
ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

Report API Setup
A report using the API for flexfield

segments can decrease SQL.

Without the API, a query using flex
segments would look something like
Figure 1.

With the API, the same script uses
a lexical parameter to display the
information as shown in Figure 2.

The lexical parameter is designat-
ed by the “&” before the parameter
name and is used as a place holder
that will fill in the values at run
time with information passed to the
report or information that is static. A
lexical parameter can appear after a
SELECT, WHERE, FROM, ORDER
BY, HAVING, CONNECT BY, or
START WITH keyword in a SQL
statement.

Note: A lexical cannot be used inside
a PL/SQL block.

After the API is called:

• �lexical1 could look like segment1,
segment2, segment3 or segment1
||separator||segment2||separator||
segment3

• �lexical2 could look like segment1
= 123 and segment2 between
123 and 456

• �lexical3 could look like segment2,
segment3, segment1.

Note: Parameters that are used with
lexical values should have default or
initial values to allow the queries to
work properly.

Another option to using a lexical
for the SELECT part of the state-
ment is to use the field concatenated
segments from the table, if available.

To use the API, the following trig-
gers first need to be populated:

• �after parameter form

• �after report

Editor’s Note: One quick way to
become the “most popular developer”
on your Oracle® project is to auto-
mate mundane and repetitive tasks.
Properly utilized, Flexfield Support
API is one of the Oracle developer’s
most powerful tools. But as expert
Debra Addeo has found, this tool
does require an organized thought
process in order to master. One key
element behind the use of APIs is
lexical parameters. If that last sen-
tence made sense to you, then you’re
really going to enjoy this developer’s
guide to creating and testing Oracle
Reports using this functionality.

Introduction
Reports that use cost codes,

accounting segments, or any flex-
field segment as a parameter can be
more challenging to develop without
the use of the FLEXSQL API. This
API makes use of user exits that can
create WHERE statements for SQL,
select columns in a SQL statement,
or be used for displaying segment
values as prompts. The flexfield data
can easily be displayed as segment
values or descriptions with output
restricted based on high - low value
ranges.

Building Reports Using Oracle’s Flexfield Support API
By Debra Addeo

4On Development

select 	 segment1, segment2, segment3
 from 	 table
 where segment1 >= (:p_input1_start)
 and segment1 <= (:p_input1_end)
 and segment2 >= (:p_input2_start)
 and segment2 <= (:p_input2_end)
 and segment3 >= (:p_input3_start)
 and segment3 <= (:p_input3_end)
order by segment1, segment2, segment3

Figure 1: Sample SQL Query	

select &lexical1 alias
 from table
where &lexical2
order by &lexical3

Figure 2: Sample SQL Query Using API Logic

A report using the

API for flexfield

segments can

decrease SQL.

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

• �before report

The after parameter form trigger
should look like Figure 3.

The after report trigger should look
like Figure 4.

Most of the code for the call goes
into the before report trigger and
should look like Figure 5.

The first user exit gathers the names
of the columns for the SELECT state-
ment and places the information into
the lexical parameter. The second
user exit in Figure 5 puts together
the WHERE clause for the SELECT
statement and places the information
into the lexical parameter.

If the after report code is placed into
a different report trigger, there is a
possibility that the user exit will not
function properly and the lexical will
not be filled in properly. The srw.
message lines puts the information
into the log file from the concurrent
manager so that a log can be kept for
reference if there are any problems
and can be used for debugging the
code.

Before the code can be compiled,
define the following parameters:

• �p_struct_num parameter – pro-
vides the id for the structure of the
flexfields.

 �101 is used for the flexfield struc-
ture in the example.

• �p_where_flex parameter – defines
the conditions for the lexical placed
for the WHERE field in the query.
This should default to 1=1 in the
event none of the segments are cho-
sen as parameters.

• �p_min_flex and p_max_flex – used
as user parameters to input a range
of values in the query as shown in
the p_where_flex.

The FND FLEXSQL script is shown
in Figure 6.

FLEXSQL Script Glossary
Code:	
Figure 7 is a partial list of flexfield
codes.

APPL_Short_Name:
This is the short name of the appli-
cation that owns the flexfield. This is
found in the FND_Application table.
For the payroll costing flexfield, the
application short name is PAY; for
GL, it is SQLGL.

Output:	
Output is the parameter name that
is used in the lexical parameter. This
will go into the WHERE clause of the
query.

4On Development

function AfterReport return boolean is
begin
 srw.user_exit(‘FND SRWEXIT’);
 return (TRUE);
end;

Figure 4: After Report Trigger

function AfterPForm return boolean is
begin
 srw.user_exit(‘FND SRWINIT’);
 return (TRUE);
end;

Figure 3: After Parameter Form Trigger

Figure 5: BeforeReport Trigger

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

Mode:
SELECT retrieves the segment val-
ues in a non-displayable format. If
a select flexfield qualifier is chosen
and that flexfield segment is depen-
dent, then the flexfield automatically
selects both the parent and child seg-
ment. Additionally, the lexical used
for the SELECT statement can be
used in the GROUP BY clause.

WHERE is used to restrict the query
by specifying constraints on the flex-
field columns.

HAVING has the same functionality
as the WHERE clause.

ORDER BY is the list of fields, sepa-
rated by a comma, to be used in the
ORDER BY clause in the SQL state-
ment.

Display:
The display parameter allows the
specification of which segments are
needed. The value “all” will return
all the segments. The display param-
eter can be used multiple times for
“all” and then return other lines that
would exclude segments.

 �For example 	 DISPLAY=”ALL”
DISPLAY=”1” DISPLAY=”2” 	

 �would display all but the first two
segments.

Showdepseg:
If this is set to “N”, then it disables
the automatic addition of dependent
upon segment to the order criteria.
The default is “Y” and is only valid
for mode ORDER BY.

Num or Multinum:
Specifies the name of the lexical or
source column that contains the flex-
field structure information.

TableAlias:
This is the alias that is used by the
table that contains the segments
located in the SQL query.

4On Development

FND FLEXSQL
CODE=”flexfield code”
APPL_SHORT_NAME=”application short name”
OUTPUT=”:output lexical parameter name”
MODE=”{ SELECT | WHERE | HAVING | ORDER BY}”
[DISPLAY=”{ALL | flexfield qualifier | segment
number}”]
Reporting on Flexfields Data 8 – 23
[SHOWDEPSEG=”{Y | N}”]
[NUM=”:structure defining lexical” |
MULTINUM=”{Y | N}”]
[TABLEALIAS=”code combination table alias”]
[OPERATOR=”{ = | < | > | <= | >= | != | ”||” |
BETWEEN | QBE}”]
[OPERAND1=”:input parameter or value”]
[OPERAND2=”:input parameter or value”]

Figure 6: FLEXSQL Script

Figure 7: Flexfield Codes

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

Operator:
Specifies which operator to use in the
WHERE clause.

Operand 1:
Used in the WHERE clause for a min
value for a BETWEEN or, if there is
no max value, then just the operand
to use.

Operand 2:
Used in the BETWEEN clause with
the operator between.

If the report needs to display the
description of the segment, this can
be accomplished using another user
exit.

Create formula columns c_flex-
field and c_desc_all for this example.
Additional columns may be used if
the report requires it. These formula
columns should correspond to the
values and descriptions displayed in
the report.

To retrieve the concatenated flex-
field segment values and description
to incorporate into the flexfields user
exit, the above formula fields need
to be defined. Pass the concatenated
segments along with other informa-
tion to the user exit; the user exit
populates the concatenated values
in this column as specified by the
VALUE token. This would populate
the segment values.

An example would look similar to
Figure 8.

The user exit FND FLEXIDVAL
could also use descriptions. The code
for that would look as in Figure 9.

The display information would be
placed into c_desc_all.

After the report is defined, the wiz-
ard can be used to create the report
layout, and the report added to the
concurrent manager.

Once created, execute from the
machine that has the Apps loaded.
The user exits normally cannot be
run on a client machine. It can be run
through the concurrent manager for
testing and using a flexfield pair to
create the parameter screen needed
to call the report.

Concurrent Manager Setup
The concurrent manager is used to

run the report. To use the segments
of the flexfield for a parameter as
input to the report, an application
validation set needs to be defined.

If using a flex segment as a range of
information (for example, a high and
low value for a cost code or GL seg-
ment), then a pair would need to be
set up to accomplish this.

To define a value set with valida-
tion type “pair”, use the System
Administrator responsibility and the
navigation path: Application > Vali-
dation > Set (Figure 10).

The Validation Type would be a
pair and the List Type would be a list
of values. A pair is used when there
would be a high and low range for a
value.

4On Development

Figure 8: Sample Query to Retrieve Descriptions

SRW.REFERENCE(:P_STRUCT_NUM);
SRW.REFERENCE(:C_FLEXDATA);
SRW.USER_EXIT(’FND FLEXIDVAL
CODE=”GL#”
NUM=”:P_STRUCT_NUM”
APPL_SHORT_NAME=”SQLGL”
DATA=”:C_FLEXDATA”
VALUE=”:C_FLEXFIELD”
DISPLAY=”ALL”’);
RETURN(:C_FLEXFIELD);

Figure 9: Sample Query FND FLEXIDVAL

SRW.REFERENCE(:P_STRUCT_NUM);
SRW.REFERENCE(:P_FLEXDATA);

SRW.USER_EXIT(’FND FLEXIDVAL
CODE=”COST”
NUM=”:P_STRUCT_NUM”
APPL_SHORT_NAME=”PAY”
DATA=”:C_FLEXDATA”
DESCRIPTION=”:C_DESC_ALL”
DISPLAY=”ALL”’);
RETURN(:C_DESC_ALL);

If the report needs

to display the

description of the

segment, this can be

accomplished using

another user exit.

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

Click on the Edit Information box
and add the following:

On Edit and Validate, the follow-
ing are set up for the cost code.

Once the above information is set
up, then the parameters to run the
report can be set up in the concur-
rent manager.

 Running the Report
When the report is run with a pair

through the concurrent manager, the
flexfield parameters will look like Fig-
ure 13. Once the pair is set up, then
all that needs to be done is to assign
it to the parameter, and it will use the
segments to create the popup.

Once the parameters are filled in,
then the lexical is created for which-
ever parameters are filled in. For
example, if Fund is filled in as 10
for high and low and Locations are
filled in for a range between 10 and
20, then the lexical for the WHERE
clause would look like:

Where segment1 = 10 and segment2
between 10 and 20

4On Development

Figure 10: Value Sets

Figure 11: Edit Button from Value Sets

Figure 12: Concurrent Manager Parameters for the Report

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

Conclusion
FLEXSQL can be used to replace

multiple segments in a select state-
ment in Oracle Reports. Once set up,
this method allows reports to be cre-
ated faster with lower maintenance.

Debra Addeo, Douglas County
Public Schools – Debra has been an
application developer and database
administrator working primarily
with Oracle for the past 15 years.
Her experience includes develop-
ment on UNIX and Windows NT,
using various programming languag-
es and tools. She is skilled at vari-
ous aspects of Oracle development,
performance tuning, and trouble-
shooting, as well as database admin-
istration and Web application devel-
opment. Debra may be contacted at
Debra.Addeo@ERPtips.com. ≈

References
1. �Oracle Applications Flexfields

Guide

2. �Oracle MetaLink (metalink.oracle.
com)

4On Development

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

The information on our website and in our publications is the copyrighted work of Klee Associates, Inc. and is owned by Klee Associates, Inc. NO WARRANTY: This
documentation is delivered as is, and Klee Associates, Inc. makes no warranty as to its accuracy or use. Any use of this documentation is at the risk of the user. Although
we make every good faith effort to ensure accuracy, this document may include technical or other inaccuracies or typographical errors. Klee Associates, Inc. reserves
the right to make changes without prior notice. NO AFFILIATION: Klee Associates, Inc. and this publication are not affiliated with or endorsed by Oracle Corporation.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Klee Associates, Inc. is a member of the Oracle Partner Network

Journal

This article was originally published by Klee Associates, Inc., publishers of JDEtips and SAPtips.
For training, consulting, and articles on JD Edwards or SAP, please visit our websites:
www.JDEtips.com and www.SAPtips.com.

