
ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

tion Setups. An Application Setup
(or an Application Object Library
item) can be a concurrent program,
request set, value set, descriptive flex
field, and so on. It encompasses items
that are set up on the front end or
items set up via the screens of Oracle
Applications.

An Application Object Library
(AOL) item is first set up manually
in the development instance. Getting
it from the development instance to
the unit-testing instance is the next
challenge. The same can be said for
unit testing to QA and QA to produc-
tion. You could buy something off
the shelf that can perform this task
for you, but that may require capital
expenditures (for the software, con-
sulting, and training of your staff)
that may not be readily available.
Another approach is to do it manu-
ally, but brings the risk that the AOL
item gets set up incorrectly due to
something as simple as a typo. It also

is time consuming which indirectly
costs the company money. And it is
money that could have been invested
toward something that is more pro-
ductive. So, is there a way to move
AOL items from one instance to
another in real-time without doing it
manually or investing money to buy
a product off- the-shelf to do it? The
answer to this question is yes.

This article will demonstrate how
to move Application Object Library
items (in real-time) from one instance
to another. Your internal IT staff can
accomplish these steps, assuming
they are familiar with SQL coding
and UNIX shell scripting. Database
administration might also be neces-
sary for a couple items as well, but
that will be noted at the respective
spots in the article. With these skill
sets, your developers can deploy a
system that can move one, two, or
even a multitude of items from one
instance to another in one sweep.

Background
One of the questions that I am often

asked when I come up with a solution
that can be applied to a multitude of
problems is how I came up with the
idea in the first place. In this case,
it was a work related project that I
was assigned to. The company that
I work for uses Oracle Applications
to manage Human Resources/Payroll
and Finance data. However, they are
segregated as two separate systems.
On top of that, the Finance system
is not the book of record. The actual
book of record is a legacy system in
which Oracle Applications (Finance)
is a sub-ledger. As they say, with
every question arises another ques-
tion. This case is no different. Why

Editor’s Note: Migrating Applica-
tion Object Library (AOL) objects
amongst instances challenges many
organizations. The process is time-
consuming, error-prone, and manu-
ally intensive, draining adminis-
trators of valuable time, especially
troubleshooting errors. Many third-
party vendors have point products
that provide COTS solutions, but
these too can be time-consuming
to integrate and costly. Kevin Ellis
has developed a solution that uses
in-house Oracle utilities (they come
standard with your Oracle pur-
chase) and simple SQL scripts to
migrate AOL objects in real-time
from one Oracle system to another
and each with multiple instances.

Introduction
This paper will discuss the process

of migrating objects (such concur-
rent programs) from one instance to
another in real-time. This designed
and developed under Oracle Appli-
cation 11.5.9. However as part of
the project, both instances will be
upgraded to 11.5.10 before the
actual migration takes place. In any
event of the version the basic prem-
ise of migrating Application Object
Library items is relatively the same.

Most companies have standard
software deployment procedures.
What that means in the Oracle
world is that (at a minimum) there
is an instance dedicated for devel-
opers, one for unit testing, one for
quality assurance or integrated test-
ing, and one for production. In the
Oracle Application arena, one of the
most common deliverables that goes
through this cycle is that of Applica-

Real-Time Migration of Oracle®
Application Setups Done In-House

By Kevin Ellis

…. your developers

can deploy a

system that can

move one, two, or

even a multitude

of items from one

instance to another

in one sweep.

4on Application Object Library

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

are there separate systems for Human
Resources/Payroll and Finance? In
fact, why are there two separate sys-
tems that maintain business data?

Let’s start back at the beginning
when I came on board, which was
around June 2002. The company I
work for (a health insurance provid-
er) was planning to provide a health
insurance product via the Web. This
was to be the company’s first attempt
at Internet commerce. Additionally,
it was thought that this new product
might become the offspring of a spin
off of the company. In other words,
a subsidiary (or dot.com) company
might be formed and would need its
own set of books to manage finances.
At the same time, the company was
already converting their Human
Resource/Payroll legacy system
to Oracle Applications. Hence the
potential dot-com company would
use Oracle Applications to maintain
Finance data.

At that time it was recognized that
many spin-offs (especially those
identified with the Internet) were
falling out of favor. It was the time of
the dot.com bust. The company gave
a second thought to spinning off the
new venture and decided to retain
it in-house as part of their product
development operations. Conse-
quently, the setup of the Finance
version of Oracle Applications would
not be a book of record for a poten-
tial spin-off. Rather, it would be a
sub-ledger to the company financial
reporting system, which is legacy.
Figure 1 displays this stage.

With three major systems to main-
tain, the company would like to con-
vert the entire ledger legacy over to
Oracle. Before it can get to that point,
however, the two Oracle Application
systems (Human Resources / Payroll
& Finance) must first be merged.
Hence, the project of merging the
two Oracle Application systems is

actually a sub-project leading to the
much bigger goal of having a single
system corporate wide that manages
all aspects of Human Resources /
Payroll and Finance data. Figure 2
demonstrates this stage.

Given this goal, comes our next
question, “How do you migrate two
Oracle Application systems into
one?” In this case, the company

decided to let the system of record
be the Human Resources / Payroll
system. That meant migrating UNIX
architecture, security, transactional
data, and setups from the Finance
system to the Human Resources /
Payroll system. This paper will focus
on the last item: migrating setups (or
Application Object Library items)
from Finance to the Human Resourc-
es / Payroll system.

Figure 1 – No Spin-Off

Figure 2 – Single Oracle System

4on Application Object Library

Oracle
Human Resources /

Payroll
(Corporate book of

Record)

Legacy
Financials

(Corporate book of
Record)

Oracle
Financials

(Product Development

sub-ledger
rollup

Various
Interfaces

Legacy
Financials

(Corporate Book of
Record)

Oracle
Human Resources /

Payroll
(Corporate book of Record)

&
Financials

(Product Development)

financial
sub-ledger

rollup

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

The Model
The model is built around five basic

steps. Those steps are the following:

1. Pre-Process Chain-of-Trust
2. �Generation of the AOL Item

List
3. Downloading the AOL Items
4. Uploading the AOL Items
5. Post-Process Chain-of-Trust

Figure 3 outlines the model from a
top-level perspective.

Everything is executed from the
HR/Payroll instance. The first task is
to complete the Pre-Process of Chain
of Trust. The next step is generating
a list of AOL Items to be downloaded
from the Finance system. Once this
list is compiled, the next process that
downloads all of the AOL Items from
the Finance system can use it. Once
all of the AOL items have been down-
loaded, they can then be uploaded to
the HR / Payroll system. Once all
AOL items have been uploaded, a
final (post-process) Chain-of-Trust
is preformed. Each of these processes
will be explained in its entirety.

Chain-of-Trust (Pre-Process)
Chain-of-Trust is a verification

procedure. Given that we know what
must be migrated, we can generate a
small collection of SQL scripts that
can determine how many items from
the Finance system will be migrated
to the HR/Payroll system. Fortu-
nately at the company I work for, we
have naming standards for in-house
or custom concurrent programs. In
our case, every concurrent program
starts with the prefix “EMP”. (This
was the acronym or first three letters
for the name of the company that was
to be spun off. Even though the com-
pany was not spun off, we retained
the naming standard.) This proved
very beneficial for us since custom
concurrent programs in the HR/Pay-
roll system began with the acronym
“HUM”, which were the first three
letters of the parent company.

The Pre-Process Chain-of-Trust
would search for concurrent pro-
grams in the Finance system and
return a total for those whose names
began with “EMP”. Just to be on the
safe side, the same thing would be

done on the HR/Payroll side as well.
Theoretically, there should be no con-
current programs in the HR/Payroll
system that begin with “EMP”, but I
never assume anything. What should
be returned is a positive number from

Figure 3 – AOL Migration Model

Figure 4 – Chain-of-Trust Count (Destination)

set pagesize 0
set heading off
set echo off
set verify off
set feedback off

select
	 ‘Total Concurrent Programs - Destination’
from
	 dual
;
select
	 count(*)	 	 	 	 “Total”
from
	 apps.fnd_concurrent_programs	 	 a
	 ,apps.fnd_concurrent_programs_tl	 b
	 ,apps.fnd_application			 c
where
	 b.user_concurrent_program_name like ‘EMP%’
	 and a.concurrent_program_id = b.concurrent_program_id
	 and a.application_id = c.application_id
	 and a.enabled_flag = ‘Y’
;

exit;

4on Application Object Library

Oracle
Applications
(Financials)

Oracle
Applications
(HR / Payroll)

Chain of Trust
Pre-Process

Generate AOL Item
List

Download AOL Items

Upload AOL Items

Chain of Trust
Post-Process

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

the Finance system and 0 from the
HR/Payroll system. Figure 4 lists the
code used to determine the count of
concurrent programs in the HR/Pay-
roll system that begin with “EMP”

The same code is used to determine
the count of concurrent programs that
will be pulled from the Finance sys-
tem. The exception is that this entire
migration turn is done in real-time.
Hence, it is executed from either the
Finance or HR/Payroll instances. In
our case, we execute all migration
scripts from the destination system,
which is HR/Payroll. Given this, a
database link is required. Therefore,
a separate copy of the SQL script is
generated and edited to incorporate
reference to the tables in the Finance
system. The name of the database
link must be attached to the table
names in order to accomplish this.
Figure 5 lists the code that accom-
plishes this task.

With this script, the link name is
passed to the program. The migra-
tion scripts will always be executed
from the destination system; hence,
links are not required in the Chain-
of-Trust Count (destination) SQL
script. However, there will be several
tests of the migration, which means it
will be tested against many different
instance and system names. There-
fore, the link name will change for
each test.

To conclude, the source script
should return a positive count,
whereas the destination script should
be zero. These same two scripts will
also be used as part of the Post-Pro-
cess Train-of-Trust. In that case, the
counts from both scripts (if everything
was migrated successfully) should be
zero. If there is a discrepancy, further
analysis will be required. This will be
covered under the section “Chain-of-
Trust (Post-Process).

Generate List of AOL Items
The next step in the migration

process is generating a list of items
to be migrated. In this case, an SQL
script is deployed. The code is very
similar to that used in the Chain-of-
Trust scripts except it returns mul-
tiple records, not just a single value
indicating the count of items to be
downloaded. In this case, the list is
a report of actual concurrent pro-
grams that will be downloaded from
the Finance system and uploaded to
the HR/Payroll system. FNDLOAD
(an Oracle-provided utility used for
downloading/uploading AOL items)
will be used. The only information
required would be the concurrent
program name and the application
short name to which the concur-
rent program is registered. The SQL
script executes a SQL statement for
this process and saves the results to
a file (via spooling) to be used by the
next processes. As mentioned previ-
ously, all code is executed from the
destination system. Hence, a remote
connection is required. Like that of
the code in Figure 5, a database link
is required for successful connection
to the Finance system. Figure 6 lists
the SQL code that accomplishes this
task.Figure 5 – Chain-of-Trust Count (Source)

set heading off
set echo off
set verify off
set pagesize 0
set feedback off

define db_link=’&1’

select
	 ‘Total Concurrent Programs - Source’
from
	 dual
;
select
	 count(*)	 	 	 	 “Total”
from
	 apps.fnd_concurrent_programs@&db_link	 	 a
	 ,apps.fnd_concurrent_programs_tl@&db_link	 b
	 ,apps.fnd_application@&db_link	 	 	 c
where
	 b.user_concurrent_program_name like ‘EMP%’
	 and a.concurrent_program_id = b.concurrent_program_id
	 and a.application_id = c.application_id
	 and a.enabled_flag = ‘Y’
;
exit;

4on Application Object Library

FNDLOAD (an

Oracle-provided

utility used for

downloading/

uploading AOL

items) will be used.

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

Download AOL Items from
Source

Up to this point, all of the coding
has been SQL scripts that are exe-
cuted via SQL*Plus. You could use
this SQL to do the actual download
and import; however, it is much more
difficult and in many cases Oracle
will not support your system if you
add customizations without going
through the supported APIs provided.
One type of API that Oracle provides
is a UNIX utility called FNDLOAD.
FNDLOAD is used extensively for
patching. It is also the recommend
utility for migrating AOL items from
development, test, and production
instances. Discussion on how to use
FNDLOAD is a separate topic in
itself. In this case study, we will focus
on how it is used downloading con-
current programs from the Finance
system and uploading them to the
HR/Payroll system.

There are some general facts that
must be recorded when download-
ing or uploading AOL items using
FNDLOAD. First, each call of FND-
LOAD generates a “log” file that
records the success or failure of the
download/update that just occurred.
If FNDLOAD is used to download an
AOL item, an additional file is cre-
ated. This file is the AOL item setup.
It has an “ldt” extension. The caller
has control of what the actual file is
named. Additionally, FNDLOAD is
executed under the “APPS” account
in Oracle. Hence, the “APPS” pass-
word is required for execution.

Our version of the migration
involves downloading all of the cus-
tom concurrent programs in one full
sweep. Hence, a UNIX script is gen-
erated that reads the AOL Item list
generated from the code listed in Fig-
ure 6. As a result, a list of “ldt” and

“log” files are generated. In order to
keep all of these files in order and
show what they relate to, a second list
or report is generated. In this case,
the report is called “conc_progs.txt”.
It looks very similar to the report
“conc_progs.lst” created by the code
in Figure 6, except it contains two
additional fields: the name of the
AOL Item setup file (“ldt”) plus the
“log” file generated from executing
FNDLOAD. As a final step, all of the
“ldt” setup files are zipped up. The
UNIX code that performs this task is
listed in Figure 7.

4on Application Object Library

Figure 6 – Get AOL List

set pagesize 0
set heading off
set echo off
set verify off
set feedback off

define db_link=’&1’

spool conc_progs.txt
select
	 a.concurrent_program_name
	 ||’ ‘||c.application_SHORT_name
from
	 apps.fnd_concurrent_programs@&db_link	 	 a
	 ,apps.fnd_concurrent_programs_tl@&db_link	 b
	 ,apps.fnd_application@&db_link	 	 	 c
where
	 b.user_concurrent_program_name like ‘EMP%’
	 and a.concurrent_program_id = b.concurrent_program_id
	 and a.application_id = c.application_id
	 and a.enabled_flag = ‘Y’
;
spool off;
exit;

Oracle will not

support your

system if you add

customizations with-

out going through

the supported

APIs provided.

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

4on Application Object Library

Figure 7 – UNIX Download Program – continued on next page

#*****************************
#*** Retrieve Parameters ***
#*****************************
P_APPS_PASSWORD=${1}
P_INSTANCE=${2}

#***
#*** Declaration of files used in this program ***
#***
P_ZIP_FILENAME=”conc_progs”
P_CP_LIST=”${P_ZIP_FILENAME}.lst”
P_CP_TEMP=”${P_ZIP_FILENAME}.lst.temp”
P_CP_TEMP2=”${P_ZIP_FILENAME}.lst.temp2”
P_CP_NAMES=”${P_ZIP_FILENAME}.txt”
P_FND_PROGRAM=”EMPXX_DOWNLOAD_CP.prog”
P_CP_LOG=”LOG.txt”
P_CP_LOG_DIR=”logs_cp”

rm ${P_CP_LIST}
rm ${P_ZIP_FILENAME}.zip

print “Creating Directory for LOG files...”
mkdir ${P_CP_LOG_DIR}
cd ${P_CP_LOG_DIR}
rm *.log
cd ..

echo “ “ > ${P_CP_LIST}
echo “ “ > ${P_CP_TEMP}
echo “ “ > ${P_CP_TEMP2}

P_LDT_FILES=””

#***
#*** Start download of Concurrent Programs listed in .txt file ***
#***
P_CP_SEQ=”0”
P_CP_COUNT=`wc -l ${P_CP_NAMES} | awk ‘{print $1}’`

print “ “
print “${P_CP_COUNT} Concurrent Programs to download.”
print “ “

while [${P_CP_COUNT} -ge 1]
do

#***************************************
#*** Increment LDT sequence number ***
#***************************************
	 P_CP_SEQ=`expr ${P_CP_SEQ} + 1`

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

Figure 7 – UNIX Download Program – continued on next page

#***
#*** Retrieve Concurrent Program and ***
#*** Application Short Name from .txt file ***
#***
	 P_CP_SHORT_NAME=`cat ${P_CP_NAMES} | tail -${P_CP_COUNT} | head -1 | awk ‘{print $1}’`
	 P_CP_APP=`cat ${P_CP_NAMES} | tail -${P_CP_COUNT} | head -1 | awk ‘{print $2}’`

#**
#*** Format the LDT filename for the Concurrent Program ***
#*** setup to download. ***
#**
	 if [${P_CP_SEQ} -gt 9999]
	 then
	 	 P_CP_ISSUE=”${P_CP_SEQ}”
	 elif [${P_CP_SEQ} -gt 999]
	 then
	 	 P_CP_ISSUE=”0${P_CP_SEQ}”
	 elif [${P_CP_SEQ} -gt 99]
	 then
	 	 P_CP_ISSUE=”00${P_CP_SEQ}”
	 elif [${P_CP_SEQ} -gt 9]
	 then
	 	 P_CP_ISSUE=”000${P_CP_SEQ}”
	 else
	 	 P_CP_ISSUE=”0000${P_CP_SEQ}”
	 fi
	 P_CP_LDT=”EMPXX${P_CP_ISSUE}”

	 print “Generating ${P_CP_LDT}.ldt for ${P_CP_SHORT_NAME}, ${P_CP_APP} ...”

#***
#*** Execute FNDLOAD to download the specific Concurrent Program ***
#***
	 C_FND_PATH=”${FND_TOP}/patch/115/import”
	 C_FND_PROGRAM=”afcpprog.lct”
	 P_FNDLOAD_PRG=”${C_FND_PATH}/${C_FND_PROGRAM}”

	 �FNDLOAD apps/${P_CP_APP}@${P_INSTANCE} 0 Y DOWNLOAD ${P_FNDLOAD_PRG} ${P_CP_LDT}.ldt PROGRAM
 CONCURRENT_PROGRAM_NAME=”${P_CP_SHORT_NAME}” APPLICATION_SHORT_NAME=”${P_CP_APP}”

#**
#*** Record the new LDT setup file in the zip file list ***
#**
	 P_LDT_FILES=”${P_LDT_FILES} ${P_CP_LDT}.ldt”

#***
#*** Identify the LOG generated during the download and record ***
#*** it in the .lst file ***
#***

4on Application Object Library

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

Figure 7 – UNIX Download Program

	 ls *.log > ${P_CP_LOG}
	 P_LOG_FILE_NAME=`cat ${P_CP_LOG} | awk ‘{print $1}’`
	 P_RECORD=”${P_CP_SHORT_NAME} ${P_CP_APP} ${P_CP_LDT} ${P_LOG_FILE_NAME}”
	 echo “${P_RECORD}” > ${P_CP_TEMP}

	 if [${P_CP_SEQ} -eq 1];
	 then
	 	 cat ${P_CP_TEMP} > ${P_CP_LIST}
	 else
	 	 cat ${P_CP_LIST} ${P_CP_TEMP} > ${P_CP_TEMP2}
	 	 cat ${P_CP_TEMP2} > ${P_CP_LIST}
	 fi

#***************************************
#*** Move LOG file to subdirectory ***
#***************************************
	 mv ${P_LOG_FILE_NAME} ${P_CP_LOG_DIR}

#********************************
#*** Decrement loop counter ***
#********************************
	 print “ “
	 P_CP_COUNT=`expr ${P_CP_COUNT} - 1`

done

#***************************************
#*** Put all LDT files in zip file ***
#***************************************
print “Creating zip file ${P_ZIP_FILENAME} for Concurrent Program ldt files...”
zip ${P_ZIP_FILENAME} ${P_LDT_FILES}

#*******************************
#*** Clean up staging area ***
#*******************************
print “ “
print “Remove ldt files...”
rm *.ldt
rm ${P_CP_LOG}
rm ${P_CP_TEMP}
rm ${P_CP_TEMP2}

print “ “
print “End of Program.”
#***********************************
#*** Logical Ending of Program ***
#***********************************

4on Application Object Library

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

Update AOL Items to
Destination

This portion of the process is very
similar to the downloading AOL
items except that we are going in the
opposite direction: uploading. We
do not need redirection via a data-
base link since all of the scripts are
executed from the destination UNIX
box. However, the process is similar
in the fact that there is a primary
UNIX script that will read a data file
generated from the process of down-
loading AOL items and load them to
the destination system via a call to
FNDLOAD, which is wrapped in a
separate UNIX script.

As with downloading AOL, upload-
ing them using FNDLOAD generates
a “log” file that indicates whether
the records were successfully updat-
ed or not. FNDLOAD for uploading
also requires the name of an existing
“ldt” file. These filenames are part of
the report file that is generated from
the download process. Hence, all of
the “ldt” files should exist. The only
other parameter that is required is
the “APPS” password.

Our version of the migration
involves uploading all of the cus-
tom concurrent programs in one
full sweep. Hence, a UNIX script is

generated that reads the AOL Item
list generated from the code listed in
Figure 7. As a result, a list of “log”
files is generated, different from the
ones generated from the download.
A separate report of these files is
generated. It is identical to the one
generated from the download except
the “log” file names are different and
pertain to information on uploading
AOL. The report is called “conc_
progs.upl” and looks very similar to
the report “conc_progs.txt” created
by the code in Figure 7. As a final
step, all of the “ldt” setup files are
zipped up. The UNIX code that per-
forms this task is listed in Figure 8.

Figure 8 – UNIX Upload Program – continued on next page

#***
#*** Retrieve Parameters from caller ***
#***
P_ZIP_FILENAME=”conc_progs”
P_APPS_PASSWORD=${1}

#***
#*** Declaration of Files used in this program ***
#***
P_CP_LIST=”${P_ZIP_FILENAME}.lst”
P_FND_LIST=”${P_ZIP_FILENAME}.upl”
P_CP_TEMP=”${P_ZIP_FILENAME}.lst.temp”
P_CP_TEMP2=”${P_ZIP_FILENAME}.lst.temp2”
P_CP_NAMES=”${P_ZIP_FILENAME}.txt”
P_FND_PROGRAM=”EMPXX_UPLOAD.prog”
P_UPLOAD_LOG=”LOG.txt”
P_CP_LOG_DIR=”logs_upload”

#***
#*** Unzip the file containing all of the ***
#*** LDT files that will be used for uploads ***
#***
print “Unzipping ${P_ZIP_FILENAME}.zip ...”
unzip ${P_ZIP_FILENAME}.zip

print “Creating Directory for LOG files...”
mkdir ${P_CP_LOG_DIR}
cd ${P_CP_LOG_DIR}
rm *.log
cd ..

echo “ “ > ${P_FND_LIST}
echo “ “ > ${P_CP_TEMP}

4on Application Object Library

ORAtips

Pa
ge

 1
0

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

Figure 8 – UNIX Upload Program – continued on next page

echo “ “ > ${P_CP_TEMP2}

P_LDT_FILES=””

#***
#*** Process all setups stored in .lst filename provided ***
#***
P_FND_SEQ=”0”
P_CP_COUNT=`wc -l ${P_CP_LIST} | awk ‘{print $1}’`

print “ “
print “${P_CP_COUNT} Setups to upload.”
print “ “

while [${P_CP_COUNT} -ge 1]
do

#**
#*** Retrieve Short Name, Apps, and LDT filename parameters ***
#**
	 P_FND_SEQ=`expr ${P_FND_SEQ} + 1`
	 P_FND_SHORT_NAME=`cat ${P_CP_LIST} | tail -${P_CP_COUNT} | head -1 | awk ‘{print $1}’`
	 P_FND_APP=`cat ${P_CP_LIST} | tail -${P_CP_COUNT} | head -1 | awk ‘{print $2}’`
	 P_FND_LDT=`cat ${P_CP_LIST} | tail -${P_CP_COUNT} | head -1 | awk ‘{print $3}’`

	 print “Uploading ${P_FND_LDT}.ldt for ${P_FND_SHORT_NAME}, ${P_FND_APP} ...”
	
#***
#*** Execute FNDLOAD to upload concurrent programs ***
#***
C_FND_PATH=”${FND_TOP}/patch/115/import”
	 C_FND_CONCURRENT_PROGRAM=”afcpprog.lct”
	 P_FNDLOAD_PRG=”${C_FND_PATH}/${C_FND_CONCURRENT_PROGRAM }”

FNDLOAD apps/${P_APPS_PASSWORD} 0 Y UPLOAD ${P_FNDLOAD_PRG} ${P_FND_LDT}.ldt - CUSTOM_MODE=FORCE

#**
#*** Identify the LOG file that was generated ***
#*** for the most recent setup upload ***
#**
	 ls *.log > ${P_UPLOAD_LOG}
	 P_LOG_FILE_NAME=`cat ${P_UPLOAD_LOG} | awk ‘{print $1}’`
	 mv *.log ${P_CP_LOG_DIR}

#***
#*** Record the Short Name, App, LDT filename, ***
#*** and LOG filename for the upload. ***
#***
	 P_RECORD=”${P_FND_SHORT_NAME} ${P_FND_APP} ${P_FND_LDT} ${P_LOG_FILE_NAME}”
	 echo “${P_RECORD}” > ${P_CP_TEMP}

	 if [${P_FND_SEQ} -eq 1];

4on Application Object Library

ORAtips

Pa
ge

 11

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

Chain-of-Trust
(Post-Process)

As mentioned previously, Chain-of-
Trust is a verification procedure. Like
that of the “Pre-Process”, the “Post-
Process” verifies if all of the neces-
sary AOL Items downloaded from the
source system were migrated to the
destination system. Given our cur-

rent situation, this step determines if
all of the concurrent programs down-
loaded from the Finance system were
uploaded to the HR/Payroll system
successfully.

The “Post-Process” uses some of
the same scripts from the “Pre-Pro-
cess”. For instance, the code listed in

Figure 5 is re-used to notify the user
of how many concurrent programs
were downloaded. The code in Fig-
ure 9 is used to identify discrepan-
cies. Specifically, it lists the number
of concurrent programs that were
not migrated from Finance to HR/
Payroll.

Figure 8 – UNIX Upload Program

	 then
	 	 cat ${P_CP_TEMP} > ${P_FND_LIST}
	 else
	 	 cat ${P_FND_LIST} ${P_CP_TEMP} > ${P_CP_TEMP2}
	 	 cat ${P_CP_TEMP2} > ${P_FND_LIST}
	 fi

	 print “ “
	 P_CP_COUNT=`expr ${P_CP_COUNT} - 1`

done

#*********************************
#*** Clear staging directory ***
#*********************************
print “ “
print “Remove ldt files...”
rm *.ldt
rm ${P_CP_TEMP}
rm ${P_CP_TEMP2}
rm ${P_UPLOAD_LOG}

print “ “
print “End of Program.”
#***********************************
#*** Logical Ending of Program ***
#***********************************

Figure 9 – Migration Verification (Count) – continued on next page

set echo off
set heading off
set verify off
set feedback off
set pagesize 0

define db_link=’&1’

select
	 ‘**’	

4on Application Object Library

ORAtips

Pa
ge

 12

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

The code listed in Figure 10 is very
similar to that in Figure 9 except it
specifically lists the missing concur-
rent programs that were not migrat-
ed from Finance to HR/Payroll.

The Driver Program
Part of the goal for the migration

is to perform the necessary tasks in
real-time. This is accomplished by
writing a single driver program that
calls all of the scripts listed above.

The code in Figure 11 is the main
driver that will migrate all of the
current programs from the Finance
system to the HR/Payroll system in
real-time.

Figure 9 – Migration Verification (Count)

“Label”
from
	 dual
;
select
	 ‘Chain of Trust Verification - Differences’	 “Label”
from
	 dual
;
select
	 count(*)	 	 	 	 	 “Total”
from
	 apps.fnd_concurrent_programs@&db_link	 	 a
	 ,apps.fnd_concurrent_programs_tl@&db_link	 b
	 ,apps.fnd_application@&db_link	 	 	 c
where
	 b.user_concurrent_program_name like ‘EMP%’
	 and a.concurrent_program_id = b.concurrent_program_id
	 and a.application_id = c.application_id
	 and a.enabled_flag = ‘Y’
	 and not exists (
		 select
	 	 	 a.concurrent_program_name
	 	 from
	 	 	 apps.fnd_concurrent_programs	 	 a1
	 	 	 ,apps.fnd_concurrent_programs_tl	 b1
	 	 	 ,apps.fnd_application	 	 	 c1
		 where
	 	 	 a1.concurrent_program_id =
	 	 	 	 b1.concurrent_program_id
	 	 	 and a1.application_id =
	 	 	 	 c1.application_id
	 	 	 and b1.user_concurrent_program_name =
	 	 	 	 b.user_concurrent_program_name
	 	 	 and c1.application_short_name =
	 	 	 	 c.application_short_name
)
;
select
	 ‘**’	
“Label”
from
	 dual
;
exit;

4on Application Object Library

ORAtips

Pa
ge

 13

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

Figure 10 – Migration Verification (Summary)

set echo off
set heading off
set verify off
set feedback off
set pagesize 0

define db_link=’&1’

select
	 ‘**’“Label”
from
	 dual
;
select
	 ‘Missing Concurrent Programs’	 	 	 “Label”
from
	 dual
;
select
	 a.concurrent_program_name		 	 “Program”
	 ,c.application_short_name	 	 	 “Application”
from
	 apps.fnd_concurrent_programs@&db_link	 	 a
	 ,apps.fnd_concurrent_programs_tl@&db_link	 b
	 ,apps.fnd_application@&db_link	 	 	 c
where
	 b.user_concurrent_program_name like ‘EMP%’
	 and a.concurrent_program_id = b.concurrent_program_id
	 and a.application_id = c.application_id
	 and a.enabled_flag = ‘Y’
	 and not exists (
		 select
	 	 	 a.concurrent_program_name
	 	 from
	 	 	 apps.fnd_concurrent_programs	 	 a1
	 	 	 ,apps.fnd_concurrent_programs_tl	 b1
	 	 	 ,apps.fnd_application	 	 	 c1
		 where
	 	 	 a1.concurrent_program_id =
	 	 	 	 b1.concurrent_program_id
	 	 	 and a1.application_id =
	 	 	 	 c1.application_id
	 	 	 and b1.user_concurrent_program_name =
	 	 	 	 b.user_concurrent_program_name
	 	 	 and c1.application_short_name =
	 	 	 	 c.application_short_name
)
;
select
	 ‘**’ “Label”
from
	 dual
;
exit;

4on Application Object Library

ORAtips

Pa
ge

 14

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

The driver is executed from the
UNIX shell prompt. It requires five
parameters:

• �the “APPS” schema password to
the destination system

• �the password to your “custom”
schema (given that your custom-
izations have been compiled to a
custom schema)

• �for the destination system the
remote DB Link name

• �the “APPS” password to the
source system

•�the password to the custom sche-
ma in the source system

Conclusion
This article has demonstrated how

to migrate concurrent programs from
one Oracle instance to another. In
this case, it was used to migrate two
separate systems into one. However,
it can be used as an enhancement
turn process, such as turn concurrent
programs from development to unit
testing to quality assurance testing to
production. Even though the exam-
ple demonstrated was with concur-
rent programs, the same model can
be used for request sets, descriptive
flex fields, values sets, profiles, and
many more varieties of AOL Items.
It all can be done in real-time. The
key to successful implementation
is analysis: what do you want to
migrate. Careful planning can help
you avoid pitfalls or bottlenecks that
may arise.

Kevin Ellis, Humana – Kevin has
served as Technology / Applica-
tions Engineer for Humana at their
headquarters in Louisville, KY since
June 2002. His primary responsibil-
ity is to provide on-going support
of Humana’s Finance ERP (Oracle
Applications 11.5.9). Additionally,
he serves as the turn release man-
ager for all enhancements released
to the QA/Production environments.
Kevin shares direct technical support
with his staff for General Ledger,
Payables, Fixed Assets, Purchas-
ing, and Cash Management modules
and writes SQL scripts for Discov-
erer workbooks, custom library, and
forms. Additionally, Kevin (adjunct
professor) teaches a graduate course
in database theory at Bellarmine Uni-
versity (a private Catholic institution
located in Louisville, KY). Kevin may
be contacted at Kevin.Ellis@ERPtips.com

≈

4on Application Object Library

Figure 11 – The Driver – continued on next page

#**********************************
#*** Declaration of Constants ***
#**********************************
P_LINE_SUB=”==”
P_DIR=`pwd`
P_CONN_APP=”apps/”${1}
P_CONN_EMP=”custom/”${2}
P_DBLINK=${3}
P_SRC_APPS_PASS=”apps/”${4}
P_SRC_INSTANCE=${5}

#********************************
#*** Declaration of Scripts ***
#********************************
P_PROG001=”cp_get_list.sql”
P_PROG002=”cp_count.sql”
P_PROG003=”cp_count_remote.sql”
P_PROG004=”CONV_DOWNLOAD_CP.prog”
P_PROG005=”CONV_UPLOAD_CP.prog”
P_PROG006=”cp_verify.sql”
P_PROG007=”cp_missing.sql”

#**************************************
#*** Chain-of-Trust (Pre-Process) ***
#**************************************

ORAtips

Pa
ge

 15

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

Figure 11 – The Driver

P_CUR_DIR=`pwd`
print “Get Count of Concurrent Programs in Destination.”
sqlplus -s ${P_CONN_APP} @${P_CUR_DIR}/${P_PROG002}
print “ “
print “Get Count of Concurrent Programs in Source.”
sqlplus -s ${P_CONN_APP} @${P_CUR_DIR}/${P_PROG003} ${P_DBLINK}
print “ “

#************************************
#*** Generate List of AOL Items ***
#************************************
print “Get list of Concurrent Programs to download”
sqlplus -s ${P_CONN_APP} @${P_CUR_DIR}/${P_PROG001} ${P_DBLINK}

#**
#*** Download AOL Items from Source ***
#**
print “Download Concurrent Programs ..”
${P_PROG004} ${P_SRC_APPS_PASS} ${P_SRC_INSTANCE}

#***
#*** Upload AOL Items to Destination ***
#***
print “Upload Concurrent Programs ..”
${P_PROG005} ${P_CONN_APP}

#**************************************
#*** Chain-of-Trust (Post-Process) ***
#**************************************
P_CUR_DIR=`pwd`
print “Verify Concurrent Programs were uploaded.”
sqlplus -s ${P_CONN_APP} @${P_CUR_DIR}/${P_PROG002}
print “ “

sqlplus -s ${P_CONN_APP} @${P_CUR_DIR}/${P_PROG006} ${P_DBLINK}
print “ “

sqlplus -s ${P_CONN_APP} @${P_CUR_DIR}/${P_PROG007} ${P_DBLINK}
print “ “
#**
#*** Logical Ending of Issue Patch Script ***
#**

4on Application Object Library

ORAtips

Pa
ge

 16

O
R

A
ti

p
s

Journal
J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

The information on our website and in our publications is the copyrighted work of Klee Associates, Inc. and is owned by Klee Associates, Inc. NO WARRANTY: This
documentation is delivered as is, and Klee Associates, Inc. makes no warranty as to its accuracy or use. Any use of this documentation is at the risk of the user. Although
we make every good faith effort to ensure accuracy, this document may include technical or other inaccuracies or typographical errors. Klee Associates, Inc. reserves
the right to make changes without prior notice. NO AFFILIATION: Klee Associates, Inc. and this publication are not affiliated with or endorsed by Oracle Corporation.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Klee Associates, Inc. is a member of the Oracle Partner Network

This article was originally published by Klee Associates, Inc., publishers of JDEtips and SAPtips.
For training, consulting, and articles on JD Edwards or SAP, please visit our websites:
www.JDEtips.com and www.SAPtips.com.

