
ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4On Development

Editor’s Note: Kevin Ellis continues
to explore the use of Oracle’s Inter-
face Tables. His current article (also
an Oracle Open World presentation)
discusses data processing and con-
current manager management using
FTP sessions and UNIX shell pro-
grams with good old fashion e-mail
to load journal entries into Oracle
General Ledger.

Background
Interfaces comprise the bulk of

most information systems. The
chances are that at your place of
employment, not every piece of infor-
mation is centralized. In fact, it may
be spread over a series of unrelated
systems. How do these systems com-
municate with each other? That is
where the interface comes into play.
According to the Merriam-Webster
dictionary, an interface is a place at
which independent and often-unre-
lated systems meet and act on or
communicate with each other. Oracle
Applications is no different.

Interfaces come in many flavors.
An interface could involve reconcil-
ing items for journal entries, check
balancing, or handling approval
hierarchies from a foreign HR sys-
tem. For this article, I will discuss a
simple interface that loads journal
entries into Oracle General Ledger.

Originally this interface was
deployed via a request set. The first
stage executed a UNIX shell pro-
gram that would initiate an FTP ses-
sion to pull the file from Legacy to
UNIX. The next stage would execute
a SQL*Loader session to load the
data into a staging table. The third
stage would execute a SQL*Plus ses-
sion to execute a PL/SQL program

gram that completed in error. Some-
times it would be the Journal Import
job that had completed in error (usu-
ally from a period not being opened).
In many cases, the automated Journal
Import job did not give us any clue
as to the real problem with the inter-
face. Even the concurrent programs
that execute have parent processes,
and the parent processes point back
to the reset set. You can quickly have
a basketful of request IDs to sort
through. Most of the problems are
simple to solve, once you find them.
But wouldn’t it be nice to find the
problem immediately? Wouldn’t it be
nice to see one log generated from a
single concurrent request that logged
the entire interface process?

I sometimes work with contractors,
and there’s one whom I remember
very well. She was given the task of
putting together an interface, and I
was expecting to see a request set as
the deliverable. The deliverable was
to cut an extract out of Oracle AP
and send it to another remote sys-
tem. This meant that a UNIX shell
program would be needed to send the
file to the remote system via an FTP
session. Likewise, a PL/SQL pro-
gram would be required to pull data
from the database and create the file
to be sent. To me, this would mean
two separate concurrent programs
executed in sequence via a request
set. To my surprise, the deliverable
was a single concurrent program that
executed a single UNIX Shell Pro-
gram. It worked, and it worked fast.

Given to curiosity, I investigated
what had been deployed. As it turned
out, the PL/SQL program was called
from within the UNIX Shell program
prior to the FTP session being called.
Simply put, the contractor used a

that would process the data in the
staging table and move the results
to Oracle’s GL Open Interface Table
(gl_interface). The fourth stage
would execute a couple of concurrent
programs that were built in-house to
automate the Journal Import process.
The final stage initiated another job
that would send e-mail to the caller,
notifying him or her when the request
set was done.

Anyone who has experience work-
ing with request sets (especially from
the support side) can attest to the
fact that the job will generate mul-
tiple request IDs within the concur-
rent manager. Users would call me
about a problem with the interface.
In response, I would ask them for the
corresponding request ID. Sometimes
I would get only the concurrent pro-

Let UNIX Drive Your Oracle® Interfaces
					 By Kevin Ellis

But wouldn’t it

be nice to find

the problem

immediately?

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4On Development

I execute a single concurrent pro-
gram and if there is a problem, all I
have to worry about is one (in most
cases) request ID. Using the request
ID, I can view the associated log,
which documents every stage of the
interface process. I don’t have to go
searching for various logs in order to
put the entire picture together.

I decided to prove that the con-
cept was really viable by redeploy-
ing an existing interface (available
as a request set) using the new con-
cept (single concurrent program) and
measuring the differences. From here,
I will discuss the results of my analy-
sis. Construction of the concept will be
discussed under “Implementation”.

Every option has its strengths and
weaknesses. As for concurrent pro-
grams and request set, this is what I
have uncovered (see Figure 1):

A lot of these conclusions are based
on tests that I have performed. Con-
cerning the tests, I ran two series:
one for a small batch of data and one
that was significantly larger. Given,
data volume can alter from one run
to another and data is different from
one company to another. In any event,
the demonstration is made to show a
simple difference between running
an interface using a single concurrent
program verses a request set. Figure
2 provides time results using a small
batch of data.

UNIX Shell program as the driver
for the interface. Given these facts,
I started to experiment with other
possibilities. Could SQL*Loader
be called from within a UNIX Shell
Program? How about send E-mail?
Can parameters be passed to a UNIX
Shell Program and how do you
retrieve them for processing? These
and other questions were researched.
As it turned out, all of these things
could be done. The power of this
approach was twofold: Reduction of
request IDs, and reduction of pro-
cessing time.

This article will demonstrate how
you can put together an interface
using a single concurrent program.
It will demonstrate this approach
from a case study involving a SWAT
(Strengths, Weaknesses, Achieve-
ments, and Threats) analysis, fol-
lowed by how to implement the
approach.

Options
There are two primary options

for deploying an interface in Oracle
Applications: a concur-
rent program or a request
set. A request set is a col-
lection of stages. The
same concurrent pro-
gram could be executed
in each of these stages.
Why might you do this?
Perhaps this option
would be best if there are
different parameters to
be used for each stage.
Also, multiple concur-
rent programs can be
executed within a sin-
gle stage. There are all
sorts of possibilities with
deploying an interface
via a request set.

From the develop-
er’s viewpoint (or at
least mine), I prefer the
concurrent program. Figure 1: SWAT

Concurrent Program
Strengths	 Weaknesses

Interface stages are programmed	 Moderate knowledge of UNIX shell scripting

Quicker response in resolving Issues	 Control bypasses the concurrent manager

Shorter execution duration	

Fewer concurrent requests generated	

Fewer front-end setups	

Excluding UNIX driver program, scripts can
have various locations	

Better error trapping via messaging	

	
Request Set
Strengths	 Weaknesses

Stages can be deployed via the application	 Takes more time to run

Users have control of the request set stages	 More setups on the application side

Control retained within the concurrent manager	 Documentation of application setup is complicated

 	 Difficulty in identifying background-spawned concurrent request

There are two

primary options for

deploying an

interface in Oracle

Applications: a

concurrent program

or a request set.

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4On Development

The sample consisted of 1014
records.

In this test scenario, I used a batch
of 1014 records. I ran the test for each
option 10 times. What I discovered
was that, on average, the concurrent
program was shorter in duration by
46% compared with the request set.
In other words, if a request set takes
100 units of time to complete, the
concurrent program approach could
accomplish the same task in only 54
units. This is a significant amount of
processing time that is free to be used
on other tasks. Suppose you had mul-
tiple batches to process; you could
almost complete two batches using
the concurrent program method in
the time it takes to run one batch
using the request set method.

To make sure that the results were
accurate, I decided to run the tests
again. Except this time, the data batch
would be larger. In this scenario, the

batch would increase to 40236
records. Figure 3 displays the results
of this new test.

The sample consisted of 40,236
records

In this test, the gap between com-
pletion rates has narrowed. Still, the
concurrent program completes the
processing in roughly 87.2% of the
time it would take the request set to
complete.

After reviewing the strategy closer,
I determined that data (regardless
of whether using a single concur-
rent program or a request set) takes
a set amount of time to process for
each stage of the interface cycle.
The major difference is that with a
request set, each stage kicks off a
separate concurrent request. These
individual concurrent requests have
to wait for the concurrent manager to
execute them. The wait time between

Figure 2: Test #1

		 Request Set	 Concurrent Program	 Difference
	 Test #1	 100	 68	 32
	 Test #2	 82	 51	 31
	 Test #3	 59	 49	 10
	 Test #4	 44	 27	 17
	 Test #5	 72	 48	 24
	 Test #6	 129	 27	 102
	 Test #7	 72	 46	 26
	 Test #8	 91	 38	 53
	 Test #9	 68	 41	 27
	 Test #10	 87	 40	 47
			
	 Total Time	 804	 435	 369
	 Avg Time	 80.4	 43.5	 36.9
	 Factor	 1.85	 0.54	 8.48
			
	 Processing Time 	 84.83%	 45.90%	
		 longer	 shorter	
			
	 Requests per run	 16	 2	 14

Figure 3: Test #2

			 Request Set	 Concurrent Program	 Difference
	 Test #1	 222	 193	 29
	 Test #2	 247	 197	 50
	 Test #3	 244	 218	 26
	 Test #4	 265	 214	 51
	 Test #5	 246	 213	 33
	 Test #6	 209	 184	 25
	 Test #7	 223	 206	 17
	 Test #8	 242	 210	 32
	 Test #9	 239	 214	 25
	 Test #10	 236	 220	 16
			
	 Total Time	 2373	 2069	 304
	 Avg Time	 237.3	 206.9	 30.4
	 Factor	 1.15	 0.87	 1.47
			
	 Processing Time 	 14.69%	 12.81%	
		 longer	 shorter	
			
	 Requests per run	 16	 2	 14

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4On Development

concurrent requests can
be changed. But even if
you make the wait time
less, there will be a pause
between executing the
various stages within a
request set. As the data
volume increases for an
interface, the difference
between using the quick-
er concurrent program
option to the request set
will narrow. The concur-
rent program option will
always be faster since
there is no wait time
(unless programmed
in using the sleep com-
mand) between execut-
ing stages. That leaves us with the
decision whether to go with the
request set option, allowing you to
set up multiple stages via Oracle
Applications, or use a single concur-
rent program, requiring UNIX script-
ing knowledge to execute all of the
stages? If your users are not involved
or don’t care about the various stages
in which a process is executed, you
might want to explore the possibility
of deploying a single concurrent pro-
gram that executes a UNIX scripting
script. Regardless of the data vol-
ume, the concurrent program will
always finish before the request set.

Also, you only have to be responsible
for one primary request ID, whereas
the request set will generate multiple
request IDs.

Implementation
Let’s consider that you want to

explore the single concurrent pro-
gram approach. Let me show you
how to go about developing an
interface (start to finish) driven by
a UNIX shell program called from a
single concurrent program.

Design
First, let’s put together a design

of an interface. That design is list-
ed in Figure 4. OK, I told you that
we would only be working with one
request ID. Well, that is not totally
true, as in this case we will be work-
ing with two. Still, this is far fewer
IDs than what would be produced via
a request set. One of the request IDs
will be for executing the single con-
current program. The other will be
for executing an Oracle-supplied job
called “Journal Import”. For those of
you not familiar with Journal Import,
it is the utility used in General Led-
ger that imports journal entries from
remote data sources. Journal Import
is usually executed from within Ora-
cle Applications. But there is another
way of executing from the UNIX shell

using a utility provided by Oracle
called CONCSUB. You can find more
information about this utility on
MetaLink. Later, I will provide you
with the details for executing Jour-
nal Import via CONCSUB. Executing
Journal Import from the background
will generate the other request ID.

The Driver Program

Let’s talk a little about the design of
this concept. Using a UNIX shell pro-
gram, we can execute FTPs, Oracle’s
SQL*Loader, Oracle’s SQL*Plus, and
Oracle CONCSUB. With all of this,
we have complete control over pull-
ing the data, loading it into a stag-
ing table, processing it, and import-
ing it into the production tables used
by Oracle Applications. In our case,
we will be importing journal entries
from a remote system and loading
them into General Ledger.

There are two approaches to set-
ting up the UNIX shell program. The
two approaches come down to how
you process parameters sent from
Oracle Applications to the UNIX shell
program.

The first approach is by retriev-
ing all of the parameters using AWK.
AWK is basically used for parsing

Figure 4: Design

But there is

another way of

executing from the

UNIX shell using a

utility provided by

Oracle called

CONCSUB

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4On Development

through a string of data.
In this case, all of the data
sent from Oracle Appli-
cations is received via the
first UNIX parameter.
You have to use AWK to
parse through this string
in order to get all of the
necessary parameters
used by the interface. The
code is very hard to read
and time consuming to
program. But, it gets the
job done. Figure 5 dem-
onstrates this approach.

Here, all of the param-
eters passed from Oracle
Applications can be retrieved from
the UNIX shell program by access-
ing UNIX parameter $1. The key is
in knowing the order in which the
parameters are listed. By default,
Oracle passes parameters that are not
visible when setting up a concurrent
program: Filename, Request ID, User
Password, User ID, User Name, the
Printer for the Concurrent Program,
the Save Out option, and the Number
of Copies to Print. In order to obtain
the values without all the
other garbage associated
with it, I use “sed”, which
allows me to replace
characters. In this case,
unwanted characters are
basically eliminated or
replaced with null. Start-
ing at the 9th position in
$1 are the parameters I
actually created in asso-
ciation with the concur-
rent program. In this
case (and this is from
another, unrelated inter-
face), there were concur-
rent program parameters
for Org ID, Responsibil-
ity ID, Responsibility
Application ID, Security
Group ID, Batch Num-
ber, and Login ID. Basi-
cally, values 9 through 14

were the six parameters I set up for
the concurrent program in question.
It should come without question that
this is rather hard to read and under-
stand unless you are familiar with
AWK and sed.

The next option (used in this case
study and the one that I recommend)
involves creating a UNIX Link. To
use the UNIX Link, the UNIX shell

program must have a “.prog” exten-
sion. This may seem like a lot of extra
work, but it really isn’t; especially
when you consider how much easier
it will be to retrieve parameters from
the concurrent program, plus future
maintenance.

First, let’s investigate the UNIX
shell program, listed in Figure 6.

Figure 5: Parameters via AWK

Figure 6: Parameters via UNIX Link

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4On Development

As you can see, it is much easier
to identify the parameters coming
in without having to sort through all
of the AWK code. However, I must
mention that the first six parameters
(FILENAME, USERPASS, USER,
USERNAME, REQUESTID, and
ORGID) are passed to the UNIX shell
program regardless. Hence, the user-
defined parameters in the concurrent
program can be referenced starting
with the 6th parameter passed to the
UNIX shell program. For instance,
Organization ID can be referenced
via ${5}. Likewise, Responsibility
ID can be referenced via ${6}, and
so on. This is a much easier way to
deploy and maintain. However, the
side effect is that a UNIX
Link must be estab-
lished.

Creating the UNIX
Link is not very difficult.
It can be accomplished
by executing the code
listed in Figure 7.

The “–s” option tells
UNIX to create a symbol-
ic link. This method actu-
ally links the UNIX shell
program (UNIX_SHELL.
prog located under
${CUSTOM_TOP}/bin)
to FNDCPESR; an Ora-
cle-provided program that
Oracle Applications uses
to run UNIX shell pro-
grams for easier param-
eter processing. The “–f”
causes the ln command
to replace any destina-
tion paths that already
exist. Using this method
eliminates the need to
use a separate scripting
language (like AWK) to
parse the parameters out
of the ${0} variable. One
important note: if you
clone your environments
regularly, the links will
also need to be recycled;

otherwise, they point to the cloning
source, causing the concurrent pro-
gram to complete in error. This error
is sometimes hard to identify. But
after seeing it happen several times,
it is usually one of the first things I
look for before proceeding further.
Additionally, make sure you have
“execute” access on the “.prog” ver-
sion of your UNIX shell program for
both the owner and group.

Command Prompt to UNIX
Shell Program

Now that I have demonstrated how
to set up the UNIX shell program, it
is time to discuss the implementation
features. If you can execute some-

thing from the command prompt,
more than likely it can be scripted
and executed via a UNIX shell pro-
gram. So, let’s dive into a few con-
cepts that you can use to accomplish
the tasks associated with Figure 4.
One note, I will be referencing sever-
al parameters, all of which originate
from the UNIX shell program listed
in either Figure 5 or Figure 6.

FTP
I primarily use UNIX shell pro-

gramming for sending or retrieving
files. Let me show you how I put this
into motion. Figure 8 is an example
of scripting an FTP process.

Figure 7: Creating a UNIX Link

Figure 8: FTP

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4On Development

To keep things simple for this
example, I have defined the UNIX
variables prior to actually executing
the FTP. The values are bogus. How-
ever, you could use this same exam-
ple to perform an FTP; simply sub-
stitute your values for the ones I have
provided. Once the UNIX variables
are set, you are ready to perform
the FTP. The first step is starting the
FTP. Since this is within a UNIX shell
program, I give a starting and end-
ing header label (EOFTP1). What
this says is that everything within
EOFTP1 will be part of the FTP pro-
cess established. Once the process is
started, I provide the account to be
logged into plus the password asso-
ciated with the account. Depend-
ing on how the account is set up, it
may or may not log you
into the correct direc-
tory. I assume that it does
not. In this case, I issue
a change directory com-
mand to a known direc-
tory (called “/ftp_stag-
ing/gl/data_files”) where
the file I wish to pull
is located. Once this is
done, I pull the data file

(called “remote_gl_data.csv”) from
the remote server to UNIX issuing the
“get” command. I also assume that
there is a staging directory on UNIX
under my custom directory architec-
ture called “inbound”. I will place the
data file in the custom inbound direc-
tory and rename it to “local_gl_data.
csv”. Once this is completed, the FTP
process is done and I quit. Control is
now returned to UNIX.

SQL*Loader
The next step with any inbound

interface that I deploy is to put the
data into a custom staging table in
the database. It is possible to read
the data directly using the utl_file
utility provided by Oracle. However,
that requires UNIX directory setups,
possibly a bounce of the server. It is
a one-time deal, probably requiring
support from either your UNIX and/
or database administrators. However,
I like to keep things simple: the fewer
bottlenecks in deployment the better.
Also, I find it easier use SQL*Loader
for loading data into staging than
using utl_file to read a flat file. In our
interface, I will assume we are going
to use SQL*Loader to load the data
from the imported file into a custom
staging table. Another benefit is that
we can manipulate the data easier
using SQL as opposed to editing a
file via utl_file.

Figure 9 is a sample of code that
can be embedded in a UNIX shell
program that executes SQL*Loader
to read a data file and load it into a
table in Oracle.

Again for simplicity, I have defined
the UNIX variables. The excep-
tions are in the naming of the Log,
Bad Data, and Discarded Data files,
which can be generated by execut-
ing SQL*Loader. In this example, I
assume that the developer has put
together a SQL*Loader control file
called “control_file.ctl”. The name
of the data file that will be loaded is
“local_gl_data.csv” and it is locat-
ed in a directory called “inbound”
under the Custom Directory archi-
tecture. From Figure 5 or Figure 6,
I use the Request ID that is passed
down from the calling concurrent
program. I pre-tag the file with “s”
concatenated to the Request ID for
the Log, Discard, and Bad Data files.
By looking at the extensions, I know
which file is which. Since the Request
ID is attached, I know from which
Request ID in the concurrent man-
ager these SQL*Loader files were
spawned. Everything is tied togeth-
er. Simply put, it makes it easier for
maintenance.

Executing SQL*Loader from the
command prompt involves issuing the
“sqlldr” command followed by the
Oracle account/password connection
string. This is retrieved from values
passed from the calling concurrent
program (see either Figure 5 or 6).
At this point, I tell SQL*Loader the
name of the Log report to be generat-
ed, the Data file to load, the Control
file to read in loading the Data file,
the name for the Discarded data file,
and the name for the Bad data file.

Figure 9: SQL*Loader via UNIX Shell Program

It is easier to use

SQL*Loader for

loading data into

staging than using

utl_file to read a

flat file.

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4On Development

One important note:
SQL*Loader can com-
plete in error, usually
due to a formatting issue
in the data file. What I
do to see if SQL*Loader
completed successfully is
to determine whether the
Bad data file was gener-
ated. If the file was gen-
erated, an error occurred
during SQL*Loader.
Since an error occurred,
I do not want to continue
processing the interface.
Hence, I force the interface to termi-
nate. This is accomplished using the
“exit” command. I will give a sample
of this code under Messaging via E-
mail.

SQL*Plus
In this section, I will demonstrate

two ways in which SQL*Plus can be
used within a UNIX shell program.
One way is by directly issuing SQL
commands. The other is by execut-
ing PL/SQL scripts. We will start be
examining direct SQL commands.
A sample of code for this method is
demonstrated in Figure 10.

In this example, the goal is to
retrieve the e-mail address for the
caller of the concurrent program.
One of the things I like to do with
an interface is send messages via an
e-mail back to the caller of the pro-
gram. In this case, the caller (refer-
enced by ${USER}) is a parameter
passed to the UNIX shell program
via the concurrent pro-
gram. One of the fields
in the AOL table called
fnd_user is the email_
address. Note, this field
must be populated by the
system administrator for
this activity to work. In
any event, let’s assume
that it is populated for
every user who has access
to Oracle Applications.

Before executing the SQL, I make
sure that headers are turned off, plus
I do not want the SQL code to be
echoed out to the screen. The only
thing I want is a single value or the e-
mail address. This statement is piped
to a SQL*Plus session. Connecting
to the session requires an account
plus password, which is stored in the
UNIX parameter USERPASS. This
parameter is populated at the begin-
ning of the UNIX shell program via
the concurrent program (see either
Figure 5 or 6). The result is stored
in the UNIX variable EMAILADDR.
However, there might be an unwant-
ed character in the return string, such
as indicated by the character “^”. I
simply replace the occurrence of this
character with null. Now, EMAILAD-
DR contains a clean value represent-
ing the e-mail address of the caller
from the concurrent program.

When embedding SQL commands
in UNIX shell programs, do not use

tabs in the SQL code section as there
is a problem interpreting tabs in SQL
code. It may look like I have used
tabs, but I only hit the space bar to
line everything up. You can use this
approach to generate various types of
SQL statements.

The other approach to using
SQL*Plus in a UNIX shell program
is by executing a PL/SQL script. Fig-
ure 11 is a code snap-let I have put
together to explain this approach.

In this example, I assume that the
UNIX variable FILE_PLSQL rep-
resents a PL/SQL program name.
The variable can also include the
path where the PL/SQL program
is located. Again, an account and
password are required to execute
SQL*Plus (USERPASS). For this
example, there are seven parameters
that are passed to the PL/SQL pro-
gram. Once the PL/SQL program
completes, a parameter is returned,

Figure 10: SQL via UNIX Shell Program

Figure 11: PL/SQL Scripts via UNIX Shell Program

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4On Development

indicated by “$?”. This
parameter (known as the
return code) can be used
to determine if every-
thing programmed in the
PL/SQL performed as
designed without error. In
the UNIX shell program,
the value is captured via
the variable “ret_code”.
Let’s transition to the
PL/SQL program.

The first thing that is
performed in the PL/
SQL program is the defi-
nition of remote and local
parameters (see Figure
12). The parameters are
gathered and loaded into
local variables (see Fig-
ure 13). Additionally,
I defined one external
return parameter. This is
done so that when con-
trol is returned to UNIX,
I can determine if the PL/
SQL or any other type
of processing within the
program performed cor-
rectly and without error.

At this point, all input
parameters have been
defined, data process-
ing can commence, and
validation of the data in
the staging table is per-
formed. Also, the data
loaded is into Oracle’s
gl_interface table; the
Open Interface Table for
General Ledger. I will
leave this process for
another article and a dif-
ferent topic than is being
discussed here. Once all
processing is complete,
control is returned to
UNIX. However, there is
a remote parameter that is set prior
to returning control. That parameter
(ret_code) is a numeric indicator.
The numeric indicator is retrieved

from the SQL*Plus session (see Fig-
ure 11) for proper processing of the
interface. Setting the return value
(via “ret_code”) is demonstrated in
Figure 14.

Submitting Requests
There are a couple of ways to exe-

cute concurrent requests from the
background. One is by using an Ora-
cle-supplied program called CONC-

Figure 12: PL/SQL Script - Parameters

Figure 13: PL/SQL Script - Assigning Values

ORAtips

Pa
ge

 1
0

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4On Development

SUB. The other approach is using
the Oracle-supplied package called
FND_REQUEST. I have used both
approaches for various interfaces.

To stick with the
denoted design, the con-
current program we will
be executing from the
background is “Journal
Import”. I use CONC-
SUB to execute this job
from the background.
Figure 15 demonstrates
how this is done within a
UNIX shell program.

As mentioned previ-
ously, I stated that there
would be two request
IDs that I would need.
We know there is one for
the concurrent program
that executes the inter-
face. The other is from
the background call of
this separate concur-
rent program. Executing
CONCSUB will return a
request ID. Given this,
I encapsulate the call
within a UNIX variable.
The request ID for the
background call is the
third value in the string
returned. Echoing out the
return, I can use AWK to
capture the third value.
Hence, I now know the
request ID to the back-
ground call of “Journal

Import” and report that back to the
caller for review.

Another approach to executing
concurrent programs from the back-
ground is using FND_REQUEST. In
this case, I would write code in the
UNIX shell program to execute a PL/
SQL program via SQL*Plus. Within
the PL/SQL script, I can submit the
concurrent program using the pro-
cedure SUBMIT_REQUEST. In Fig-
ure 16 I have provided an example
of executing a concurrent program
called “Payables Open Interface
Import”.

I will not dive too deep into this
example other than to demonstrate
that a concurrent program can be
submitted within PL/SQL code. In
this case, “Payables Open Inter-
face Import” is a concurrent pro-
gram owned by Oracle Payables
(“SQLAP”). The program associ-
ated with this concurrent program
is “APXIMPT”. Additionally, vari-
ous parameters are passed to the
call. For further study of this util-
ity, please refer to MetaLink or your
Developer’s User Guide. In any event,
it is another approach for executing a
concurrent program from the back-
ground.

Figure 14: PL/SQL Script - Return Code

Figure 15: CONCSUB via a UNIX Shell Program

Executing CONCSUB

will return

a request ID.

ORAtips

Pa
ge

 11

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4On Development

Messaging via E-mail
One of my favorite features of using

UNIX as a driver for interfaces is that
I can customize my messages to the
caller based on the status of the inter-
face in question. As promised from
the SQL*Plus section, I will dem-
onstrate how I send messages to the
caller. The first part you have already
seen: Retrieving the e-mail address of
the caller. Once this is done, I am at
a point of sending the message. This
is accomplished using a UNIX utility

called mailx. Figure 17 lists the code
for sending an e-mail via mailx.

The customization of the message
is based on the status of the interface.
In this example, I refer you back to
the SQL*Loader section of this arti-
cle. In the interface I have deployed, I
do not allow the interface to continue
if any bad records were captured.
Hence, if the bad data file was cre-
ated, then I terminate the interface,
causing the concurrent program to

complete in error. But
before I do that, I pre-
pare a message to send to
the caller notifying them
of the problem.

The message is com-
posed and stored in the
UNIX variable P_MES-
SAGE. The message
contains the Request ID
for the concurrent pro-
gram in question. Once
this is set up, it is put
together with the actual
bad data file and piped
to mailx. This informa-
tion will appear in the
body of the e-mail. The
variable INSTANCE con-
tains the Oracle instance
from which the message
originated. Since some of
the users are also testers,
they may have access to
more than one instance.
I let them know whether
this message is coming
from a development, test,
or production instance.
Likewise, in the message
header, I notify the call-
er of which concurrent
program generated this
message via the variable
CONC_PROG. All of this
is sent to the calling user
identified by the e-mail
address stored in the
variable EMAILADDR.

This is just one example of send-
ing an e-mail to the caller. You could
deploy something similar for prob-
lems with the PL/SQL program by
examining the return code, or by
notifying the user of the request ID
generated for the background con-
current program executed. If no
problems occurred, I send a success
e-mail to the caller.

Figure 16: FND_REQUEST Package

Figure 17: Messaging via mailx in UNIX Shell Program

ORAtips

Pa
ge

 12

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4On Development

Interface in Action
We are now at the final stages of

the interface. Most of this article has
been showing how to do this from the
background. Let me show you how
it looks when executed from Oracle
Applications. Figures 18 and 19 show
the concurrent program used for this
demonstration, plus what was used

in recording the results for the SWAT
analysis.

Once this job is submitted, a con-
current request will be generated. In
this case, request ID 264852 is the
process for our main interface. This
is demonstrated in Figure 20.

Eventually, a sub-process kicked
off from the backup will be gener-

ated. In this case, Journal Import is
the background process kicked off. It
is referenced by request ID 264853.
Figure 21 demonstrates this.

Figure 18: Setting Parameters for Concurrent Program

Figure 19: Submit Concurrent Program

ORAtips

Pa
ge

 13

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4On Development

Figure 20: Program Running in Concurrent Manager

Figure 21: Background Process Spawned

ORAtips

Pa
ge

 14

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4On Development

If everything works
perfectly, both processes
should complete success-
fully (see Figure 22).

The final stage is the
completion e-mail. Below
is the message generated
from the interface (see
Figure 23). In this sample
message, a status (either
SUCCESS or ERROR) is
indicated along with the
name of the job it per-
tains to. Additionally, it
records the instance that
the process happened
in along with the corre-
sponding Request ID. In
this case there are back-
ground processes (Jour-
nal Import) that were
submitted. The Request
ID for this job is also
included so the associate
can review the appropri-
ate report in the concur-
rent manager.

Conclusion
Due to the speed, effi-

ciency, and reduction in
request IDs to maintain, I
try to approach any proj-
ect that requires an inter-
face by using a single
concurrent program. This
does not mean that a sin-
gle concurrent program
is the answer for every
situation. You may wish
for your users to have
control of the processes
(or stages) and how they
run. If this is the case, the
request set may be your
best option. However, if
you are running inter-
faces that process large
amounts of data or if you
have on-demand inter-
faces that process batch

Figure 22: Jobs Complete Successfully

Figure 23: Body of the E-mail

ORAtips

Pa
ge

 15

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4On Development

data, my suggestion is to explore the
idea of deploying an interface using
a single concurrent program driven
by a UNIX shell program. It will save
you time in analyzing problems, call-
ers of the program are immediately
notified of the problem, and the pro-
cess runs faster.

Kevin Ellis, Humana – Kevin has
served as Technology / Applica-
tions Engineer for Humana at their
headquarters in Louisville, KY since
June 2000. His primary responsibil-
ity is to provide on-going support
of Humana’s Finance ERP (Oracle
Applications 11.5.9). Additionally,
he serves as the turn release man-
ager for all enhancements released
to the QA/Production environments.
Kevin shares direct technical support
with his staff for General Ledger,
Payables, Fixed Assets, Purchas-
ing, and Cash Management modules
and writes SQL scripts for Discov-
erer workbooks, custom library, and
forms. Additionally, Kevin (adjunct
professor) teaches a graduate course
in database theory at Bellarmine
University (a private Catholic insti-
tution located in Louisville, KY).
Kevin also teaches computer courses
at Jefferson Community & Technical
College. Kevin may be contacted at
Kevin.Ellis@ERPtips.com. 		 ≈

ORAtips

Pa
ge

 16

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

6
Vo

lum
e I

I I
ssu

e 4

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

The information on our website and in our publications is the copyrighted work of Klee Associates, Inc. and is owned by Klee Associates, Inc. NO WARRANTY: This
documentation is delivered as is, and Klee Associates, Inc. makes no warranty as to its accuracy or use. Any use of this documentation is at the risk of the user. Although
we make every good faith effort to ensure accuracy, this document may include technical or other inaccuracies or typographical errors. Klee Associates, Inc. reserves
the right to make changes without prior notice. NO AFFILIATION: Klee Associates, Inc. and this publication are not affiliated with or endorsed by Oracle Corporation.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Klee Associates, Inc. is a member of the Oracle Partner Network

Journal

This article was originally published by Klee Associates, Inc., publishers of JDEtips and SAPtips.
For training, consulting, and articles on JD Edwards or SAP, please visit our websites:
www.JDEtips.com and www.SAPtips.com.

