
ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

Editor’s Note: In this first of a
series of ORAtips articles on Oracle
Application Database management,
Natalka Roshak discusses monitor-
ing the Oracle Applications environ-
ment using the Oracle Applications
Manager for SQL activity. You’ll
learn different approaches for exe-
cuting, understanding, and using
a SQL Activity Report, including
using hash values and script modi-
fication. This could be very impor-
tant information as not monitoring
can result in runaway scripts and
concurrent processes which in turn
decrease application performance.

Introduction
Oracle Applications Manager

(OAM) lets you monitor components
of your Oracle Applications instance.
This series of articles will show
you how to extend Oracle Applica-
tions Manager’s database monitoring
capability with custom SQL queries,
which can then be integrated with
OAM using SQL extensions.

This article will focus on one aspect
of OAM’s database monitoring capa-
bility, SQL Activity. Future articles
will drill down on the other aspects
of OAM’s database monitoring.

Why Monitor the Database?
Database performance problems

are Oracle Applications performance
problems. Thus, Oracle Applica-
tions Manager provides some data-
base monitoring capabilities to let
Application DBAs focus on potential
trouble spots in the database. OAM
lets Application DBAs monitor the
following database areas:

You can also find more detailed
Database Session information under
the Forms Sessions tab (Navigation
Path: Site Map > Monitoring subtab
> Current Activity > Forms Sessions
> (B) Session Details).

Focus: SQL Monitoring
This article will explain OAM’s

SQL report and extend it by query-
ing the database directly.

SQL Activity Report
The Oracle Applications Monitor

provides some basic information on
SQL activity. To pull up the SQL
Activity report, navigate from the
Dashboard to the Site Map, choose
the Monitoring tab, then the Perfor-
mance heading. Clicking on the SQL
Activity link will pull up the SQL
Activity Report.

Explanation of the SQL Activity
Report

The SQL Activity report has the
following columns:

• SQL_HASH
• Physical Reads
• Logical Reads
• Total Sorts
• Execs
• Total Loads
• Loads

To make sense of this report, it
helps to know something about how
the Oracle database stores SQL state-
ments. It takes CPU cycles to parse
a SQL statement, so Oracle caches
already-parsed SQL statements in
memory so that the parsed version
can be retrieved if the statement is
reissued. For example, if a user issues
an identical report request every hour,
the SQL for that report will only be

• SQL Activity
• Runaway sessions
• Session information

OAM Database Monitoring
Capability

Let’s begin by locating the OAM
monitoring screens that focus on the
database. From the Dashboard, nav-
igate to the Site Map. Some database
monitoring screens are found under
the Performance heading of the Mon-
itoring sub-tab. From here, you can
pull up reports on:

• SQL Activity
• Concurrent Request runaways

And some database monitoring
screens are found under the Activity
Monitors (Navigation Path: Site Map
> Activity > Activity Monitors). From
here, you can see some information
on:

• Database sessions
• Concurrent Requests

Oracle® Application Database Management, Part 1:
Take Database Monitoring in Oracle® Applications Manager to the Next Level

By Natalka Roshak

Database

performance

problems are Oracle

Applications

performance

problems.

4on Database - Monitoring

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

Logical Reads: The total number of
reads from memory the execution of
this query has required, over all the
times it has been executed

Total Sorts: The total number of sort
operations the execution of this query
has required, over all the times it has
been executed

Total Loads: The total number of
times this query has been loaded or
reloaded from memory

Finding the SQL Text
More information on the SQL

statement, including the SQL text,
can sometimes be viewed by clicking
on the SQL_HASH value. However,
the SQL text can always be extracted
from the database. We can use a sim-
ple database query to duplicate the
aforementioned SQL activity report,
plus the text of the SQL statements.

The first step is to log in to
SQL*Plus, or iSQL*Plus, using a
username & password that can view
the data dictionary (Oracle inter-
nal tables), as shown in Figure 6.
If you’ve never used it, SQL*Plus is
found under the “bin” directory of
the Oracle Home on your machine.

Note: If you have access to a data-
base tool like TOAD, of course, use
that instead of SQL*Plus.

Once we have a SQL*Plus session
open, we can query the data diction-
ary to replicate the OAM report, with
the addition of the SQL text. We’ll
query the v$sqlarea view, a dynamic
performance view that provides a
window onto the SQL area, i.e., the
area of memory where Oracle has
cached the previously parsed SQL
statements. The v$sqlarea view has

parsed the first time the user issues
the request; on every subsequent call,
the RDBMS will look up the SQL
statement, find the parsed version,
and use that instead of reparsing.

Oracle does this lookup using a
hash of the SQL statement. The
entire SQL statement is passed, as
an unedited string, to a hashing
function that outputs a short num-
ber. The SQL_HASH column of the
SQL Activity Report shows this hash
value. Two important facts about this
hash value:

1. The SQL_HASH value that shows
up in the SQL Activity Report is
the same one used by Oracle in its
data dictionary tables. Thus, we
can use this value to drill down in
the database for more information
on the SQL statement behind that
hash value.

2. When Oracle hashes a SQL state-
ment, it uses the whole text of the
SQL statement, including spaces,
capitals, and literals. Thus, if a
SQL statement is issued twice
with different parameters, it will
have two different hash values
– meaning it is re-parsed, wasting
CPU cycles, and will be re-cached
under the new hash value, wasting
memory.

Before we move into the drill-
downs we can do in the database
using this SQL_HASH value, let’s
cover the other columns available in
the report.

Execs: The number of times the
SQL statement represented by this
SQL_HASH has been executed.
This includes the executions of any
child cursors required to execute this
statement.

Physical Reads: The total number of
disk reads the execution of this query
has required, over all the times it has
been executed

Figure 6 – Oracle SQL*Plus Login

[oracle@mymachine] $ sqlplus

SQL*Plus: Release 10.2.0.1.0 - Production on Sun Aug 21 22:35:00 2005

Copyright (c) 1982, 2005, Oracle. All rights reserved.

Enter user-name: system@apps01.world
Enter password:

Connected to:
Oracle9i Enterprise Edition Release 9.2.0.6.0 - Production
With the Partitioning, OLAP and Oracle Data Mining options
JServer Release 9.2.0.6.0 - Production

SQL>

When Oracle hashes

a SQL statement,

it uses the whole

text of the SQL

statement, including

spaces, capitals,

and literals.

4on Database - Monitoring

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

all the information we need for this
query.

Create a file with the following
script, as shown in Figure 7, in it and
save it as sqlarea1.sql :

Now run the script in SQL*Plus.
The results are shown in Figure 8.

Let’s look at the script sqlarea1.sql
in a bit more detail.

• The first nine lines are format-
ting statements to make the out-
put easily readable in SQL*Plus;
they can be omitted in a GUI
SQL client such as TOAD.

• The results are sorted by the
number of executions; change the
“order by” clause in this query
(see Figure 7) if you want to sort
by another column in the report.

• Only the first 15 rows are dis-
played, for readability.

• Only the first few words of
the SQL statement are dis-
played, for readability. You
can replace the “substr(sql_
text,1,55)” with simply
“sql_text” if using a GUI
client (see Figure 7).

Using This Report
What’s the use of such a

script? Why did Oracle include
a similar report in OAM? What
does it tell the Application DBA
about this Oracle Applications
instance?

There are several important
pieces of information here.
First, there are two important
ways to look at the Executions
column: top-down and bottom-
up.

Sorted in descending order,
as shown in Figure 8, this script
provides an instant snapshot of

disk, and your Oracle Applications
instance could benefit from increas-
ing your database buffer cache.

If you’re seeing high values in
the LOADS column for the most

which SQL statements are most fre-
quently issued.

If the most frequently issued
statements have a lot of physical
reads, you’re wasting time going to

Figure 7 – sqlarea1.sql

set lines 120
set pages 1000
col sql_hash for 9999999999
col phyrd for 99999999
col logrd for 99999999
col sorts for 99999999
col execs for 99999999
col loads for 99999999
col sqltxt for a55
select * from (
select hash_value as sql_hash, disk_reads as phyrd, buffer_gets as logrd,
sorts, executions as execs, loads,
substr(sql_text,1,55) as sqltxt
from v$sqlarea
order by execs desc)
where rownum <= 15
/

Figure 8 – sqlarea1.sql Results

SQL> @sqlarea1.sql

 SQL_HASH PHYRD LOGRD SORTS EXECS LOADS SQLTXT
----------- ------ -------- ----- ------- ----- ------------------------------
 1053795750 0 2432257 0 3648977 2 COMMIT
 2525858779 12 4068516 0 1363654 5 SELECT COMP_FREQ FROM REF_JOB_
 3620777859 0 2929383 0 976461 4 SELECT (TO_CHAR(:B1, ‘YYYY’))
 883532485 0 2322999 0 774327 4 SELECT (TO_CHAR(:B1, ‘YYYY’)-1
 2886384431 5124 4199746 0 624528 5 SELECT SALARY_NO FROM HR_DATA.
 1483828792 553 1640505 0 527922 5 SELECT MIN(EFF_DT) FROM HR_DAT
 4060129601 15750 2354645 0 323041 3 SELECT MAX(EFF_DATE), MIN(EFF_
 2830797694 1552 3422741 0 298323 3 SELECT EMPL_STATUS_CD FROM LAT
 492675944 3 818131 0 272710 1 SELECT GREATEST (:B4 , :B3),
 403132514 9 741159 0 247053 5 SELECT HOURS_PER_YEAR FROM REF
 1871132240 0 2235792 0 217636 5 UPDATE HR_WORK.POSITION SET US
 3749286049 28112 2582968 0 189875 12 SELECT NVL(A.ADT, B.ADT) FROM
 3773735564 4685 52115689 2320 189180 3 SELECT COUNT(*) FROM ((SELECT
 3742653144 66 502748 0 167581 1 select sysdate from dual
 2734578310 0 0 0 131676 1 declare nlns number; buf_t va

15 rows selected.

SQL>

4on Database - Monitoring

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

frequently used SQL statements,
your performance may benefit from
increasing the size of your data-
base shared pool. The shared pool is
where the SQL area is found. Check
the GETHITRATIO column of the
v$librarycache view – a well-tuned
OLTP system should have a GETHI-
TRATIO of .95 or higher for the SQL
Area.

With the SQL text, this report can
give you a quick feel for what’s going
on in the database.

Sorted in ascending order, expect
to see a lot of statements with one
execution. This is not normally a
problem; however, recall from our
discussion of hash values that two
almost-identical SQL statements will
have different hash values. This can
be a problem if a lot of very similar
SQL statements are passed – e.g., the
same report is run frequently with
different parameters.

(Tom Kyte, of Oracle Magazine’s
“Ask Tom” column, provides a very
clear explanation of why this can be
a major hit on database performance
in his posting: http://asktom.oracle.
com/pls/ask/f?p=4950:8:1281866
6420225533154::NO::F4950_P8_
DISPLAYID,F4950_P8_CRITE-
RIA:1516005546092).

Oracle provides a simple way to
make two similar statements with
different parameters have the same
hash value. It’s done by using bind
variables. Briefly, instead of writing

select count(*)
 from emp
where ename=’Smith’ ;

the application developer would
write:

select count(*)
 from emp
where ename=’:b1’ ;

and then pass in a value for the bind
variable, “b1”, when the report is
called. It’s easy to check your system
to make sure that your application
SQL is using bind variables; simply
count the number of similar SQL
statements, using the script shown in
Figure 9.

The output will resemble that
shown in Figure 10.

As you can see from the listing,
we’ve approximated “similar” state-
ments with “statements whose first
30 characters match”. If you see an
Oracle Applications statement, or
other application statement, with a
high value of “INSTANCES”, then
it’s worth drilling down on that state-
ment to see whether or not there
really are thousands of similar state-
ments taking up memory and time.

Figure 9 – sqlarea2.sql

set lines 120
set pages 1000
col sqltext for a30
col instances for 99999999
select * from (
select substr(sql_text,1,30) as sqltxt,
count(*) as instances
from v$sqlarea
group by substr(sql_text,1,30)
order by count(*) desc)
where rownum <= 15
/

Figure 10 – sqlarea2.sql Results

SQL> @sqlarea2.sql

SQLTXT INSTANCES
------------------------------ ---------
DECLARE job BINARY_INTEGER := 2398
DECLARE var_val owa.vc_arr; 2347
select /*+ cursor_sharing_exa 1583
declare type ref_cur is ref 1057
SELECT /*+ PIV_SSF */ SYS_OP_M 981
SELECT /*+ TIV_SSF */ SYS_OP_M 975
SELECT * FROM HR_DATA.PERSON W 766
select /*+ cursor_sharing_exac 724
declare begin utility.applicat 125
INSERT INTO HR_WORK.PERSON (I 117
select * from “ADHOC_USER”.”TM 97
select * from “REPOMAN2”.”SMP_ 96
 select count(*) from bulkloa 91
SELECT /*+NESTED_TABLE_GET_REF 60
select * from “BULKLOAD”.”LATE 57

15 rows selected.

SQL>

4on Database - Monitoring

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

The simplest way to do this is to
look at the SQL statements whose
first 30 characters match the listing
above, and see if they are duplicates
of each other that vary only by liter-
als. To do this properly, we’ll look at
another dynamic performance view,
v$sqltext.

v$sqltext contains only the hash
value, the address at which the SQL
is stored in memory, the command
type, and the full text of each SQL
statement, broken (arbitrarily) into
lines. You can use this view (as shown
in Figure 11) to look up the full text
for any hash value in the SQL Activ-
ity report, or in our results shown in
Figure 10.

In order to drill down on the sus-
pect SQLs revealed by the script in
Figure 11, we’ll want to query on the
SQL text instead of the hash value. In
Figure 12, I’ve chosen to drill down
on the first query in the sample out-
put for Figure 11, i.e., ‘DECLARE
job BINARY_INTEGER :=’

From the output of this script (Fig-
ure 13), we can clearly see that this
SQL is being run repeatedly with lit-
erals instead of bind variables:

We have looked at the simplest pos-
sible way to check for almost-identi-
cal SQL statements that should use
bind variables.

Tom Kyte provides a more sophis-
ticated script that loops through the
text of all the SQL in the shared
pool, removes the literals, and then
groups the statements to check for
matches. The script can be found
at http://asktom.oracle.com/pls/
ask/f?p=4950:8:::::F4950_P8_DIS-
PLAYID:1163635055580

Figure 12 – sqlarea3.sql

set lines 70
set pages 1000
select sql_text from v$sqltext s1
where (s1.hash_value, s1.address) in
 (select hash_value, address from v$sqltext s2
 where substr(sql_text,1,30) = ‘DECLARE job BINARY_INTEGER := ‘)
order by hash_value, address, piece
/

Figure 11 – v$sqltext.sql results

SQL> select piece, sql_text from v$sqltext
 2 where hash_value=1916299250
 3 order by address, piece ;

 PIECE SQL_TEXT
---------- --
 0 SELECT SUN + MON + TUES + WEDS + THUR + FRI + SAT + SHIFT_SUN +
 1 SHIFT_MON + SHIFT_TUES + SHIFT_WEDS + SHIFT_THUR + SHIFT_FRI + S
 2 HIFT_SAT FROM SCHEDULES WHERE SCHEDULE_NO = :B1
SQL>

Figure 13 – sqlarea3.sql Results

SQL> @sqlarea3.sql

SQL_TEXT
--
DECLARE job BINARY_INTEGER := :job; next_date DATE := :mydate;
broken BOOLEAN := FALSE; BEGIN exec myproc(‘1’); commit; end;
:mydate := next_date; IF broken THEN :b := 1; ELSE :b := 0;
END IF; END;
DECLARE job BINARY_INTEGER := :job; next_date DATE := :mydate;
broken BOOLEAN := FALSE; BEGIN exec myproc(‘2’); commit; end;
:mydate := next_date; IF broken THEN :b := 1; ELSE :b := 0;
END IF; END;
DECLARE job BINARY_INTEGER := :job; next_date DATE := :mydate;
broken BOOLEAN := FALSE; BEGIN exec myproc(‘3’); commit; end;
:mydate := next_date; IF broken THEN :b := 1; ELSE :b := 0;
END IF; END;
DECLARE job BINARY_INTEGER := :job; next_date DATE := :mydate;
broken BOOLEAN := FALSE; BEGIN exec myproc(‘4’); commit; end;
:mydate := next_date; IF broken THEN :b := 1; ELSE :b := 0;
END IF; END;
DECLARE job BINARY_INTEGER := :job; next_date DATE := :mydate;
broken BOOLEAN := FALSE; BEGIN exec myproc(‘5’); commit; end;
:mydate := next_date; IF broken THEN :b := 1; ELSE :b := 0;
END IF; END;
DECLARE job BINARY_INTEGER := :job; next_date DATE := :mydate;
broken BOOLEAN := FALSE; BEGIN exec myproc(‘6’); commit; end;
:mydate := next_date; IF broken THEN :b := 1; ELSE :b := 0;
END IF; END;
[....]
DECLARE job BINARY_INTEGER := :job; next_date DATE := :mydate;
broken BOOLEAN := FALSE; BEGIN exec myproc(‘2398’); commit; end;
:mydate := next_date; IF broken THEN :b := 1; ELSE :b := 0;
END IF; END;
2398 rows selected.
SQL>

4on Database - Monitoring

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

Sample output from this script is
shown as Figure 14.

Note: I’ve truncated the values of
SQL_TEXT_WO_CONSTANTS in
this example for readability. The full
SQL text will display when you run
the script.

Performance Hint: CURSOR_
SHARING

So what’s a DBA to do if the above
scripts reveal a lot of shareable SQL
that’s not being shared? Fortunate-
ly, there’s a database initialization
parameter that tells Oracle to substi-
tute bind variables for literals when-
ever it is passed a SQL statement with

literals. This initialization parameter,
CURSOR_SHARING, is available in
database versions 8.1.6 and above. In
8i releases 8.1.6 and above, you can
set CURSOR_SHARING=FORCE at
session or system level, and Oracle
will replace all literals with bind
variables.

This can have performance dis-
advantages as well as advantages.
Inappropriate variable substitutions
can cause the CBO to choose sub-
optimal query plans. So CURSOR_
SHARING=FORCE should only be
implemented if you are seeing real
problems with bind variable under-
use in your system.

Database versions 9iR2 and above
provide a better option which can be
implemented with no performance
tradeoff: you can set CURSOR_
SHARING=SIMILAR with the result
that bind variables are only substi-
tuted for literals when it won’t have a
negative effect on the query plan.

Who’s Been Running This
SQL?

Let’s return to the SQL Activity
Report and take a look at another
drilldown. If you see a SQL state-
ment that is long running, with
thousands of executions, it’s a good
bet that a session is currently run-
ning it, or has run it recently. This
drilldown will tell you which Oracle
account has been running the SQL in
question.

Start with a hash value from the
SQL Activity report, or from our
SQL-text-enhanced version, sqlar-
ea1.sql. This hash value is present
in a dynamic performance view,
v$session, which contains informa-
tion on all current database sessions.
So it’s simple to see if anyone is cur-
rently running that statement.

SQL> set lines 70
SQL> set pages 1000
SQL> col sql_text_wo_constants for a55
SQL> col cnt for 999999
SQL> set lines 65
SQL> @remove_constants

Table created.

Table altered.

Function created.

8473 rows updated.

SQL_TEXT_WO_CONSTANTS CNT
-- -------
DECLARE VAR_VAL OWA.VC_ARR; VAR_NAME OWA.VC_ARR; DUMMY_ 829
DECLARE VAR_VAL OWA.VC_ARR; VAR_NAME OWA.VC_ARR; DUMMY_ 792
DECLARE VAR_VAL OWA.VC_ARR; VAR_NAME OWA.VC_ARR; DUMMY_ 285
DECLARE VAR_VAL OWA.VC_ARR; VAR_NAME OWA.VC_ARR; DUMMY_ 146
DECLARE VAR_VAL OWA.VC_ARR; VAR_NAME OWA.VC_ARR; DUMMY_ 133

11 rows selected.

SQL>

Figure 14 – Tom Kyte’s “remove_constants” Results

If you see a SQL

statement that is

long running, with

thousands of

executions, it’s a

good bet that a

session is currently

running it, or has

run it recently.

4on Database - Monitoring

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

We’ll start by altering sqlarea1.sql
(Figure 15) to focus on long-running
queries rather than the most
frequently executed queries.

Executing, we see a different
set of queries (Figure 16) – the
queries that have been the most
CPU-intensive on our system:

(Again, I have truncated the
SQL text in Figure 16 for read-
ability.) Now, let’s see if any of
these resource hogs are running.
Let’s look at the SQL statement
with hash value 1861958696
(Figure 17):

Running this script shows
me (Figure 18) which Oracle
user(s) is (are) executing this
SQL currently, and how many
sessions of each user are exe-
cuting it:

set lines 120
set pages 1000
col sql_hash for 9999999999
col phyrd for 99999
col logrd for 9999999
col sorts for 999
col execs for 999999
col cputime for 999999999
col cpu_per_exec for 999999
col sqltxt for a30
select * from (
select hash_value as sql_hash, disk_reads as phyrd, buffer_gets as logrd,
sorts, executions as execs, cpu_time as cputime,
decode(executions,0,0,cpu_time/executions) as cpu_per_exec,
substr(sql_text,1,30) as sqltxt
from v$sqlarea
order by cpu_time desc)
where rownum <= 15
/

Figure 15 – sqlarea1.sql Modified

SQL> @sqlarea1.sql

 SQL_HASH PHYRD LOGRD SORTS EXECS CPUTIME CPU_PER_EXEC SQLTXT
---------- ------ -------- ----- ------- ---------- ------------ ------------
 826635222 ###### ######## 0 569 ########## ####### declare begin
1090992093 ###### ######## 0 173 ########## ####### declare begin
1758711393 65 ######## 912 912 ########## ####### DELETE FROM
4162728552 ###### ######## 0 1548 ########## ####### declare begin
1861958696 12537 ######## #### 46846 ########## 50795 select null
1483738633 ###### ######## 0 290 ########## ####### declare segs
 538521295 42037 11879 26 13 ########## ####### SELECT vdq.
1966261648 ###### ######## #### 2068 ########## 519917 select ccid,
1997068893 2052 ######## #### 56866 ########## 18387 select null
1436358176 ###### ######## 0 1 ########## ####### DECLARE job
3282269111 31440 ######## 0 152 920718750 ####### DELETE FROM
2886384431 30196 ######## #### ####### 877937500 454 SELECT SALAR
 819838265 ###### ######## 0 164 841234375 ####### declare begin
3591315707 ###### 2717431 913 913 822718750 901116 INSERT INTO
4068684737 ###### ######## 0 912 685984375 752176 DELETE FROM

15 rows selected.

SQL>

Figure 16 – sqlarea1.sql (modified) Results

4on Database - Monitoring

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

Extending OAM With Your
New Scripts

OAM can be extended to include
the scripts we’ve just gone over. Add
these custom scripts by using the
SQL Extensions page. (Navigate to
Site Map > Others > SQL Exten-
sions). The procedure for adding
custom scripts as SQL extensions
is well documented; see the Oracle
Applications System Administrator’s
Guide – Maintenance (B13924-02),
pp. 4-22 ff.

Conclusion
We’ve seen how to extend OAM’s

SQL monitoring capability greatly by
running a few simple scripts against
the database itself. The SQL activity
report has gone from a cryptic list of
hash values to a springboard into in-
depth information on SQL execution
in the database hosting your Oracle
Application instance. And OAM can
be extended to include these custom
scripts as SQL Extensions, making
this additional information easily
accessible and convenient.

Future articles will drill down on
other aspects of OAM’s database
monitoring, such as its list of data-
base sessions.

Natalka Roshak – Natalka is a
Senior Oracle Database Adminis-
trator and an Oracle Certified Pro-
fessional in Database Administra-
tion. She provides expert database
consulting solutions across North
America from her base in Southern
Ontario. Natalka may be contacted at
Natalka.Roshak@ERPtips.com ≈

col username for a30
select username, count(*) cnt_executing_sessions
from v$session sess
where sess.sql_hash_value=1861958696
or sess.prev_hash_value=1861958696
group by username
/

Figure 17 – sqlsession.sql

SQL> @sqlsession

USERNAME CNT_EXECUTING_SESSIONS
------------------------------ ----------------------
WEBSERVER 2

SQL>

Figure 18 – sqlsession.sql Results

4on Database - Monitoring

ORAtips

Pa
ge

 �

O
R

A
ti

p
s

Journal
J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

The information on our website and in our publications is the copyrighted work of Klee Associates, Inc. and is owned by Klee Associates, Inc. NO WARRANTY: This
documentation is delivered as is, and Klee Associates, Inc. makes no warranty as to its accuracy or use. Any use of this documentation is at the risk of the user. Although
we make every good faith effort to ensure accuracy, this document may include technical or other inaccuracies or typographical errors. Klee Associates, Inc. reserves
the right to make changes without prior notice. NO AFFILIATION: Klee Associates, Inc. and this publication are not affiliated with or endorsed by Oracle Corporation.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Klee Associates, Inc. is a member of the Oracle Partner Network

This article was originally published by Klee Associates, Inc., publishers of JDEtips and SAPtips.
For training, consulting, and articles on JD Edwards or SAP, please visit our websites:
www.JDEtips.com and www.SAPtips.com.

