
ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

Editor’s Note: Oracle database
technology expert Scott Jesse has
seen a lot of changes over the course
of his Oracle career. Today’s Oracle
customers want to learn more about
Oracle’s strategic capabilities that
can be leverage on any platform and
especially MS Windows. In his debut
article, and the first of many, Scott
provides a very detailed explana-
tion for implementing Oracle10g
on Windows including things to
know, best practices for maximiz-
ing memory usage, and overviews
of using AWE and RAC technology.

Introduction
Word on the street these days is

that Linux is hot. In fact, I recently
came across an Oracle CD that had
this on the jacket: “Linux - Very Hot.
Oracle On Linux: Very Cool!” It is
hard to argue with this when looking
at the database market share num-
bers for 2004. Gartner Dataquest’s
2004 RDBMS market share report
shows that the Linux RDBMS mar-
ket grew 118%, with Oracle holding
80% of that market. But, lost in the
shuffle of that staggering triple-digit
growth and 80% market share num-
ber is the fact that the RDBMS mar-
ket on Windows also grew at a rate of
10%, while Oracle on Windows grew
by 8.5%. These numbers may seem
small when viewed as a percentage,
but consider that the overall RDBMS
market revenue for Windows in 2004
totaled just over $3 billion, whereas
Linux market revenue was $650 mil-
lion in comparison. So – if you are
one of those running Oracle on Win-
dows, you are not alone.

As a support engineer with Oracle
for the past nine years, I have worked

with hundreds (probably thousands)
of customers running the Oracle
RDBMS on Windows. During those
years I have learned the ins and outs
of Oracle on Windows, and the ups
and downs of working on the Win-
dows platform. The problems and
challenges of those implementations
have been issues across the board,
ranging from basic how-to’s for a
new “DBA”, to assisting in design-
ing and maintaining highly-available
mission-critical databases capable of
running an entire company’s busi-
ness. While there are many varied
challenges in any implementation,
the most common by far that I have
encountered with Oracle on the Win-
dows platform is the challenge of
juggling memory to get the most out
of the Oracle RDBMS. Therefore,
the focus of this article is to give the
DBA, whether novice or veteran, tips
and insights into how to get the most
out of Oracle and Windows, and
make your database implementation
as successful as possible.

Understanding the Oracle
Architecture on Windows

To begin with, let’s go over the
architecture of Oracle on the Windows
platform. This is a main component
in what makes Windows unique and
challenging, as compared to other
operating systems. On UNIX and
Linux operating systems, the Oracle
database is implemented as multi-
ple processes, using shared memory
management functionality to facili-
tate communications between the
processes. Thus, the Oracle RDBMS
itself is made up of a set of distinct,
separate processes, including back-
ground processes and foreground
processes. Well-known examples of
background processes are PMON,
SMON, LGWR, DBWR, etc.

On Windows, Oracle is implement-
ed as a single process, running as an
executable called oracle.exe. Within
this single process, the functionality
of PMON, SMON, LGWR, DBWR,
etc., is still the same as on any other
platform; however, the difference is
that these background “processes”
are actually implemented as threads
of a single process – that process
being the aforementioned “oracle.
exe”. So, while PMON still exists, you
will not see a separate PMON process
running on a Windows machine, as
this process is actually just a thread
of the oracle executable.

By the same token, user connec-
tions, seen as foreground process-
es on UNIX/Linux environments,
become threads within the same ora-
cle executable – again, all running
under a single process on Windows.
So, the end result is one process com-
prised of threads that are considered
to be both background “threads”

Implementing Oracle® 10g on Windows, Part 1:
Optimizing Memory Usage

By Scott Jesse

On Windows, Oracle

is implemented as

a single process,

running as an

executable called

oracle.exe.

4on Database - Optimization

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

(PMON,SMON, etc.) and foreground
“threads” (user application connec-
tions) for the database. Therefore, if
you are attempting to view processes
through the normal means on Win-
dows (i.e., via Task Manager), you
will not see anything BUT the Oracle
process. In a future article, I will
discuss how to identify the threads
within the Oracle process, but for
now, the key is in understanding how
Oracle is architected.

Why Threads?
So, why this deviation on the Win-

dows platform, when UNIX plat-
forms operate as separate processes?
In fact, in the earliest releases of Ora-
cle on Windows, Oracle attempted to
stick with the convention of having
separate processes – but the shared
memory implementation between
processes on Windows was deemed
to be too slow and inefficient for
Oracle’s needs. The simple fact is
that Windows as an operating system
lends itself to an architecture where
applications run most efficiently as a
single process with multiple threads.
Oracle quickly modified the archi-
tecture to conform to this principle
and has stuck with that model since
the early days of Oracle 7. The result
is a high-performing, feature-rich
RDBMS, which has the same core
components and the same look and
feel across all major server platforms,
but with modifications under the cov-
ers to make it perform at its highest
efficiency on the Windows platform.

The next logical question is, “Why
does this really matter?” As I have
just noted, Oracle has the same look
and feel and rock solid reliability on
every platform – so why bother your-
self with the internals and with ques-
tions about thread-based versus pro-
cess-based architectures? Obviously
there are many reasons, but the most
crucial, which just so happens to be
the topic of this article, is memory.

To digress momen-
tarily, I would like to
discuss certain reali-
ties that I see today
from my perspective
working within Oracle Support. It is
a fact of the marketplace that the vast
majority of Windows servers being
used in the workplace today are still
32-Bit machines. Windows is not
alone in this category, as the major-
ity of Linux servers in use today are
also 32-Bit machines. Anecdotally, I
would estimate that of the customers
I deal with on a daily basis who are
on Windows or Linux, around 75%
to 80% are still on 32-Bit versions
of the OS – though that is changing
more quickly of late.

Because of this fact, Windows
and Linux are unique, so Oracle
has released both 32-Bit and 64-Bit
10g versions for Windows and Linux
operating systems. This is not true
on any other platform, as Oracle did
not release a version of Oracle10g for
any other 32-Bit OS’s – i.e., for Sun
Sparc Solaris, AIX, HP-UX PA-RISC,
etc. Oracle has released only a 64-Bit
version of Oracle Database 10g, but
my expectation is that Oracle will
continue to release new versions of
the RDBMS for 32-Bit Windows and
Linux for the foreseeable future.

Living in a 32-Bit Windows
World

Given that 32-Bit Windows is not
going away any time soon, there
are still many who must continue
to cope with life in a 32-Bit World.

In a 32-Bit world, there are certain
limitations that get magnified with a
single-process architecture, the fore-
most of which is addressable memo-
ry. Any 32-bit process, no matter the
operating system, can only address
up to 4 GB of memory (to confirm
this, write out 32-bits in binary as all
1s, and then convert from binary to
decimal):

Operating systems differ in how
much of that 4 GB of addressable
memory they will allow a user appli-
cation to take advantage of. On Win-
dows, by default, a single process
is only allowed to directly address
half of that 4 GB, as the other half is
reserved for operating system kernel
memory.

What this means is that if running
with the default settings on a Win-
dows server, the oracle.exe process,
which we previously discussed, can
only directly address a total of 2 GB
of memory. This in turn means that
all memory for the database, includ-
ing the SGA and all PGA memory
for individual sessions, is counted
towards this total. Add to this the
overhead associated with the Ora-
cle process itself (which is about
100 MB), and 1 MB of stack space
reserved for every thread within the
process address space, and you can
see that 2 GB of memory can be very
quickly consumed.

Monitoring Oracle Memory
Usage

The first step in managing mem-
ory usage is knowing how to accu-
rately gauge its usage. When the
Oracle process reaches the maximum
addressable memory limit, there are
a couple of different errors that may
occur, depending on the situation.

Binary:	 	 	 	 							Decimal:
_______	 	 	 	 								________
11111111	11111111	11111111	11111111				->					4294967295

4on Database - Optimization

The first step in

managing memory

usage is knowing

how to accurately

gauge its usage.

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

problem (or preferably, to head off a
problem). It is surprising to me how
many Systems Administrators and
DBAs use Windows Task Manager as
the only tool for monitoring memo-
ry utilization for a given process. In
many cases, they may even be aware
of the aforementioned limitations,
but are certain that they do not have
a problem because Task Manager
only shows that the Oracle process is
using 1.5 GB (as an example).

What Task Manager is not showing
you is the total memory addressed by
the process. By default, Task Man-
ager has only a Mem Usage column,
which is simply the working set, or
recently used/touched memory pages
for the process. You can add a second
memory column in Task Manager
called VM Size, but that still does not
show the total picture, as it only show
memory committed by the process.
In addition to committed memory, it
is possible to have memory reserved,
but not committed. This memory still
counts against the addressable mem-
ory limit, but will not be shown any-
where in Task manager. Instead, you
must run the Windows Performance
Utility.

You can access Perfmon using the
navigation path:

 Start > Programs > Administrative
Tools > Performance.

1. Highlight System Monitor on the
left-hand side

2. To monitor memory, first click
on the “+” icon along the top
menu bar. This will open the
dialog box to add counters to
the chart.

 As you can see in Figure 1, you can
monitor a remote computer or a
local computer.

3. Under Performance Object,
select “Process” and, from the
list of counters, choose “Virtual
Bytes”.

4. On the right-hand side, select
“oracle” from the list of (pro-
cess) instances, and choose
“Add” to begin charting the Vir-
tual Bytes for the process.

 This value for “Virtual Bytes” gives
you the true, accurate count of all
memory being addressed by the
oracle.exe process.

 Where Is That Memory Going?
So what is using this memory

within the Oracle process? You can
use the following as a rough calcu-

If an existing connection/session is
attempting to allocate more memory,
for example, if an existing session
attempts to do a sort in memory, or
open a new cursor, and the oracle.
exe process cannot address any more
memory, an ORA-4030 error will
occur.

 The ORA-4030 error text is fairly
straightforward:

 “out of process memory when try-
ing to allocate %s bytes”

Thus there is not a lot of mystery
in this error.

However, if a new connection
attempt is being made, the client
will normally first make contact with
the listener, where the thread is ini-
tially spawned, and the listener then
attempts to hand that thread off to
the oracle executable. The initial
contact with the listener is successful,
but an error occurs in the handoff,
because the oracle.exe does not have
enough remaining address space to
spawn the thread. The resulting error
here is an ORA-12500.

 The ORA-12500 error text is fairly
straightforward:

 “TNS:listener failed to start a dedi-
cated server process”

This is a slightly more cryptic error,
and, on Windows, it is technically an
inaccurate description, because we
are actually trying to start a thread,
not a process. Unfortunately, this
error often leads a DBA down the
wrong path, attempting to trouble-
shoot a networking problem, when
in fact the problem is that the data-
base process has exhausted all avail-
able memory. Therefore, it is critical
to not only know what the memory
limitations are, but how to accurately
measure the memory usage, in order
to quickly identify the source of a Figure 1 – Monitoring Virtual Bytes for the Oracle Process

4on Database - Optimization

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

to PGA memory that cannot be fully
controlled. To calculate current PGA
memory used, you can run a query
against the v$sysstat and v$sesstat
views, such as the queries shown
here:

Of particular interest are the values
for UGA memory and PGA memory.
The v$sysstat view gives you a sum
of all PGA/UGA memory used by
all sessions. To drill down further to
determine what individual sessions
are actually using the most memory,
you can use the v$sesstat view, using
the values for statistic# as indicated
in the above query results

For example:

SQL> select *
 from v$sesstat
 where statistic# in
 (20,21,25,26) order by value;

Once you know the SID, you can
join with v$session to get more infor-
mation on that particular session and
what it may be doing. If a session or
set of sessions is using an inordinate
amount of PGA, the application code
being executed should be investigat-
ed further to look for poor manage-
ment of cursors as a possible source
of PGA memory growth.

Stack Space for Threads
I also noted above that each thread

within the oracle.exe uses 1 MB of
stack space. To view the current
stack size of a given executable, you
can run the orastack utility, which
comes with Oracle10g (and earlier
versions), and pass the executable
name.

For example:

 D:\oracle\Ora10g\BIN>orastack
tnslsnr.exe
Dump of file tnslsnr.exe
 Current Reserved Memory per
Thread = 1048576
 Current Committed Memory per
Thread = 4096

Orastack’s main purpose is to be
able to change the stack size. To see
how to do this, just run “orastack” by
itself. Note that the process must be
stopped in order for the stack size of
an executable to be changed. I would
also recommend that you change the
stack both for the tnslsnr.exe and
for the oracle.exe, as the majority of
threads are actually created first by
the listener, but many threads can
also be spawned directly from the
oracle.exe (background processes,
shared servers, job_queue processes,
etc.). A value of 500k can be used
with no real downside. Here is an
example of changing the tnslsnr.
exe:

 D:\>net stop OracleOraDb10g_
home1TNSListener
 The OracleOraDb10g_
home1TNSListener service is
stopping.
 The OracleOraDb10g_
home1TNSListener service was
stopped successfully.

 D:\>orastack D:\oracle\Ora10g\
BIN\tnslsnr.exe 500000
 Dump of file D:\oracle\Ora10g\
BIN\tnslsnr.exe

lation for the total memory used by
the process, which should be roughly
equivalent to the value for Virtual
Bytes:

 Process Overhead (approximately
100 MB) + Thread Stack (1 MB x
of threads) +

Total SGA + Total PGA

 =

Virtual Bytes for oracle.exe

The total SGA is easily calculated
by looking at init.ora parameters
and/or querying v$sga – but calcu-
lating/limiting the total PGA used is
a bit more involved. You can limit
the amount of PGA memory used for
operations (such as sorts and hash
joins) by setting the PGA_AGGRE-
GATE_TARGET parameter, but this
will not place a limit on memory
used for cursors. The total number
of cursors can be limited by setting
the OPEN_CURSORS parameter,
but still, this will not limit the size
of any single cursor. An application
or a user can open a single large cur-
sor, which might consume a large
amount of memory (say a PL/SQL
table or varray in memory), so there
will always be a variable component

SQL>	col	statistic#	for	999
SQL>	col	name	for	a30
SQL>	col	value	for	9999999999999

SQL>	select	statistic#,	name,	value	
																									from	v$sysstat	
 where name like ‘%memory%’;

STATISTIC#		 NAME																																					 VALUE
----------		 ------------------------------		 	 --------------
								20		 session	uga	memory																				3205664
								21		 session	uga	memory	max										14729472
								25		 session	pga	memory																		25780016
								26		 session	pga	memory	max										56385328
							293		workarea	memory	allocated																				0
							310		sorts	(memory)																																		4400

4on Database - Optimization

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

 Current Reserved Memory per
Thread = 1048576
 Current Committed Memory per
Thread = 4096

 New Reserved Memory per Thread
= 500000

Of course, another way to reduce
the total stack size for threads within
the oracle.exe is to reduce the total
number of threads. In this vein, using
shared servers on Windows is anoth-
er strategy that must be given care-
ful consideration. I have worked with
many customers running Oracle on
Windows who have successfully used
shared server implementations to
manage over 1000 concurrent con-
nections to the database, while keep-
ing the total thread count at or below
100 threads.

Increasing Memory
Available to Oracle

So far we discussed the known lim-
itations and Windows’ default mem-
ory settings out of the box. We also
touched on how to monitor the avail-
able memory and determine where it
is being used, as well as on how to
minimize your memory utilization.
But be honest – what everyone really
wants to know is – how do I get to use
MORE memory? This is what really
matters. So, we will now delve into
strategies for getting more memory
out of the system, including:

• Increasing the addressable mem-
ory from the default of 2 GB

• Taking advantage of PAE / AWE
/ VLM

• Implementing RAC for scalabil-
ity

• Moving to 64-Bit.

Increasing Directly Addressable
Process Memory on Windows

As noted previously, the address-
able memory for a 32-Bit process is

limited to 4 GB, but Microsoft Win-
dows reserves half of that for kernel
memory, leaving only half (the other
2 GB) for the process (oracle.exe).
Depending on the version of Windows
that you are running (i.e., if you are
on Advanced Server or Enterprise
Server versions of Windows), you
can change that dynamic by adding
a switch to the boot.ini file. Microsoft
refers to this as 4GT RAM tuning,
though the switch itself is actually
a /3GB switch. The boot.ini file is a
hidden file found at the root of the
boot drive, whichever drive that is
(usually C:). Adding the /3GB switch
to the correct boot line will produce
a boot.ini which looks something like
this:

After setting the /3GB switch in the
boot.ini, the server must be rebooted
for that change to take effect. Once
this is done, the oracle executable
will be able to directly address 3
GB, with no other changes neces-
sary. The additional memory can
be used by any component that you
desire; it can be used for increasing
any component of the SGA, or by
allowing additional PGA utilization,
or additional threads, etc. There are
no restrictions on how this memory is
used - you effectively increase your
addressable memory by 50%. On the
surface, this seems like a no-brainer,
but as with most things in life, there
is a tradeoff. By setting the /3GB
switch, the memory available for the
operating system kernel memory is
effectively cut in half. So what is the
impact of this?

Kernel Memory Impact with /3GB
Enabled

Operating system kernel memory
on Windows is essentially divided
into three major areas - the Paged
Pool, the Non-Paged Pool, and

memory set aside for Free System
Page table entries (PTEs). With the
default settings (no /3GB switch) the
Paged Pool can max out at around
360 MB, the Non-Paged Pool can
max out at around 256 MB, and Free
System Page table entries are abun-
dant. However, when setting the
/3GB switch, the Paged Pool maxi-
mum becomes 256 MB, Non-Paged
Pool maximum becomes 128 MB,
and Free System Page table entries
become scarce.

So while I strongly recommend
using the /3GB switch wherever pos-
sible, it is also highly advisable to
monitor these kernel memory coun-
ters to ensure that you are not exceed-

ing these thresh-
olds. Symptoms
of exhausting
kernel memory
space include

instability of the operating system
and vague problems such as unex-
plained hangs, Disk I/O problems, or
exceedingly poor performance. Spe-
cific problems include OS errors such
as an OS error 1450 or OS 10055.

When monitoring these kernel
memory values, pay particular atten-
tion to Non-Paged Pool and Free Sys-
tem Page table entries (PTEs). Non-
Paged Pool is an increasing counter,
meaning that as more resources are
consumed, the higher this value will
grow. As it approaches the maximum
of 128 MB, you are more likely to
experience instability of the operat-
ing system.

On the other hand, Free System
PTEs is a decreasing counter, mean-
ing that as more resources are used on
the system, the number of Free PTEs
decreases. Therefore, as this counter
approaches 0, you are more likely to
experience problems. Again, these
values can and should be monitored
using the Windows Performance Util-
ity as shown in Figure 2.

scsi(0)disk(0)rdisk(0)partition(1)\WINNT=
“Microsoft	Windows	2000	Advanced	Server”	/fastdetect	/3GB

4on Database - Optimization

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

Because the ability to increase the
addressable memory by 50% is an
opportunity that is too valuable to
pass up, I almost always recommend
this to customers who are constrained
by memory, with the caveat that ker-
nel memory be closely monitored. As
such, throughout the rest of this arti-
cle, I will be assuming a value of 3
GB is the maximum for addressable
memory. If you choose not to enable
this switch, simply substitute in a
value of 2 GB whenever I reference 3
GB as the maximum value.

Should you find that Free System
PTEs are running low, you may be
able to do some fine-tuning. Adding
in the /USERVA switch to the boot.
ini may allow you to give a small por-
tion of the 3 GB back to the OS, thus
putting you over the top for kernel
memory needs. See Metalink Note
297498.1 and Microsoft Article
#810371 for more details on this.

On the other hand, if you find that
Non-Paged Pool is being eaten up,
you may need to use utilities such as
Poolmon, which comes with the Win-
dows Resource Kit, to drill deeper
into where the Non-Paged Pool con-
sumption is originating. Depending
on the source of the growth, you may

find that updating some device driv-
ers (which reside in the Non-Paged
Pool) will put a stop to excessive
memory growth.

Accessing Additional Memory
Indirectly Using AWE

A question that I get asked by
many customers indicates a common
misconception on the 32-Bit Win-
dows platform – that question usu-
ally goes along the lines of something
like this – “My Windows 2003 Server
has 16 GB of RAM. How can I use
all of that memory?” This question is
frequently asked in light of the rev-
elation that in spite of having that
much memory, a single process can
only address a maximum of 3 GB of
memory. So, what is one to do with
all of that additional memory?

The answer to this is twofold: First,
realize that the 32-Bit address space
restriction is on a “per-process” basis.
So, if you have multiple processes,
each one can separately address up
to 3 GB. You may have additional
processes in the form of an addi-
tional Oracle instance (for example,
an ASM instance), or you may have
some other third-party application,
running as its own process, which

can take advantage of that additional
memory as well. However, it is also
possible to allow a single process, i.e.,
the oracle.exe for one instance, to
indirectly access that memory. Aside
from setting the /3GB switch in the
boot.ini, it is also possible to set the
/PAE switch.

PAE stands for Physical Address
Extensions, which essentially is a
term for the ability to address an
additional 4 bits on the Intel Proces-
sor (giving you 36-Bits of address
space). Those additional 4 bits must
be accessed through a window that is
carved out of the base 32-Bits – this
is done on the Windows platform
via the use of Address Windowing
Extensions (AWE). You will often
hear terms such as PAE, AWE, and
even VLM (Very Large Memory)
tossed about interchangeably. They
essentially mean the same thing -
the ability on a 32-Bit OS to address
memory, indirectly, beyond 4 GB.

Figure 2 – Using Perfmon to Monitor Windows Kernel Memory

You will often hear

terms such as PAE,

AWE, and even VLM

(Very Large Memory)

tossed about

interchangeably.

They essentially

mean the same

thing ….

4on Database - Optimization

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

Oracle Implementation of
AWE on Windows

Oracle implements AWE support
on Windows by the addition of an
init.ora parameter called USE_INDI-
RECT_DATA_BUFFERS. By setting
this value to true, Oracle will use the
AWE APIs on Windows to allow the
oracle executable to address memory
beyond 4 GB – up to a maximum of
16 GB. However, UNLIKE the set-
ting of the /3GB switch, this memory
cannot be used by all Oracle compo-
nents. Recall that the memory used
by Oracle is comprised of the SGA,
the PGA, overhead for the process,
and the stack for all threads.

When setting the value of USE_
INDIRECT_DATA_BUFFERS to
TRUE, Oracle will only allow you to
increase the database buffer cache to
make use of that additional memory,
but you can increase the buffer cache
to a value as high as you wish, up to
the maximum of 16 GB. Note that the
16 GB maximum includes the buffer
cache plus the rest of the memory
used by the process, so a realistic
maximum value for the buffer cache
alone is more like 12 GB, provided
you have that much memory in the
system.

In order to address this extra
memory indirectly, a window must
be created within the normal 3
GB address space. This window is
defined by a registry entry called
AWE_WINDOW_MEMORY. This
value does NOT have to be explicitly
set. If it does not exist in the registry,
a default value of 1 GB is assumed.
If you do not want to use a window
size of 1 GB, then you must add this
value in the key for your particular
ORACLE_HOME.

For example:

 HKEY_LOCAL_MACHINE\
SOFTWARE\ORACLE\KEY_
OraDb10g_home1

Where “KEY_OraDb10g_home1”
is the key associated with your par-
ticular ORACLE_HOME, as shown in
Figure 3. If USE_INDIRECT_DATA_
BUFFERS is set to the default value
of FALSE, the setting for AWE_WIN-
DOW_MEMORY is ignored.

When using indirect data buffers,
you must change the formula for cal-
culating the total amount of memory
used within the 3 GB address space
to ONLY include the AWE_WIN-
DOW_MEMORY portion of the buf-
fer cache. The remainder of the buf-
fer cache should be excluded from
calculations to determine how close
you are to the 3 GB address space.
So, the new formula for this would be
along the lines of:

Note also that the thread stack is
variable, as it may change from 1
MB if the orastack utility has been
used. This will not give you the total
amount of memory used by the Ora-
cle process, but it will tell you how
much of that memory counts towards
the address space limitation of 3 GB.
This is also the same value that will
be shown by the virtual bytes counter
in Perfmon, as Perfmon will not show
the indirectly addressed memory.

To help understand this further,
consider as an example a case where
you have a buffer cache alone that
is 6 GB. You would only count 1 GB
(assuming the value of AWE_WIN-
DOW_MEMORY is left at the default)
of that 6 GB in the above calculation.

Figure 3 – Registry Editor

Total	Memory	Used	within	3GB			 	 	 	 	 	
	 =

AWE_WINDOW_MEMORY				 	 	 	 	 	
	 (+)		

Non-Buffer	cache	portion	of	the	SGA	
(i.e.	Shared_Pool,	Large_Pool,	Java_Pool,	Stream_Pool	and	Log_Buffers)			 (+)	

PGA		 	 	 	 	 	 	 	 	
	 (+)	

Process	Overhead				 	 	 	 	 	 	
(+)	

(Thread	Stack	*	#	of	threads)

4on Database - Optimization

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

The remainder of the buffer cache
does not count against the normal
32-Bit address space limitations,
because it is addressed indirectly.

When a database block buffer is
needed by the database, it is mapped
into the window, whose size is defined
by AWE_WINDOW_MEMORY, and
then can be accessed by the RDBMS.
If the window fills and additional
blocks need to be accessed, then the
window is “redrawn” to exclude less
recently used blocks and to include
the newly requested blocks. There
is no memory copy done – just a
redrawing of the window – i.e., one
buffer may be unmapped and anoth-
er buffer will be mapped, meaning
the window is essentially “reshaped”.
The “shape” of the window may
change, but the total size of the win-
dow itself will not change unless the
value for AWE_WINDOW_MEMORY
is changed and the database service
restarted.

The process of mapping and
unmapping buffers will add some
overhead beyond what would nor-
mally be experienced if a block could
be directly addressed within the 3
GB space. However, this mapping/
unmapping of blocks in memory
should be much faster than a disk I/
O, which would be the alternative.

Thus, the only real disadvantage of
using indirect data buffers is that you
must use old-style init.ora param-
eters for defining the buffer cache –
i.e., you must set DB_BLOCK_BUF-
FERS instead of DB_CACHE_SIZE.
This, in turn, disables the automatic
SGA tuning features introduced in
Oracle10g by the SGA_TARGET
parameter. Aside from this, there is
some additional administrative work
that must be done in calculating
appropriate values for AWE_WIN-
DOW_MEMORY. For more details
on implementing Address Window-
ing Extensions for Oracle on Win-

dows, please refer to Metalink Note
225349.1.

Using RAC to Scale on
Windows

Yet another way to increase the
addressable memory for the data-
base is to increase the number of
processes. As noted thus far, the 3
GB address space limit applies on a
per-process basis – and each Oracle
instance runs as a single process.
In traditional database parlance, a
single instance is accessing a single
database. But, if you throw Oracle
RAC (Real Application Clusters)
into the mix, you now have multiple
instances accessing a single data-
base, from different nodes. The RAC
architecture puts all of your database
files on a shared-everything storage
system, which can be accessed simul-
taneously by as many as 64 different
server nodes, each running its own
separate oracle.exe.

In a RAC environment, the oracle
executable comprising the Oracle
instance would have its own separate
process on each node. The process
overhead of approximately 100 MB
would be the same on each node,
as would the SGA – but user ses-
sions can be spread across multiple
nodes, meaning that the amount
of PGA memory and thread stack
memory is not all concentrated with-
in a single process, but is instead
spread across many processes, run-
ning on as many separate nodes as
you need. Clustering together several
Windows machines running on inex-
pensive hardware is an effective way
of scaling the database to meet the
demands of organizations of every
size. In a future article, I will go into
more detail on implementing RAC
and CRS on Windows.

Using 64-Bit Windows.
Finally, I said at the beginning of

this article that a majority of custom-
ers on both Windows and Linux are
still running in 32-Bit environments.
However, that tide is turning and
more and more customers of both
operating systems are turning to 64-
Bit Hardware. Up to now, the focus
of our discussion has been on 32-Bit
hardware, but I will turn now to the
options on the 64-Bit platform, in
particular regarding Oracle on Win-
dows.

The primary advantage of 64-Bit
Windows with 64-Bit Oracle running
on top is that the addressable memo-
ry for a single process jumps from a
maximum of 3 GB to a maximum of
8 TB (Yes – terabytes). This memory
is directly addressable by the 64-Bit
oracle.exe. As such, if running on a
64-Bit version of Oracle on Windows,
it is no longer necessary to concern
yourself with issues such as setting the
/3GB switch, or using the /PAE switch
or AWE_WINDOW_MEMORY, etc.
The process will directly address as
much memory as you can realistically

Clustering together

several Windows

machines running

on inexpensive

hardware is an effec-

tive way of

scaling the database

to meet the

demands of

organizations of

every size.

4on Database - Optimization

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

put into the machine, with no special
tweaking or switches.

The complicating factor, and the
reason that this warrants more dis-
cussion, is that there are multiple fla-
vors of 64-Bit chips. The two main
flavors of chips are the Intel Itanium
flavor, and the x86_64 flavor, (which
includes the AMD Opteron chip, and
the Intel EM64T chip). These fla-
vors of chips differ from one another
architecturally, and therefore require
a separate version of the operating
system and a separate version of
Oracle.

The Intel Itanium chips are on
their second generation, and Win-
dows 2003 has supported Itanium
chips with a 64-Bit version of Win-
dows 2003 since it was first released.
Oracle on 64-Bit Windows 2003 (Ita-
nium) has been available from ver-
sion 9.2.0.3 and onwards. However,
the Itanium chips can ONLY run
64-bit Windows 2003 – they do not
support installing a 32-Bit version of
Windows on an Itanium chip.

The x86_64 chips have the advan-
tage of being able to run either a
32-Bit or a 64-Bit operating system.
However, Windows did not release
a 64-Bit version of their OS for the
x86_64 chips until the Spring of
2005. Therefore, while it was pos-
sible to have a machine with x86_64
chips, which were running a 32-Bit
version of Windows 2003, it was not
possible to run 64-bit apps on those
chips until just recently. By the way,
installing 32-Bit Windows 2003 on
an AMD chip, and then running the
32-Bit version of Oracle on top of
that is fully supported. But, if that
were the case, there is no distinction
between 32-Bit Oracle on a Pentium
or equivalent processor, and Oracle
on 32-Bit x86_64. The same address
space limitations would still apply.

Since there was no 64-bit version
of Windows for the x86_64 until
just recently, Oracle10g Release 1
was not released with a version that
runs on 64-Bit x86_64 Windows.
Only 64-Bit versions of Oracle9i and
Oracle10g Release 1 were released to
support the Itanium chip. The first
release of Oracle that will run on the
AMD (x86_64) platform will be 10g
Release 2, expected to be released in
late summer of 2005. With the release
of Oracle10gR2 for Windows, the 64-
Bit choices will be greatly increased.

Cool
The stated goal of this article was

to assist Oracle DBA’s on Windows
with a successful implementation of
their database, whatever stage you
are at in the implementation, and
whatever the size of your organiza-
tion. Hopefully, with the tips con-
tained here-in, you will be able to
echo my sentiments that Oracle on
Windows is very cool.

Scott Jesse, Oracle Corporation
– Scott has worked for Oracle Sup-
port for the past nine years and is
currently a member of the High
Availability Advanced Resolution
Team. He works primarily on Win-
dows and Linux RAC environments,
as well as with Oracle Fail Safe and
Data Guard. Scott is the co-author of
two Oracle Press titles: “Oracle9i for
Windows 2000 Tips & Techniques”,
published by Oracle Press in Decem-
ber 2001, and more recently, “Oracle
Database 10g High Availability with
RAC, Flashback and Dataguard”,
published by Oracle Press in April
of 2004. Scott may be contacted at
Scott.Jesse@ERPtips.com ≈

4on Database - Optimization

ORAtips

Pa
ge

 �
0

O
R

A
ti

p
s

Journal
J

ou
rn

al
Oc

to
be

r 2
00

5
Vo

lum
e I

 Is
su

e 1

ORAtips.com ORAtips © 2005 Klee Associates, Inc.

The information on our website and in our publications is the copyrighted work of Klee Associates, Inc. and is owned by Klee Associates, Inc. NO WARRANTY: This
documentation is delivered as is, and Klee Associates, Inc. makes no warranty as to its accuracy or use. Any use of this documentation is at the risk of the user. Although
we make every good faith effort to ensure accuracy, this document may include technical or other inaccuracies or typographical errors. Klee Associates, Inc. reserves
the right to make changes without prior notice. NO AFFILIATION: Klee Associates, Inc. and this publication are not affiliated with or endorsed by Oracle Corporation.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Klee Associates, Inc. is a member of the Oracle Partner Network

This	article	was	originally	published	by	Klee	Associates,	Inc.,	publishers	of	JDEtips	and	SAPtips.
For	training,	consulting,	and	articles	on	JD	Edwards	or	SAP,	please	visit	our	websites:	
www.JDEtips.com	and	www.SAPtips.com.

