
ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

Introduction
Much literature has been devoted

to the topic of software cost estima-
tion. Along with the literature, many
models have been developed whose
purpose is to quantify the amount of
effort involved. The estimation mod-
els typically produce a time-based
result, that is, how many person-
months are required to produce how
many thousands of lines of code. As
an alternative approach, some mod-
els (primarily object-oriented proj-
ects) base their estimation on the
number of function points. For the
most part, software cost estimation
applies to languages, not technolo-
gies. One technology of prime impor-
tance to many applications is that
of the Oracle database management
system.

Think of all the code behind every
CREATE statement. Designing a
good relational model takes as much
forethought as does designing a good
application, where “good” implies
having followed best practices and
established methodologies such as
the Software Development Lifecycle.
Assuming one can equate traditional
software cost estimation with data-
base development cost estimation,
then what tools or methods can the
database developer use to capture
the cost of development? Once the
tools and methodologies are under-
stood, then how would a designer or

developer go about measuring data-
base lines of code (DLOC)?

To begin our investigation, let’s
take a look at two types of estimation
models.

The KLOC Models
KLOC models are based on the

number of lines of code, where the
number is divided by 1000. The scal-
ing is quite useful when considering
projects with millions of lines of code
(LOC). “KLOC” is typically used to
represent the number of thousands of
LOC. The generic form of a KLOC
model is represented by

E = A + B(ev)
C

where

E = the effort in person-months
A, B and C = empirically derive

constants
ev = an estimation variable (KLOC

or function points)

Some representative KLOC models
are shown in Table 1.

Editor’s Note: Steve Callan has
over 50 Oracle database articles
and white papers to his credit. He
joins ORAtips as our Oracle data-
base Associate Editor to share les-
sons learned with our readers. One
big lesson learned is to take a hard
look at what it really costs you to
develop and maintain your Oracle
environment. For Steve’s first article
on Software Lifecycle Development,
he discusses counting lines of code,
including “how to” approaches, as
a factor to consider in your typical
software development estimate.

Abstract
For many reasons, accurately

estimating the cost of Oracle soft-
ware development is a difficult and
complex problem. Despite the fact
that most software developers have
degrees in computer science, actual
development is more of an art than
a science. Attempts to capture or
quantify the “art” aspect of develop-
ment have led to the development of
several models or tools, and the chief
problem faced by all of these mod-
els is how to define the amount of
work, or specifically, how much code
is involved. Reliance on an unstan-
dardized approach to counting the
number of lines of code is a flawed
approach to software cost estimation.
For Oracle database developers, this
problem is compounded by the lack
of quantifiable metrics that capture
the cost of database development.

How Much Is That Oracle® Database in the Window?
By Steve Callan, ORAtips Associate Editor (Database)

4CIO Corner

Table 1: Representative KLOC Models

Model Name E = A + B(ev)C Format

Walston-Felix E = 5.2 x (KLOC)0.91

Bailey-Basili E = 5.5 + 0.73 x (KLOC)1.16

Boehm simple E = 3.2 x (KLOC)1.05

Doty for KLOC > 9 E = 5.288 x (KLOC)1.047

Reliance on an

unstandardized

approach to counting

the number of lines

of code is a flawed

approach to software

cost estimation.

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

Some models are more applicable
over a range of KLOC values than
others. The effort formulas are based
on taking an “x” (the KLOC) and
measuring or observing the “y” (the
effort in person-months). To develop
a predictive model, simple linear
regression was used. In simple lin-
ear regression (SLR), the computed
model (or line) will always have a y-
intercept (at X=0, the regression line
intercepts the Y-axis). The interpre-
tation of an SLR model is valid over
the observed range of X (the inde-
pendent variable). The Bailey-Basili
model reflects an effort estimate of
more than five person-months for
zero KLOC, which is a nonsensical
conclusion.

In comparison, the IBM Federal
Systems Division (IBM-FSD) study,
resulting in the Walston-Felix model,
spanned projects ranging from 4 to
467 KLOC. Although a value of zero
for KLOC accurately reflects zero cor-
responding effort, the model’s valid-
ity should be judged over its domain
or set of observed values. The scat-
ter plot of delivered code versus total
effort (in man-months) is shown in
Figure 1. The zero KLOC “equaling”
five months of effort interpretation
shows the danger of extrapolating
beyond observed values.

The Function Point Models
A function point (FP) metric falls

under function-oriented metrics.

This type of metric is based on the
functionality delivered by the appli-
cation as a normalization value. A
function point (FP) metric can be
used for several purposes, of which
estimating cost or effort required to
design, code, and test the software is
of interest. The following factors are
used to develop an empirical rela-
tionship or model.

• Number of external inputs
• Number of external outputs
• Number of external queries
• Number of internal logical files
• Number of external interface

files

It is interesting to note that once
all the effort has gone into calculat-
ing the number of FPs, some models
convert the end result into KLOC.
The validity of how one language
compares to another (for example,
what takes 77 lines in COBOL can be
done in 53 with C++) qualifies as its
own separate area of research. Some
representative FP models are shown
in Table 2.

One characteristic all models pos-
sess is the ability for the user to mod-
ify or tweak the fixed and variable
factors. Adjusting, and even adding
factors, is a feature of a widely popu-
lar model known as COCOMO II.

The Origin of COCOMO II
COCOMO stands for Constructive

Cost Model. The current version,
known as COCOMO II, as did its
predecessor COCOMO, incorporates
scale factors and effort multipliers to
adjust or factor how long it will take
to code a project of a certain size.

COCOMO was developed by Barry
Boehm, currently of the Center for
Software Engineering at the Univer-
sity of Southern California. Based
on empirical evidence from software
projects at TRW, the COCOMO model
was published in 1981. The model
used input from 63 data points,
where a data point represents a soft-
ware project ranging from 2,000 to
100,000 LOC. Dr. Boehm and others
reworked the model and published
COCOMO II. Some literature refers
to this as COCOMO II.2000 to delin-
eate the difference between the 1981
and 2000 versions.

The COCOMO II Model
Based upon a data set of 161 points

(i.e., software projects), COCOMO II
demonstrates an accuracy of 30 per-
cent of the actuals 75 percent of time.
COCOMO II is also representative of
the KLOC models previously men-
tioned. The main result of interest is
the amount of effort as measured in
person-months (PM).

COCOMO II incorporates 5 scale
factors (SF) and 17 effort multipli-
ers (EM) in the following equations.
The “NS” subscript is used to denote
a nominal schedule.

PMNS = A x (SIZE)E x

where E = B + 0.01 x

The calibrated values for A and B
are 2.94 and 0.91, respectively. As
discussed, SIZE is based on KLOC.

4CIO Corner

Figure 1: Walston-Felix Data Points

Table 2: Representative FP Models

Model Name E = A + B(ev) Format

Albrecht and Gaffney E = -91.4 + 0.355 FP

Kemerer E = -37 + 0.96 FP

Small project regression E = -12.88 + 0.405 FP

∏
=

n

i

EMi
1

∑
=

5

1j

SFj

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

The following tables illustrate the
meaning of each “EM” or effort mul-
tiplier and “SF” scale factor item.
The complete scope, meaning, and
derivation of each item is beyond the
scope of this article, but the inter-
ested reader may reference Boehm,
et al’s Software Cost Estimation with
COCOMO II for more detail and

explanation. A basic interpretation
follows Tables 3 and 4.

Generic Example of Estimat-
ing Effort

For an overall estimate at the proj-
ect level, all 17 effort multipliers are
considered. For a component, the
SCED effort multiplier is omitted. As

an example, if an average project con-
sists of 100,000 LOC (KLOC=100),
each EMi is 1.00, and the product of
all 17 is obviously 1.00. If E=1.15
is used (as in Boehm’s example in
his text, based on “an average large
project”), then the estimated effort in
person-months can be calculated as

PM = 2.94 x (100)1.15 = 586.61

4CIO Corner

Table 3: COCOMO II Scale Factors

COCOMO II SCALE FACTORS

SFi Driver Description Very Low Low Nominal High Very High Extra High

1 PREC Precedentedness 6.20 4.96 3.72 2.48 1.24

2 FLEX Development flexibility 5.07 4.05 3.04 2.03 1.01

3 RESL Architecture/risk resolution 7.07 5.65 4.24 2.83 1.41

4 TEAM Team cohesion 5.48 4.38 3.29 2.19 1.10

5 PMAT Process Maturity 7.80 6.24 4.68 3.12 1.56

Table 4: COCOMO II Effort Multipliers

COCOMO II EFFORT MULTIPLIERS

 Rating

 Cost Driver Description Very Low Low Nominal High Very High Extra High

EMi Product

1 RELY Required software reliability 0.82 0.92 1.00 1.10 1.26

2 DATA Database size 0.90 1.00 1.14 1.28

3 CPLX Product complexity 0.73 0.87 1.00 1.17 1.34 1.66

4 RUSE Required reusability 0.95 1.00 1.07 1.15 1.49

5 DOCU Documentation 0.81 0.91 1.00 1.11 1.23

 Platform

6 TIME Execution time constraint 1.00 1.11 1.29 1.67

7 STOR Main storage constraint 1.00 1.05 1.17 1.57

8 PVOL Platform volatility 0.87 1.00 1.15 1.30

 Personnel

9 ACAP Analyst capability 1.42 1.19 1.00 0.85 0.71

10 PCAP Programmer capability 1.34 1.15 1.00 0.88 0.76

11 PCON Personnel continuity 1.29 1.12 1.00 0.90 0.81

12 APEX Applications experience 1.22 1.10 1.00 0.88 0.81

13 PLEX Platform experience 1.19 1.09 1.00 0.91 0.85

14 LTEX Language & tool experience 1.20 1.09 1.00 0.91 0.84

 Project

15 TOOL Software tools 1.17 1.09 1.00 0.90 0.78

16 SITE Multisite development 1.22 1.09 1.00 0.93 0.86 0.78

17 SCED Development schedule 1.43 1.14 1.00 1.00 1.00

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

Just as legitimate is the condition-
al operator construct seen in Java,
JavaScript, and other languages:

 (some_condition ? do_this : do_
that);

Are there five countable lines
of code, or just one? Turning our
attention back to database design
and development, let’s look at the
equivalent lines of code we can use to
estimate the cost of “coding” a data-
base.

Counting the Lines that
Count in a Database

Some may argue that data defini-
tion language (DDL) is not real code
because all a DDL does is define
structure. If that’s the case, then why
do setters and getters (and even class
definitions) in Java count as legiti-
mate lines of code? After all, a line
like

 SomeCode doProgram = new
SomeCode();

does nothing more than set up
“doProgram” for references to doPro-
gram.SomeMethod() down the road.
To use a database example, let’s con-
sider the EMPLOYEES table in Ora-
cle’s HR sample schema. The DDL
for this table is shown in Figure 3.

4CIO Corner

In other words, a 1-person team
would need just over 48 years to
complete this project, and a 10-per-
son team would need almost 5 years.
Looked at another way, if the aver-
age salary per person was $50,000
per year, the project would cost 2.4
million dollars.

As another illustrative example of
this model, consider Windows XP.
Various sources state that XP con-
tains 40 million lines of code. One
proposal behind Microsoft’s upcom-
ing release of Longhorn was that
the Windows operating system code
would be re-written so as to remove
the spaghetti code nature of this code
base. Using the same parameters
as the previous example, a 40,000
KLOC project would require

 PM = 2.94 x (40000)1.15 = 576,389
person-months

Using 1,000 developers, the time-
line spans just over 48 years. It
should be safe to assume that the
next release of the Windows operat-
ing system is not going to be a com-
plete rewrite of the existing code.

The Metric of Source Lines
of Code (SLOC)

The driving factor in calculating a
nominal schedule is the number (in
thousands) of lines of code. What,
exactly, constitutes a line of code, and
further, how should lines of code be
counted in the first place? One devel-
oper may code a block of instruction
in 20 lines, while another – and just
as skilled developer – may decide to
code in only 12. Despite’s COCOMO
II’s consideration of more than 20
factors, its dependence on counting
the number of lines of code makes it
an inherently flawed tool or model.

COCOMO II addresses the SLOC
determination problem by con-
sidering the Software Engineering
Institute’s “Definition Checklist for

Source Statement Counts.” COCO-
MO II (and SEI) recognize the prob-
lems in determining SLOC and have
taken steps to address this issue.

Consider how code is generally pre-
sented in introductory programming
books. A fairly standard first example
has the new programmer outputting
a simple message. Figure 2 shows a
typical first program (a variation of
the “hello world” screen output).

COCOMO II does not count the
commented or empty lines, but what
about the lines with a single left or
right brace (“{” and “}”)? Does this
class contain four or eight countable
lines of code? Or can it be reduced to
two lines?

 Public class Welcome{Public
static void main(String args[])
 {System.out.println(“Welcome
to \nJava programming!”);}

The point of this may seem simple,
but its implications are far reaching
because of programming constructs
or options available in many lan-
guages. The simple IF-THEN-ELSE
statement is typically seen as

IF (some_condition) THEN
 Do_this;
ELSE
 Do_that:
END;

Figure 2: Outputting a Simple Message

Public class Welcome
{
 // main method begins execution of Java application
 Public static void main(String args[])
 {
 System.out.print(“Welcome to “);
 System.out.print(“Java programming!”);

 } // end method main

} // end class Welcome

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4CIO Corner

Figure 3: DDL for the HR.EMPLOYEES Table

REM **
REM Create the EMPLOYEES table to hold the employee personnel
REM information for the company.
REM HR.EMPLOYEES has a self referencing foreign key to this table.

Prompt ****** Creating EMPLOYEES table

CREATE TABLE employees
 (employee_id NUMBER(6)
 , first_name VARCHAR2(20)
 , last_name VARCHAR2(25)
 CONSTRAINT emp_last_name_nn NOT NULL
 , email VARCHAR2(25)
 CONSTRAINT emp_email_nn NOT NULL
 , phone_number VARCHAR2(20)
 , hire_date DATE
 CONSTRAINT emp_hire_date_nn NOT NULL
 , job_id VARCHAR2(10)
 CONSTRAINT emp_job_nn NOT NULL
 , salary NUMBER(8,2)
 , commission_pct NUMBER(2,2)
 , manager_id NUMBER(6)
 , department_id NUMBER(4)
 , CONSTRAINT emp_salary_min
 CHECK (salary > 0)
 , CONSTRAINT emp_email_uk
 UNIQUE (email)
) ;

CREATE UNIQUE INDEX emp_emp_id_pk
ON employees (employee_id) ;

ALTER TABLE employees
ADD (CONSTRAINT emp_emp_id_pk
 PRIMARY KEY (employee_id)
 , CONSTRAINT emp_dept_fk
 FOREIGN KEY (department_id)
 REFERENCES departments
 , CONSTRAINT emp_job_fk
 FOREIGN KEY (job_id)
 REFERENCES jobs (job_id)
 , CONSTRAINT emp_manager_fk
 FOREIGN KEY (manager_id)
 REFERENCES employees
) ;

ALTER TABLE departments
ADD (CONSTRAINT dept_mgr_fk
 FOREIGN KEY (manager_id)
 REFERENCES employees (employee_id)
) ;

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

How many lines of code did it take
to create this table? Not counting the
remark lines, and moving the dan-
gling closing parens up one line (and
by convention, blank lines do not
count), there are 39 lines. The DDL
statements and clauses look just as
complex as the way code does in
many other languages. And as anoth-
er consideration, what if a schema
has default data loaded into it ahead
of time? Those INSERT statements
should count too.

Other countable lines of code for a
schema include lines used for creat-
ing packages, package bodies, pro-
cedures, function, triggers, views,
indexes, sequences, and jobs. In other
words, the lines used to create every
object in a schema count.

Yet another area of consideration
includes GUI objects. For Oracle,
we can include Forms, Reports, and
anything related to enhancing Appli-
cation Server. A moderately sized
form can have thousands of lines of
code buried within elements such as
data blocks (all the triggers behind
block elements), list of values, record
groups, and stored procedures and
functions.

Putting the DLOC to Use
So with all these thousands, if

not millions, of lines of code being
“coded” into a database, doesn’t
counting the lines themselves add
some additional burden to the effort?
Yes it does, but this effort isn’t any
different than what “real” languages
face. Fortunately for database devel-
opers and administrators, there is
a built-in counting mechanism in
the form of “COUNT(whatever)” in
SQL.

There are two approaches to count-
ing database lines of code (DLOC),
and they can be divided into before
and after the fact. The “before the
fact” camp has it a bit easier if all

DDL and DML statements are con-
tained in scripts. Coding conven-
tions help standardize what does and
does not count (e.g., all CREATE
SEQUENCE statements count as two
lines). This approach parallels tradi-
tional software engineering cost esti-
mation efforts.

For those in the “after the fact”
camp wanting to obtain an estimate
of their DLOC, well, start counting
what’s already in the database. Once
a DLOC number is obtained, some
extrapolation can be used to provide
an estimate for similarly sized devel-
opment projects in the future. Inter-
estingly enough, this approach also
parallels that of traditional software
engineering cost estimation. How can
that be? How do you think the KLOC
and FP models were developed in the
first place? By counting the lines of
code in completed projects and then
using linear regression, that’s how.

In either case, once the DLOC num-
ber has been obtained, COCOMO II
can be used to determine effort esti-
mates. Once the time is computed,
cost estimates can be calculated, and
with the cost estimate in hand, you’ll
know how much that database in the
window costs.

Steve Callan – Steve is an Oracle
DBA and developer. His Oracle expe-
rience includes several versions of the
RDBMS, Forms & Reports, and Appli-
cation Server. In addition to working
with Oracle, Steve also spends time
on researching other database sys-
tems such as SQL Server and DB2
and would someday like to start his
own software company. Steve may be
contacted at Steve.Callan@ERPtips.com.
 ≈

References
Boehm, Barry W. et al. Software

Cost Estimation with COCOMO II.
Upper Saddle River, NJ: Prentice
Hall PTR, 2000.

“COCOMO 81.” Center for Soft-
ware Engineering, University of
Southern California. 2 Oct. 2005.
<http://sunset.usc.edu/research/
COCOMOII>

Montgomery, Stephen. Building
Object-Oriented Software. New York:
McGraw-Hill, 1998.

Pressman, Roger S. Software Engi-
neering: A Practitioner’s Approach.
Boston, MA: McGraw-Hill, 2005.

Watson, C.E., and Felix, C.P. “A
Method of Programming Measure-
ment and Estimation.” IBM Systems
Journal 16.1 (1977): 54pp. 2 Oct.
2005

<http://domino.research.ibm.
com/tchjr/journalindex.nsf/0/aa74f
16b2732c9ee85256bfa00685add?O
penDocument>

4CIO Corner

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

The information on our website and in our publications is the copyrighted work of Klee Associates, Inc. and is owned by Klee Associates, Inc. NO WARRANTY: This
documentation is delivered as is, and Klee Associates, Inc. makes no warranty as to its accuracy or use. Any use of this documentation is at the risk of the user. Although
we make every good faith effort to ensure accuracy, this document may include technical or other inaccuracies or typographical errors. Klee Associates, Inc. reserves
the right to make changes without prior notice. NO AFFILIATION: Klee Associates, Inc. and this publication are not affiliated with or endorsed by Oracle Corporation.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Klee Associates, Inc. is a member of the Oracle Partner Network

Journal

This article was originally published by Klee Associates, Inc., publishers of JDEtips and SAPtips.
For training, consulting, and articles on JD Edwards or SAP, please visit our websites:
www.JDEtips.com and www.SAPtips.com.

