
ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

Editor’s Note: SQL Server has plenty
of uses as a platform for applications,
from Microsoft and SAP to People
Soft. Given the confusion surround-
ing Oracle Fusion, and the constant
rumors about the future direction for
PeopleSoft and JD Edwards appli-
cations, it seemed timely to present
an article discussing the migration
from SQL Server to Oracle. First time
ORAtips contributor and Oracle vet-
eran Blake Couch has “been there”,
“done that”, and provides his unique
insight on this process, offering tips
for both the rookie and the seasoned
DBA professional alike.

Introduction
In the business world, a relation-

al database management system is
often virtually invisible, understood
by and known to only the database
practitioners who maintain it. Yet
it is frequently the foundation of
the business processes upon which
an organization depends. Which
RDBMS to use may seem a thorough-
ly arcane decision to all but those
same practitioners, but that choice
can have far-reaching implications,
even for the end user. There are per-
haps as many reasons for switching
from one RDBMS to another, as there
are organizations that use them, but
the differences between systems are
substantial enough to make switch-
ing a process that merits careful
preparation.

This article presents information
relevant to the differences between
SQL Server 2000 and Oracle 9i, and
will show how to handle those dif-
ferences when converting from SQL
Server to Oracle. What I present here
is not necessarily true for other, espe-
cially later, versions, nor is it meant
to be exhaustive of the differences
between the two systems.

Server, creates your SQL*Loader
script and control files, and yes, it is
a free download.

Based on my experiences, I highly
recommend you download the OMW
and take full advantage of it. The
OMW will save you an enormous
amount of time and effort, but it is
only the beginning of your migration
journey. You’ve still got a lot of work
to do, so please keep reading.

Case Sensitivity
The differences between SQL

Server and Oracle are quite numer-
ous and could, indeed, fill an entire
book-length volume. Which of those
differences are most pertinent to the
task of converting from one to the
other? The single largest issue in this
realm is case sensitivity. SQL Server
is by default not case-sensitive when
it comes to data values. Oracle is
case-sensitive. This has ramifications,
which extend from the database right
on up to end-user applications.

The Oracle Migration
Workbench

There’s an awful lot of grunt
work to be done in migrating an
entire schema along with its data
from one RDBMS to another. Ora-
cle supplies a tool called the Ora-
cle Migration Workbench (OMW),
available at http://www.oracle.com/tech-
nology/tech/migration/workbench/index.
html, which takes away a lot of the
drudgery of scripting DDL for table,
index, constraint, view, and user
definitions.

At a high level, it converts stored
procedures and triggers – not per-
fectly, but it does give you a starting
point. It supports a wide variety of
source database systems, including
SQL Server, Sybase, Informix, DB2,
and MySQL. The OMW targets both
Oracle 9i and 10g. It allows you to
tweak the logical Oracle model it cre-
ates for you before it generates the
scripts you will use to create your
physical model. It generates data
extract scripts, using BCP for SQL

Migrating from SQL Server 2000 to Oracle® 9i
					 By Blake Couch

4On Database

 Figure 1: Oracle Migration Workbench

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

�SELECT ‘update ‘ || c.table_name || ‘ set
‘ || cc.column_name || ‘ = upper(‘ ||
cc.column_name || ‘); ‘
�FROM user_constraints c, user_cons_col-
umns cc
�WHERE c.constraint_name = cc.constraint_
name
AND c.constraint_type = ‘P’
AND c.owner = ‘SchemaOwner’;

and running it as a script in
SQL*Plus.

Now that your data is in good
shape, its time to turn your attention
to case issues in your applications.
Finding and fixing these is likely to
be a much larger task. You need to
look for instances of hard-coded
key values in SQL WHERE clauses
and in comparisons in code between
constants and values returned from
the database. If, for example, you’ve
chosen to uppercase all your keys,
any code that relies on lower- or
mixed-case values is going to break.
I found it useful to generate a list of
distinct key values and then grep all
my source code for those values.

Capturing the output from

�SELECT ‘select distinct ‘ || column_name
|| ‘ from ‘ || table_name || ‘; ‘
FROM USER_CONS_COLUMNS
WHERE position IS NOT NULL

will give you a script you can run
to generate a list of key column
values. You can use this list to do a
case-insensitive search through your
source code using grep or a similar
search tool.

Cascading Updates
SQL Server supports cascading

updates. Oracle does not. This means
that to the extent your SQL Server-
based applications rely on the RDBMS
to propagate changes to key values
where foreign keys exist and refer-
ential integrity is enforced, you must
find another way to support that func-

tionality if you’re going to migrate to
Oracle. The OMW will not help you
in this area of your migration process.
Writing triggers to mimic the cascad-
ing update process is a bit tricky, but
is the only practical way I have found
to handle this problem.

The problem with writing triggers
is, if referential integrity is enforced
on the column in question, you can-
not update the parent row without
violating referential integrity in the
associated child row. Similarly, you
cannot update the child row before
the parent row or the same violation
will occur. If you could disable and
then re-enable referential integrity
from within a trigger, you could have
your trigger update the child rows in
between, but Oracle will not allow
you to do that. DDL inside a trigger is
a no-no. There are some clumsy and
resource-consuming workarounds for
this problem, involving temporary
rows and/or tables, but I have found
the best solution is simply to remove
the column in question from both the
primary key in the parent and the
foreign key relationship in the child.
Then you can write your trigger to
update the child in the After Update
event of the parent.

The argument in support of this
approach, based on relational theory,
is that primary key values are sup-
posed to be immutable. Therefore,
if you have a column in a multi-col-
umn primary key that is subject to
change over time, it does not belong
as part of the primary key. As a prac-
tical matter, you may find that your
primary key is no longer unique once
you remove that changeable column
from it. If that is the case, you will
need to substitute a sequence value
or some other existing column that
makes the key combination unique.
At any rate, you should probably
take a hard look at the design of the
tables in question if, in fact, you do
encounter this issue.

In SQL Server, all of the follow-
ing are considered equivalent data
values:

�primary key, Primary Key, PriMary
keY, PRIMARY KEY

If one does a select on a column in a
SQL Server table where any of those
values is specified in the WHERE
clause, all rows containing any one
of them will be returned in the result
set. Likewise for joins: a join on tables
based on columns containing a mix
of those values will result in matches
on all of them.

In Oracle those four values are
separate and distinct. Executing the
following statement in Oracle

�SELECT * from myTable where myKey =
‘primary key’

will not return rows where myKey
contains Primary Key, PriMary keY,
or PRIMARY KEY. Now if you never
allow your users to store data values
in heterogeneous or mixed case, case
sensitivity will not be an issue for
you in a conversion, but in practice,
where heterogeneous case is allowed
by the system, it is likely to be found
in the data.

How does one handle this situation
in converted data? You could search
through all your key values for case
variations and handle them individu-
ally, but, as a practical matter, this
could be extremely time-consuming.
The most expedient solution I have
found is to update all non-numeric
keys, both primary and foreign, to
either all upper or all lower case.
Which you choose is purely personal
preference, as long as you’re consis-
tent with it.

Generating a script to uppercase
all your primary keys is as simple as
capturing the result set from

4On Database

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

Server instance that extract date col-
umn data into a user-friendly format.
The SQL*Loader process, which gets
your data over into Oracle, then
resets Oracle’s default date mask to
this same format before it loads any
data.

Leading/Trailing Spaces
SQL Server by default will ignore

trailing and leading spaces in key
values when performing lookups and
joins. Need I mention that Oracle
does not do this? Once again, if the
RDBMS allows it, and you do not
take explicit steps to prevent it at the
application level, chances are you
will wind up with what Oracle con-
siders “dirty data” when your migra-
tion is done. In the Migration Steps
section of this article, I show how to
create a script that will trim leading
and trailing spaces from all of your
key values.

Timestamp Columns
SQL Server TIMESTAMP columns

do not convert well at all to Oracle.
The OMW will attempt to turn them
into LONGs, but this really does not
give you what you want. The problem
is that there is no data type equiva-
lent to the SQL Server TIMESTAMP
in Oracle 9i. You are really on your
own when it comes to converting
these columns.

Stored Procedures
Converting T-SQL stored proce-

dures to Oracle’s PL/SQL is a difficult
task. Both systems have their own
proprietary extensions to SQL, and,
of course, their own peculiarities of
syntax. The OMW takes on this task
and will do a creditable job for you,
but you will want to test thoroughly
any converted functions, procedures,
and triggers. Chances are you will
want to make changes to the gener-
ated code, for performance tuning if
no other reason. OMW is particularly
helpful, creating functional equiva-
lents to SQL Server’s proprietary
SQL functions (e.g., string manipula-
tion functions like MID and INSTR)
in PL/SQL and then aliases them for
you. This relieves you of the task of
converting code and SQL statements
that use those functions.

Boolean Data Types
There is no Boolean data type in

Oracle (nor is there one in SQL Serv-
er, but the bit type is more or less
functionally Boolean). All of your
Booleans from SQL Server will have
to be converted to a non-Boolean
type in Oracle. Typically such data is
converted to CHAR(1), with TRUE
stored as a “Y” and FALSE stored
as an “N”, but I prefer the method
employed by the OMW. It brings
Booleans over from SQL Server as
1 for TRUE and 0 for FALSE and
stores them in a NUMBER(1) col-
umn. Either way, you will still need
to make changes to any applications
that make Boolean comparisons on
these columns.

Maximum Identifier Length
In Oracle, all identifiers – table

names, column names, constraint
names, index names, etc. –are lim-
ited by the RDBMS to 30 characters.
As unrealistic as it may seem, that
is the Oracle world. All of your SQL
Server identifiers must be converted
to 30 characters or fewer, and what is
worse, all references to any identifiers
that are changed must be updated as
well! This no doubt strikes you as a
daunting task, especially if you hap-
pen to use a lot of long names, but
the OMW will handle this for you. All
of your schema items and references
to them in your stored procedures
will be updated by the OMW in your
new Oracle schema. This leaves you
with the task of fixing your applica-
tion code.

To get a list of your SQL Server
column names whose lengths are
greater than 30 characters, run this
script

SELECT distinct column_name
�FROM information_schema.columns
WHERE len(column_name) > 30

against your database in Enterprise
Manager or whatever you use to run
ad hoc queries on your data. You
use the list of columns generated to
search your application source code
for problem column references. You
may want to check your other infor-
mation schema views, like Key_Col-
umn_Usage, for other instances of
identifiers that are too long for Oracle.
Foreign key constraint names tend to
be especially problematic, because
people like to incorporate two table
names and at least one column name
in them.

Converting Date Columns
Oracle’s default date format “DD-

MON-YY” is a bit peculiar and not
conducive to loading date values
straight out of SQL Server. Fortu-
nately the OMW handles this for
you by creating views in your SQL

4On Database

All of your SQL

Server identifiers

must be converted

to 30 characters or

fewer….

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

Step 1: Capture the SQL Server
schema with OMW and create the
SQL Server data model

This step can be performed either
online, using ODBC connectivity, or
offline, using a .bat file. Either meth-
od will create several dozen XML
and DAT files, which describe the
SQL Server schema.

Step 2: Make any necessary
changes to the SQL Server data
model

This is your opportunity to tweak
your schema before you migrate it to
Oracle. For example, you may have
some column or table names that were
not particularly well chosen when
you first defined the schema. You can
fix them before they make their way
into your new Oracle instance.

Step 3: Create the Oracle data
model in the OMW, based on the
SQL Server model created in
Step 1

Both the SQL Server and the
Oracle data model are stored in the
OMW’s internal metadata repository.
You can also store this metadata in
an actual Oracle database, if you so
desire. After generating the Oracle
model, you again have the opportu-
nity to tweak it before generating the
scripts to create the physical model.
For instance, you might want to
change the tablespace names to uti-
lize tablespaces that already exist, or
you might want to update the schema
owner name.

Step 4: Generate the Oracle
schema build and data migration
scripts in OMW

During this step, a series of scripts
will be created that use the SQL Serv-
er BCP utility to extract data into flat
files. It will also create all your Oracle
schema elements with DDL instruc-
tions and populate your new Oracle
tables using SQL*Loader utility.

For example, code like “IF myBool-
ean THEN...” or “IF myBoolean =
TRUE THEN...” probably will not
work once your back-end has been
converted to Oracle (some program-
ming languages will support “IF
myBoolean”, but many will not).
You’ll need to change your code to
“IF myBoolean = 1” or “IF myBool-
ean = 0”.

To locate your SQL Server bit
columns, you can use the following
script:

�SELECT table_name,column_name
�FROM information_schema.
columns
WHERE data_type=’bit’

Migration Steps
Many of you Oracle folks reading

this are also regular users of TOAD.
Let me offer a word to the wise: avoid
using TOAD to run the SQL scripts
that I mention in the migration steps,
especially if your data is millions of
rows. Use SQL*Plus instead. In my
experience, TOAD has a tendency to
choke and hang on longer-running
scripts. You will want to log all your
SQL*Plus sessions, so remember to
spool your output from those ses-
sions. Setting timing ON can be use-
ful as well.

The three basic steps in migrating
from SQL Server to Oracle are:

1. �Create the Oracle schema

2. �Extract your data from SQL
Server

3. �Load the data into Oracle

Using the OMW gives you control
over the process because of its granu-
larity, and by handling a lot of the
details for you. Below are the steps,
in the order they should be execut-
ed, as they break out in an OMW
migration:

Step 5: Run the Oracle schema
build scripts

It is advisable after this step to dis-
able temporarily the primary key, for-
eign key, and not null constraints in
your new Oracle database. Note that
foreign key constraints must be dis-
abled before primary key constraints
or you run into dependency issues,
and that not null constraints should
be disabled last. While your data
may be perfectly clean from the SQL
Server point of view, it will likely be
dirty to Oracle, for the reasons I’ve
outlined already. If you leave con-
straints in place while you attempt to
load data, you will find yourself con-
stantly restarting the data migration
in order to address constraint viola-
tions. I have found it is easier to get
all the data loaded into Oracle first
and then re-enable constraints while
noting which ones fail to enable.
This way you see where your data
needs fixing and you can handle it
from within the database where you
will have the power of SQL and the
database engine to help with the
corrections.

To disable constraints, capture the
output from

�SELECT ‘alter table ‘ || table_name || ‘
disable constraint ‘ || constraint_name
|| ‘; ‘
FROM user_constraints
WHERE owner = ‘myOwner’

and run as a script in SQL*Plus.
Remember to reorder the lines pro-
duced in order to get the foreign keys
first.

Likewise you should disable any
insert or update triggers in your new
Oracle database before attempting
to load data. Otherwise, you’ll slow
down the load process, and you could
find yourself with data anomalies,
especially if your triggers generate
rows in other tables. What you are
trying to do is create a mirror image

4On Database

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4On Database

of your SQL Server data in Oracle.
You’re not interested in duplicating
the normal insert and update proce-
dures during the data migration.

Of course, if you’ve got a power-
ful ETL tool at your disposal, and
it is one you are already familiar
with, you could be better off using
it to migrate your data. Remember,
though, that the OMW is free, and is
easy to learn and use.

Step 6: Create the views in SQL
Server that will be used to extract
data formatted for Oracle using
the Create Views script generated
in Step 4

An obvious prerequisite – run this
script as a user with create view
rights. There is another script you’ll
run later that deletes all these views
for you.

Step 7: Extract your SQL Server
data using the script created in
Step 4

Use the bcp_extract.bat script cre-
ated for you by the OMW. It makes a
call to the SQL Server bcp utility for
every view you created in Step 6, and
for every table in your database where
a view is not needed, dumping the
data for each into a separate flat file.

Step 8: Load the extracted
data into Oracle using the
SQL*Loader script created in
Step 4

Two things to consider during this
step: use direct path loads for your
larger tables, and use the parallel
option if your server has multiple
processors. Both options must be
added manually to the generated
SQL*Loader scripts.

Step 9: In a SQL*Plus session,
run a script to change all your
key values in Oracle to either
upper or lower case

Capture the output from

�SELECT ‘update ‘ || table_name || ‘ set ‘
|| column_name || ‘ = upper(‘ || col-
umn_name || ‘) ; ‘
FROM USER_CONS_COLUMNS
WHERE position IS NOT NULL

This produces a script you can run
to accomplish this step. It is some-
thing of a brute-force method, since
it does not exclude numeric keys, but
Oracle will simply ignore the update
commands for those keys.

Step 10: Trim leading and trailing
spaces from all your key columns
in Oracle

You can use the SELECT from
Step 9 to generate the update script
for this step by changing “upper” to
“trim”.

Step 11: Re-enable constraints
and triggers in Oracle

For the constraints, you can take
your “disable constraints” script,
globally replace the word “disable”
with “enable”, change the order of
the lines so that primary key con-
straints are enabled first, and run the
resulting script in SQL*Plus.

Step 12: Run the Drop_View.sql
script to remove your temporary
views from SQL Server

And that is all there is to it!

Conclusion
There’s no getting around it:

migrating from SQL Server to Oracle
is complicated and exacting. Scrupu-
lous attention to detail is required if
you are going to do it right. I hope
this article can be your road map
should you ever need to go there.

Blake Couch - Blake is a 25-year
veteran of the computing wars who
can be taught a new trick or two, but
hasn’t forgotten paper tape, punch
cards, or Teletype machines. Blake
resides in Colorado with his wife,
daughter, and dog, Stanley Pup,
who came along right after the Ava-
lanche last captured Lord Stanley’s
trophy. Check out Blake’s infamous
photo of “kissing the cup” compli-
ments of his wife’s quick shutter
fingers. Blake may be contacted at
Blake.Couch@ERPtips.com. ≈

Remember…. Oracle

Migration Work-

bench is free and

easy to use!

A kiss for the Cup.

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

The information on our website and in our publications is the copyrighted work of Klee Associates, Inc. and is owned by Klee Associates, Inc. NO WARRANTY: This
documentation is delivered as is, and Klee Associates, Inc. makes no warranty as to its accuracy or use. Any use of this documentation is at the risk of the user. Although
we make every good faith effort to ensure accuracy, this document may include technical or other inaccuracies or typographical errors. Klee Associates, Inc. reserves
the right to make changes without prior notice. NO AFFILIATION: Klee Associates, Inc. and this publication are not affiliated with or endorsed by Oracle Corporation.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Klee Associates, Inc. is a member of the Oracle Partner Network

Journal

This article was originally published by Klee Associates, Inc., publishers of JDEtips and SAPtips.
For training, consulting, and articles on JD Edwards or SAP, please visit our websites:
www.JDEtips.com and www.SAPtips.com.

