
defaults. For example:

 [oracle@mysrv tmp]$ sqlldr userid=scott/tiger
control=departments.ctl bad=depts.bad
log=DEPTLOG.TXT discard=DUMP.DSC

We can also wrap these command-
line parameters up in a parfile,
instead of typing them all on the
command line.

[oracle@mysrv tmp]$ cat departments.parfile
userid=scott/tiger
control=departments.ctl
log=dept_load.log
bad=dept_bad.txt
 oracle@mysrv tmp]$ sqlldr parfile=departments.
parfile

4On Database

[oracle@ mysrv tmp]$ cat departments.log

 SQL*Loader: Release 10.2.0.2.0 - Production on Sun Aug 13 20:15:21 2006

 Copyright (c) 1982, 2005, Oracle. All rights reserved.

Control File: departments.ctl
Data File: DEPARTMENTS.TXT
 Bad File: DEPARTMENTS.bad
 Discard File: none specified

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
 Bind array: 64 rows, maximum of 256000 bytes
Continuation: none specified
Path used: Conventional

 Table REF_DEPT_ID, loaded from every logical record.
Insert option in effect for this table: APPEND

 Column Name Position Len Term Encl Datatype
---------------------- ---------- ----- ---- ---- ---------------------
DEPT_ID 1:3 3 CHARACTER
DEPT_NAME 6:105 100 CHARACTER

Table REF_DEPT_ID:
 6 Rows successfully loaded.
 0 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

Space allocated for bind array: 6912 bytes(64 rows)
Read buffer bytes: 1048576

Total logical records skipped: 0
Total logical records read: 6
Total logical records rejected: 0
Total logical records discarded: 0

Run began on Sun Aug 13 20:15:21 2006
Run ended on Sun Aug 13 20:15:21 2006

Elapsed time was: 00:00:00.07
CPU time was: 00:00:00.02

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

In fact, SQL*Loader is quite flex-
ible about how it gets its data, con-
trol file, and parameter inputs. The
parameters can be on the command
line, in a parfile, or even wrapped
into the control file; the data can be
in a datafile, as we’ve seen, but it can
also be contained right in the control
file, as I’ll demonstrate below. The
one constant is that there must be a
control file.

The syntax for putting the data
right in the control file is simple.
Specify the INFILE as *, and put the
data at the end of the control file,
preceded by the keyword “beginda-
ta”. For example:

[oracle@mysrv tmp]$ cat departments.ctl
LOAD DATA
INFILE *
REPLACE
INTO TABLE REF_DEPT_ID
(DEPT_ID POSITION (01:03) char(3),
 DEPT_NAME POSITION (06:105) char(100))
BEGINDATA
SAL SALES DEPARTMENT
HRD HUMAN RESOURCES
ACT ACCOUNTING
OPS BUILDING OPERATIONS
FCY FACTORY FLOOR
MGT MANAGEMENT

Note that I used REPLACE instead
of APPEND in this control file; this
means that the data we’d already
loaded into REF_DEPT_ID will be
deleted before the new data is insert-
ed. Another option available here is
TRUNCATE, which truncates the
table instead of simply deleting all its
rows.

Now that we’ve covered some

SQL*Loader basics, we’re ready to
move on to real-world uses.

Loading an Excel File into
the Database

One request that comes up time
and time again is to load data from an
Excel spreadsheet into the database.
It’s such a common need that there

are even third-party tools dedicated
to handling this task. Such tools are
convenient, but not necessary. In this
example, we’ll step through loading
an Excel worksheet into the data-
base.

Case Study 2: Loading an Excel
Worksheet

For this example, let’s load an Excel
worksheet that just contains the data
we used in the previous case study.

SQL*Loader needs this data in a
text file, so save this worksheet as a
CSV (comma-separated values) file.
From the File menu, choose Save As.

In the Save As dialog, choose “CSV
(Comma delimited)” from the For-
mat drop-down:

This will generate a text file con-
taining the spreadsheet data:

Department ID,Department Name
SAL,SALES DEPARTMENT
HRD,HUMAN RESOURCES
ACT,ACCOUNTING
OPS,BUILDING OPERATIONS
FCY,FACTORY FLOOR
MGT,MANAGEMENT

The next step is to create a con-
trol file to load this data. The main

4On Database

Figure 2: Excel Worksheet Used in This Case Study

Figure 3: Save As CSV

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

difference from the previous
case study is that instead of
using character position to
parse the data file, we’ll tell
SQL*Loader that the data
fields are separated by the
delimiter character“,”. To
specify the correspondence
between data-file fields and
target-table fields, instead
of saying which field in
REF_DEPT_ID corresponds
to which stretch of charac-
ters in the data file, we sim-
ply list the target columns in
REF_DEPT_ID in the order
in which their corresponding
fields appear in the data file.
In this case, the fields in the
data file are in the same order
as the fields in the table.

LOAD DATA
INFILE deptdata.csv
TRUNCATE
INTO TABLE REF_DEPT_ID
FIELDS TERMINATED BY ‘,’
(dept_id,
 dept_name

)

Also, the first row of the CSV file
holds the column titles from the
Excel spreadsheet; we don’t want
to load those. Fortunately, there’s a
SQL*Loader parameter that lets us
skip the first n records at the head of
a datafile, SKIP=n.

 [oracle@mysrv tmp]$ sqlldr scott/tiger
control=departments.ctl skip=1

 SQL*Loader: Release 10.2.0.2.0 - Production on
Sun Aug 13 23:46:15 2006

 Copyright (c) 1982, 2005, Oracle. All rights
reserved.

 Commit point reached - logical record count 6

Case Study 3: Spreadsheets with
Extraneous Data

Often, spreadsheets contain col-
umns of extraneous data that we
don’t want to load. For example:

You can delete this data by manip-
ulating the spreadsheet. Or, you can
simply tell SQL*Loader to ignore it
by labeling it as FILLER in the con-
trol file:

LOAD DATA
INFILE deptdata.csv
TRUNCATE
INTO TABLE REF_DEPT_ID
FIELDS TERMINATED BY ‘,’
(dept_id,
 col2 FILLER,
 dept_name
)

After running this load, the log file
shows that SQL*Loader understood
our instructions to ignore the data in
the second column:

It’s also common for spreadsheet
data to include commas in the col-
umn data. For example:

Fortunately, Excel realizes that
this could lead to rather confus-
ing CSV files; when you save such a
file as CSV, any column values with
commas in them are automatically
enclosed in double quotes:

Department ID,Department Name
SAL,”Sales, Department of”
HRD,”Human Res., Dept. of”
ACT,”Accounting, Department of”
OPS,Operations Department
FCY,Factory Floor Umbrella Dept.
MGT,Amalgamated Managerial Dept.

In the SQL*Loader control file, we
simply need to tell SQL*Loader that
the data fields may be enclosed by
quotes:

LOAD DATA
INFILE deptdata.csv
TRUNCATE
INTO TABLE REF_DEPT_ID
FIELDS TERMINATED BY ‘,’
OPTIONALLY ENCLOSED BY ‘”’
(dept_id,
 dept_name
)

4On Database

Figure 4: Sample Worksheet with Extraneous Data

Figure 5: Sample Worksheet with Commas in Column Values

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

After loading the data with the
control file above, checking the tar-
get table shows that SQL*Loader
correctly parsed the data:

SQL> select * from ref_dept_id ;

DEP DEPT_NAME
--- --
SAL Sales, Department of
HRD Human Res., Dept. of
ACT Accounting, Department of
OPS Operations Department
FCY Factory Floor Umbrella Dept.
MGT Amalgamated Managerial Dept.

Unfortunately, not all data comes
in convenient, less-than-4000-char-
acter fields. In our next examples,
we’ll look at loading longer fields
– LOB (Large OBject) -sized fields
– into the database.

Loading LOB Data
LOB, or Large OBject data, can be

stored in several formats. Character
data that’s too long to be stored in
VARCHAR2 columns can be stored
in CLOBs; binary data like images
and mp3s can be stored in BLOBs or
BFILEs. We’ll start with CLOB data.

Case Study 5: Loading CLOB
Data

The maximum amount of data
that a VARCHAR2 column can hold

is 4000 bytes. But real-world data
fields are often longer. A spreadsheet,
for example, might have more than
4000 bytes of character data stored
in some cells:

We’ll begin by adding a column
to the target table to hold the CLOB
data:

SQL> alter table ref_dept_id add (dept_long_
info clob);

Table altered.

To load this particular dataset,
the first change we’ll need to make
to the control file has nothing to do
with LOBs. However, it’s necessary
for the data in the worksheet dis-
played in Figure 6. Note that some
of the rows do not have a value in the
“Additional Information” column. In
the CSV file, these rows will seem to
have trailing commas:

SAL,SALES DEPARTMENT,
HRD,HUMAN RESOURCES,

The ‘,’ at the end of the record con-
fuses SQL*Loader; it expects a third
column. If we tried to load such rows
with one of our previous control files,
these rows would go to the badfile
and the log file would say:

Column not found before end of logical record (use
TRAILING NULLCOLS)

So, we’ll need to specify TRAIL-
ING NULLCOLS in the control file
so that SQL*Loader knows not to
expect every row to have data in the
last column.

The second change is simply to let
SQL*Loader know that the maxi-
mum data length for the last field is
longer than its default. In our sam-
ple spreadsheet, the longest column
value is about 6000 characters; to be
on the safe side, we’ll specify 8000 in
the control file.

LOAD DATA
INFILE deptdata.csv
TRUNCATE
INTO TABLE REF_DEPT_ID
FIELDS TERMINATED BY ‘,’
OPTIONALLY ENCLOSED BY ‘”’
TRAILING NULLCOLS
(dept_id,
 dept_name,
 dept_long_info char(8000)
)

4On Database

Figure 6: Sample Worksheet with Some Cells Holding Data Longer Than 4000 Bytes

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

Querying REF_DEPT_ID shows
that the longer-than-4000-byte
CLOB data loaded successfully:

 SQL> select dept_id, dept_name, length(dept_
long_info) from ref_dept_id

DEP DEPT_NAME LENGTH(DEPT_LONG_INFO)
--- ------------------------------ --------------------
SAL SALES DEPARTMENT 0
HRD HUMAN RESOURCES 0
ACT ACCOUNTING 719
OPS BUILDING OPERATIONS 0
FCY FACTORY FLOOR 281
MGT MANAGEMENT 6086

Of course, you can use SQL*Loader
to load more than just CLOB data
into the database, and the LOBs do
not have to be in-line in the data
records. In our next case study, we’ll
look at loading BLOBs that are found
in separate files.

Case Study 6: LOB Data in Files
For this case study, suppose that

we want to load in department logos
for some departments. The depart-
ment logos came to us separately
from each department, as one JPG
image file from each department:

[oracle@mysrv tmp]$ ls -lh deptlogos/
total 32K
-rw-r--r-- 1 oracle oinstall 2.8K Aug 14 01:13
acctg.jpg
-rw-r--r-- 1 oracle oinstall 2.3K Aug 14 01:17
mgmt.jpg
-rw-r--r-- 1 oracle oinstall 12K Aug 14 01:14 sales.
jpg

Again, the first step is to make sure
we have a table in the target data-
base to hold the data:

SQL> create table dept_logos
 2 (dept_id varchar2(3), dept_logo_jpg blob);

Table created.

In order to establish the depart-
ment ID - imagefile correspondence,
we will create a simple record set that

lists the department IDs and the cor-
responding datafiles, like so:

ACT,deptlogos/acctg.jpg
SAL,deptlogos/sales.jpg
MGT,deptlogos/mgmt.jpg

and place this data inline in the
control file. Here is the control file we
will use to load the data:

LOAD DATA
INFILE *
TRUNCATE
INTO TABLE dept_logos
FIELDS TERMINATED BY ‘,’
(
 dept_id char(3),
 file_name filler,
 dept_logo_jpg LOBFILE (file_name) TERMI-
NATED BY EOF
)
BEGINDATA
ACT,deptlogos/acctg.jpg
SAL,deptlogos/sales.jpg
MGT,deptlogos/mgmt.jpg

After running the load, we can
confirm that the images were loaded
by querying the target table:

SQL> select dept_id, dbms_lob.getlength(dept_
logo_jpg)
 2 from dept_logos ;

DEP DBMS_LOB.GETLENGTH(DEPT_LOGO_JPG)
--- ---------------------------------
ACT 2810
SAL 11426
MGT 2253

What is going on in this control
file? The “file_name” field in the
data is treated like a variable in the
expression LOBFILE (file_name).
SQL*Loader determines the con-
tents of the DEPT_LOGO_JPG field
dynamically, based on the contents of
the FILE_NAME filler field. In the log
file for this load, the DEPT_LOGO_
JPG field shows as DERIVED:

The ability to derive field values
dynamically is one aspect of the
powerful set of complex operations
that SQL*Loader can perform on
the data on its way into the database.
We’ll look at some of these operations
in the next section.

Manipulating Data with
SQL*Loader

In addition to just plain loading,
SQL*Loader can manipulate the
data on its way in. SQL*Loader can
dynamically populate derived fields,
as we saw in the previous case study;
it can dynamically merge fields from
more than one data file into the tar-
get table, or load data into more than
one target table in the same session;

4On Database

Column Name Position Len Term Encl Datatype
---------------------- ---------- ----- ---- ---- ------------
DEPT_ID FIRST 3 , CHARACTER
FILE_NAME NEXT * , CHARACTER
 (FILLER FIELD)
DEPT_LOGO_JPG DERIVED * EOF CHARACTER
 Dynamic LOBFILE. Filename in field FILE_NAME

LOB, or Large OBject

data, can be stored

in several formats.

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

it can selectively load records from
the data using a WHERE clause; and
more.

Case Study 7: Manipulating Data
Field Contents and Selectively
Loading Records

SQL*Loader can manipulate or
derive the data field contents using
any SQL expression that would be
admissible in the VALUES clause of
an INSERT statement. In this case
study, we’ll load the data in this
spreadsheet:

There are a couple of “errors” in
this spreadsheet – the MANAGE-
MENT department has dept_id
“MGM” instead of “MGT”, and
the “SNX” department is a mis-
take. In this case study, we’ll use the
SQL*Loader control file to fix these
mistakes, round the payroll numbers,
and add a derived field.

We’ll export this data as a CSV file
called deptstaffing.csv, create a table
called DEPT_STAFFING_05 to hold
it, and load it into the database, as
before. Briefly, here is the CSV file:

[oracle@mysrv tmp]$ cat deptstaffing.csv
Department ID,Department Name,Staff Census
- May 2006,Total Dept Staff Payroll - May 2006
SAL,SALES DEPARTMENT,135,”6,075,017.65”
HRD,HUMAN RESOURCES,20,”1,304,675.11”
ACT,ACCOUNTING,15,”931,265.92”
OPS,BUILDING OPERATIONS,7,”489,786.12”
FCY,FACTORY FLOOR,700,”21,576,271.43”
MGM,MANAGEMENT,65,”5,782,398.29”
SNX,SNAKES,0,0.00

Note that Excel has exported the
“Total Dept Staff Payroll” values as
numbers with thousands separators
(commas), just as they displayed in
the spreadsheet. We could go back,
change the spreadsheet’s number
format to suppress thousands sepa-
rators, and re-export - or we could
simply clean this up in the control
file. We’ll take the latter approach.

Here is the target table:

create table dept_staffing_05
(dept_id char(3), dept_staff_count number(10,0),
 dept_total_payroll number, dept_average_sal-
ary number);

Note that we’ve added an extra
field to the target table, DEPT_
AVERAGE_SALARY, which does
not appear in the data file. We’ll use
SQL*Loader to derive this field from
the staff census and total payroll
fields.

So, our control file will need to
instruct SQL*Loader to manipulate
the data in the following ways:

• Use a SQL DECODE statement
on the Department ID to substi-
tute ‘MGT’ for ‘MGM’.

• The DEPT_TOTAL_PAYROLL
field shows up in the CSV as a
CHAR string with internal com-
mas, not as a string that Oracle
would recognize as a number;
SQL*Loader needs to strip the

internal commas from each value
and cast it as a number.

• Calculate DEPT_AVERAGE_
SALARY.

Here is a control file that does all
of the above:

LOAD DATA
INFILE ‘deptstaffing.csv’
TRUNCATE
INTO TABLE dept_staffing_05
FIELDS TERMINATED BY ‘,’
OPTIONALLY ENCLOSED BY ‘”’
TRAILING NULLCOLS
(dept_id “decode (:dept_id, ‘MGM’,’MGT’, :
dept_id)”,
 dept_name filler,
 dept_staff_count,
 dept_total_payroll “to_number(replace(:
dept_total_payroll, ‘,’ , ‘’))” ,
 dept_average_salary “decode(:dept_staff_count,
0, 0, round (to_number(replace(:dept_total_
payroll,’,’,’’)) / :dept_staff_count, 2))”
)

4On Database

Figure 7: Worksheet of Data for Case Study 7.

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

Examining the table post-load
shows that our fields were success-
fully transformed:

 SQL> select * from dept_staffing_05
 2 ;

DEP DEPT_STAFF_COUNT DEPT_TOTAL_PAY-
ROLL DEPT_AVERAGE_SALARY
--- ---------------- ------------------ ---------------

SAL 135 6075017.65 45000.13
HRD 20 1304675.11 65233.76
ACT 15 931265.92 62084.39
OPS 7 489786.12 69969.45
FCY 700 21576271.4 30823.24
MGT 65 5782398.29 88959.97
SNX 0 0 0

We’ve almost achieved our
goal of cleaning up the data with
SQL*Loader. However, we are still
loading that annoying SNX row.
It’s not at the beginning of the data
file, so we can’t simply use the SKIP
parameter to skip it. Fortunately,
SQL*Loader lets us selectively load
records. We simply have to add a line
to the control file, known as a WHEN
clause, to exclude rows where dept_id
= ‘SNX’:

LOAD DATA
INFILE ‘deptstaffing.csv’
TRUNCATE
INTO TABLE dept_staffing_05
WHEN DEPT_ID != ‘SNX’
FIELDS TERMINATED BY ‘,’
OPTIONALLY ENCLOSED BY ‘”’
TRAILING NULLCOLS
(dept_id “decode (:dept_id, ‘MGM’,’MGT’, :
dept_id)”,
 dept_name filler,
 dept_staff_count,
 dept_total_payroll “to_number(replace(:
dept_total_payroll, ‘,’,’’))” ,
 dept_average_salary “decode(:dept_staff_count,
0, 0, round (to_number(replace(:dept_total_
payroll, ‘,’,’’)) / :dept_staff_count, 2))”
)

Make sure to specify a discard file
for this load, to hold a copy of any
records that fail the WHEN clause:

[oracle@mysrv tmp]$ sqlldr scott/tiger
control=departments.ctl skip=1
discard=deptstaffing.dsc
SQL*Loader: Release 10.2.0.2.0 - Production on
Mon Aug 14 22:12:57 2006
Copyright (c) 1982, 2005, Oracle. All rights
reserved.
Commit point reached - logical record count 7

After running the load with this
control file, the log file shows that
SQL*Loader skipped the ‘SNX’ row:

[oracle@mysrv tmp]$ cat departments.log
SQL*Loader: Release 10.2.0.2.0 - Production on
Mon Aug 14 22:07:55 2006
Copyright (c) 1982, 2005, Oracle. All rights
reserved.
Control File: departments.ctl
Data File: deptstaffing.csv
 Bad File: deptstaffing.bad
 Discard File: deptstaffing.dsc
[...]
Table DEPT_STAFFING_05, loaded when
DEPT_ID != 0X534e58(character ‘SNX’)
[...]
Record 7: Discarded - failed all WHEN clauses.
Table DEPT_STAFFING_05:
 6 Rows successfully loaded.
 0 Rows not loaded due to data errors.
 1 Row not loaded because all WHEN clauses were
failed.
 0 Rows not loaded because all fields were null.

As the log file says, the ‘SNX’ row
was “discarded” - not loaded, and
copied to the discard file:

[oracle@mysrv mysrv]$ cat deptstaffing.dsc
SNX,SNAKES,0,0.00

Loading Data From Non-
Oracle Databases

So far, we’ve concentrated on
data already found in the file sys-
tem, such as spreadsheets, text files,
and JPGs. But it’s worth noting that
SQL*Loader can also be used to load
moderate amounts of data from non-
Oracle databases. This may seem

obvious, but it often doesn’t occur to
developers and DBAs.

People often ask whether Oracle
provides an “unloading” utility, one
that creates delimited or fixed-length
data files like the files SQL*Loader
loves to load. The answer is no, and
yes. Every SQL database can gener-
ate a plain text file of data simply by
spooling query results to a file. For
example, to extract the contents of
the table in the preceding case study,
DEPT_STAFFING_05, to a CSV file,
simply spool the results of this query
to file:

select ‘”’ || dept_id || ‘”,”’ || dept_staff_
count || ‘”,”’
 || dept_total_payroll || ‘”,”’ || dept_aver-
age_salary || ‘”’
from dept_staffing_05;

The generated file:

[oracle@mysrv tmp]$ cat dept_staffing.csv
“SAL”,”135”,”6075017.65”,”45000.13”

“HRD”,”20”,”1304675.11”,”65233.76”

“ACT”,”15”,”931265.92”,”62084.39”
“OPS”,”7”,”489786.12”,”69969.45”
“FCY”,”700”,”21576271.43”,”30823.24”

“MGT”,”65”,”5782398.29”,”88959.97”

Note: There’s a little more to it
than this, if you don’t want to have
to edit the spool file to remove a
few extraneous lines; you must first
suppress headers, echo, etc., using
SQL*Plus “SET” commands. How-
ever, SQL*Plus commands are
beyond the scope of this article. See
the SQL*Plus documentation for
more information.

So, it’s very simple to use
SQL*Loader to load data from a
non-Oracle database into an Oracle
database. First, issue SQL commands
against the non-Oracle database to
generate a plain text data file, like the

4On Database

ORAtips

Pa
ge

 �
0

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

one above. Then, use SQL*Loader to
move the data from the plain-text
data file into your Oracle database.

This is a cost-effective, easy, and
satisfactory way to move moderate
amounts of data from a non-Oracle
database to an Oracle database.
Because SQL*Loader is a command
line utility, recurring heterogeneous
data loads can easily be scripted.
Such a script might look like this:

Pseudo-code illustrating a simple heteroge-
neous extract-load script
from Sybase to Oracle
isql -U scott -P tiger -i generate_dept_csv.sql -o
dept_output.csv
sqlldr scott/tiger control=dept.ctl

Of course, SQL*Loader is an inad-
equate solution in situations where
the Oracle database needs real-time
information from a heterogeneous
database. And for very large loads,
the overhead of unloading the data
to an OS file, then reloading it, would
be prohibitive. A third-party solu-
tion, Oracle Gateways, or custom-
made applications would be better
solutions than SQL*Loader. Howev-
er, for moderate amounts of data, or
for recurring moderately sized loads,
SQL*Loader can provide a satisfac-
tory, easy-to-implement solution.

Performance
This introduction to SQL*Loader

wouldn’t be complete without a note
on performance. SQL*Loader has
two distinct ways of loading data:
conventional and direct path. In a
conventional load, SQL*Loader exe-
cutes a SQL INSERT statement for
each row in the datafile. For exam-
ple, in our first case study, a conven-
tional load would execute the follow-
ing statements:

INSERT INTO TABLE REF_DEPT_ID (DEPT_ID,
DEPT_NAME)
VALUES (‘SAL’,’SALES DEPARTMENT’);
INSERT INTO TABLE REF_DEPT_ID (DEPT_ID,
DEPT_NAME)
VALUES (‘HRD’,’HUMAN RESOURCES’);
....
INSERT INTO TABLE REF_DEPT_ID (DEPT_ID,
DEPT_NAME)
VALUES (‘MGT’,’MANAGEMENT’);

A direct path load, on the other
hand, bypasses Oracle’s SQL pro-
cessing layer. SQL*Loader pulls the
data from the file, formats it into
data blocks, and writes it directly to
the data files. Because it bypasses the
SQL processing layer, a direct path
load has much less overhead and thus
is much faster. However, because it
bypasses the SQL layer, there are
several restrictions on direct path
load. These and other considerations
are discussed in the documentation;
see chapter 11 of the 10gR2 Oracle
Database Utilities book.

To use direct path load, supply the
DIRECT=TRUE parameter:

[oracle@mysrv tmp]$ sqlldr scott/tiger
control=dept_logos.ctl direct=true

For an even faster load, consider
making the load unrecoverable by
prepending the UNRECOVERABLE
keyword to the control file:

UNRECOVERABLE
LOAD DATA
INFILE *
....

No redo information will be gen-
erated for an UNRECOVERABLE
load. This will have the same effect
on the recoverability of the data
you’ve loaded as doing an INSERT
/*+ APPEND */ on a NOLOGGING
table: if the instance crashes, the
data is gone. It’s a good idea to take
a backup immediately after doing an
UNRECOVERABLE load.

Direct loads are not the only way to
achieve speed. SQL*Loader also pro-
vides parameters to optimize conven-
tional path loading, and while you
cannot execute conventional path
loads in parallel, you can execute
multiple conventional loads to the
same table concurrently.

Conclusion
In this article, we’ve seen how to

use SQL*Loader to transform and
load many kinds of data, from many
different sources, into Oracle tables.

While an Oracle Gateway license
may make sense for heterogeneous
systems exchanging real-time data,
and third-party solutions may make
sense in some contexts for massive
recurring data loads, there’s no ques-
tion that SQL*Loader is the best tool
for one-time or recurring small- to
moderately-sized heterogeneous data
loads. I encourage anyone who’s
not familiar with SQL*Loader to
step through a few of the case stud-
ies in this article. Once you’ve used
SQL*Loader a few times, you’ll won-
der how you ever lived without it.

Natalka Roshak – Natalka is a
Senior Oracle Database Adminis-
trator and an Oracle Certified Pro-
fessional in Database Administra-
tion. She provides expert database
consulting solutions across North
America from her base in Southern
Ontario. Natalka may be contacted at
Natalka.Roshak@ERPtips.com. ≈

4On Database

ORAtips

Pa
ge

 �
�

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

The information on our website and in our publications is the copyrighted work of Klee Associates, Inc. and is owned by Klee Associates, Inc. NO WARRANTY: This
documentation is delivered as is, and Klee Associates, Inc. makes no warranty as to its accuracy or use. Any use of this documentation is at the risk of the user. Although
we make every good faith effort to ensure accuracy, this document may include technical or other inaccuracies or typographical errors. Klee Associates, Inc. reserves
the right to make changes without prior notice. NO AFFILIATION: Klee Associates, Inc. and this publication are not affiliated with or endorsed by Oracle Corporation.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Klee Associates, Inc. is a member of the Oracle Partner Network

Journal

This article was originally published by Klee Associates, Inc., publishers of JDEtips and SAPtips.
For training, consulting, and articles on JD Edwards or SAP, please visit our websites:
www.JDEtips.com and www.SAPtips.com.

