
ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

in parts. The first would be the con-
version of the legacy accounts pay-
able system.

In this article, I will discuss what
I believe is the most visible custom
interface that has been deployed
as part of our Oracle Application
(Finance) release. Its origin came
from a major project some three
years ago that converted the corpo-
rate legacy accounts payable system
to the Oracle Applications (Finance)
Payables module.

As with any major conversion,
system functionality currently used
must be retained. The challenge was
deploying an Oracle Applications
(Finance) batch invoice system that
mirrored the legacy system. A second
challenge, associated with any type of
conversion, is ensuring end-user buy-
in. Not only do we need their accep-
tance of the new interface, but also
their willingness to use the interface
in a completely new financial man-

The challenge

associated with any

type of conversion is

ensuring end-user

buy-in.

agement system. It was important to
be very conscious of the end users’
reactions; in other words, the fear
of change. The goal was to give the
end users an intuitive system, easing
their fears and empowering them to
have control of both their job and the
system.

The interface, better known as
“Invoice Upload Interface”, is high-
ly visible because it is heavily used
every day by multiple end users. It
has been in production use for three
years. In the beginning, its purpose
was to allow multiple end users to
process invoices in real-time (or par-
allel processing of invoice batches).
As the end users began to recognize
the power of the interface, additional
enhancements were requested. Some
of these enhancements were:

• One-Time Vendor Invoice Up-
loads

• Match to PO Invoices Uploads

• Sharing the Process with dis-
connected Business Units within
Humana

• Automate the process to include
Mass Additions of Assets

Discussing each of the enhance-
ments listed above is a paper unto
itself. What I will discuss is the initial
deployment of the original “Invoice
Upload Interface” and the tools
required to do it.

Process Requirements
The end users wanted to replicate

how invoice batches were processed
in the legacy system. The legacy pro-

Editor’s Note: MS Excel to load
invoice batches to Oracle Payables!
Even Oracle ADI doesn’t do that, in
fact few 3rd-party products do. What
to do? Do as Kevin Ellis has done,
develop your own in-house invoice
batch interface. And if that isn’t
enough to pique your interest, how
about an interface for keeping your
chart of accounts current between
production legacy and Oracle sys-
tems? He has done that too. And he
has shared all in this comprehensive
ORAtips cover story, discussing cus-
tom concurrent program and UNIX
shell script development, Oracle
Applications set-up, and end-user
considerations.

Introduction
In the inaugural volume of ORAtips,

I presented an article titled “Real-
Time Migration of Oracle Applica-
tion Setups Done In-House”. In that
article, I gave a little background
on the origin of Oracle Applica-
tions (Finance) at Humana. Emph-
esys was to have been the name of
a spin-off company that never hap-
pened.” The rollout of Oracle Appli-
cation (Finance) was to be the book
of record for the new spin-off. As the
spin-off never happened, the imple-
mentation of Oracle Applications was
retained as a sub-ledger to the corpo-
rate legacy books. Emphesys was re-
organized into product development.
Later as time passed, senior leader-
ship decided that the corporate book
of record (legacy) would eventually
need to be enhanced or converted.
The long-term goal was conversion.
Better stated, Oracle Applications
(Finance) would eventually be the
book of record for the corporation.
However, conversion would be done

Batch Invoice Uploads into Oracle® Payables
Using MS Excel

By Kevin Ellis

4On Financials - Payables

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

cess involved screens. At first thought,
it would be reasonable to assume our
solution would be deployment of a
sub-system in Oracle Applications
using Oracle Forms. However, there
were multiple problems with this.
Our development staff members are
technology rookies and were in fact
taking Oracle Forms training classes
during this project. That coupled
with a tight budget and deadline
constraints also eliminated bringing
in external consultants to assist.

During the analysis phase, it was
noted the end users were comfortable
using Microsoft Excel, as were the
System Administrators, who are also
accounts payable experts. My years
of working with Oracle products
had helped me learn the technical
side of Oracle Payables, and I have
a good working knowledge of Excel.
This triggered the idea of creating an
Oracle Payables business template in
Excel (administered by our functional
system administrators) as the key to
this challenge. A concurrent program
could be used to process and load the
template into Oracle Payables via an
open interface. This solution would
meet two major requirements: ease
of use and limited training.

Still, there were other hurdles to
overcome: business requirements.
One has already been discussed: mul-
tiple end users running the process in
parallel. To meet this requirement,
our design was simple enough, and
this is discussed further in the System
Design section. At a quick glance:

1. A batch number uniquely identi-
fies each batch.

2. The end users save the Excel tem-
plate batches as comma-delimited
files (or CSV files).

3. The system uses a CSV file for-
mat to load data into tables via
SQL*Loader.

This solution allowed the interface
to be executed multiple times in par-
allel.

As previously mentioned, Oracle
Applications (Finance) was to be
rolled out as part of the spin-off.
The chart of accounts (COA) struc-
ture differed in Oracle Applications
(Finance) from that of the legacy
system. It was concluded that the
mapping between Oracle and legacy
COA combinations would be main-
tained on the legacy side of the busi-
ness. Since the end users required the
ability to continue booking invoices
using the legacy COA structure, a
custom interface was required to
pull the COA mappings down so
that the invoices could be booked
to the correct COA combination in
Oracle. Given that the COA combi-
nations are changed daily, the inter-
face (COA mappings) would need to
be scheduled to run daily so that the
Oracle mappings remained current.
In the event of an emergency map-
ping, the interface also needed to be
flexible so that it could be executed
on demand.

Our solution was to develop a
sub-system that mimics legacy sys-
tem functionality. Excel is used as a
substitute for the legacy system and
is the data entry point. A process is
deployed to maintain COA map-
pings between the legacy system and
Oracle, scheduled to run daily with
the ability to be executed on demand.
A concurrent program is deployed,
which can be submitted multiple
times simultaneously for different
batches to take care of translating
the legacy COA values to Oracle COA
combinations. The actual mappings
are managed and maintained on the
legacy system.

System Design
System design is fairly simple from

the standpoint of the end user:

• A predefined Excel template for
data entry

• A location on the server to store
the Excel template batches

• A concurrent program that
would select, process, and load
the invoices stored in the Excel
template batches into Oracle
Payables

The concept is straightforward. The
details are another story. Ownership
of the design for the Excel template
was given to the functional staff since
they were accounts payable experts,
plus had a comfort level designing an
Excel template. Granted, some nego-
tiation was necessary. For instance,
the technical team knew Oracle pro-
cessed invoices in a drill down sort
of fashion. Batches are composed of
invoices and invoices are composed
of lines. Also, consideration for main-
taining the COA mappings had to be
factored in. Figure 1 demonstrates
(from a business perspective) the
design of the system.

4On Financials - Payables

Excel is used as a

substitute for the

legacy system and

is the data

entry point.

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

Enter Invoice Batch is done via a
pre-defined Excel template. Once
the template is populated, it is saved
as a comma-delimited file to a spe-
cific directory on a specific network
server. The file name includes the
batch number as determined by the
end user. The number is used as a
run-time parameter when executing
the concurrent program to pull the
comma-delimited file from the net-
work server to UNIX. Not only does
the batch number allow the concur-
rent program to identify the correct
data file to pull, but also allows other
end users to process different batches
at the same time. In other words, the
system is designed to allow parallel
processing of invoice batches.

Because the end users use the cor-
porate COA structure to enter invoice
batches, the COA mappings must be
pulled from the mainframe to Oracle
for proper accounting of the invoic-

es in the Oracle Payables system. A
process on the mainframe generates
the required data, the COA mapping
file. In Oracle, a concurrent program
pulls the COA mappings to Oracle
for reference when processing invoice
batches.

At this point, I will discuss the
details of the system. Please note
that I will not elaborate on the COA
mapping portion since it may only be
unique to our company and may not
even be necessary for yours. Even if
it were relevant to your company, the
structures would differ. Additionally,
the discussion of the COA mappings
takes away from the major goal of
this article, which is the processing of
the invoices in batch format

The MS Excel Template
As mentioned previously, the data

entry point is the Excel template. At
Humana, we designed the template
with two goals in mind: items that
pertained to the business and those
that are required to be processed via
Oracle Payables.

The first three lines of the tem-
plate are reserved. The first line of
the template is header labels for the
batch. Basic batch level information
is entered into the second line. The
third line contains invoice line labels,
identifying the columns for each data
element to be entered for an invoice
line. The bulk of the data (invoice
lines) are entered starting at line 4
forward. Figures 2 and 3 are exam-
ples of our Excel template.

Line 2 contains the basics about
the batch. The end user enters the

4On Financials - Payables

Figure 1: Business System Design

Figure 2: Excel Template, Part 1

Enter Invoice Batch
into Excel Templatae

& save as CSV file

Maintain COA
Mappings on
Mainframe

Execute Concurrent
Program to load and
process Invoice Batch

Generate COA Mapping
File

Execute Concurrent
Program to pull COA

Mappings

Mainframe

Oracle

Invoice Batch CSV files

COA Mappings

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

batch number along with the batch
control total, batch date, accounting
period, the batch control count, and
their Oracle user id (created by). The
other batch header columns are cal-
culated fields. In other words, Excel
computes the accumulated batch
total and the difference displayed in
the column titled “Batch Variance”.
Likewise, Excel calculates the “Accu-
mulated Batch Count” field and the
variance displayed in the field titled
“Batch Count Variance”. Additional-
ly, there is one other calculated field
called “Invoice Count”, which tells
the user (once all invoice lines have
been entered) the number of unique
invoices in the batch.

At the invoice line level, the end
user enters data about each invoice
line included in the batch. Data relat-
ed to each specific invoice is denoted
by the burgundy color of the header
column. Likewise, invoice line level
data is denoted by the yellow color of
the header column. You may notice
that there are column headers listed
in blue. These items represent an
enhancement that was applied to the
interface related to performing auto-
mated mass additions. These attri-
butes are optional since they are only
relevant to invoices involving assets.
With every invoice, the following is
required:

• Batch number

• Date the invoice was received

• The invoice date

• Invoice number

• Vendor identification (either a
number or code)

• Special handle

• Pay alone

• Terms

Other information (such as for-
eign PO number, invoice description
comments and secure information) is
optional. At the line level, the follow-
ing is required:

• Line number

• COA information (COID & UDN/
Acct)

• Distribution amount

Likewise, there is optional infor-
mation (such as state tax, county tax,
local tax, distribution description,
major & minor category, tag number,
serial number, and expense UDN/
Acct). It should be noted that data
entered into state, county, or local
tax will result in an extra invoice
line being created. In other words,
each invoice line listed in the Excel
spreadsheet will create from one to
four invoice line entries in Oracle
Payables pending tax information
rendered.

 The Custom Concurrent
Program

The custom concurrent program
executable is built using UNIX script,
which will be discussed further in the
UNIX Shell Program Design section.
The custom concurrent program
calls the custom executable. The cus-
tom concurrent program setup is dis-
played in Figure 4.

The concurrent program is com-
posed of several parameters, most of
which are invisible to the end user.
However, one is visible and required:
batch number. All of the parameters
are displayed in Figures 5 and 6. For
the batch number, a custom value
set was deployed (Figure 7). There
is nothing special about this value
set other than it defines the batch

4On Financials - Payables

 Figure 3: Excel Template - Part 2

….. data entered

for state, county

or local tax will

create an

additional invoice

line…

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4On Financials - Payables

Figure 5: Parameters Part 1

Figure 4: Custom Concurrent Program

Figure 6: Parameters Part 2

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

number as an alpha-numeric string
of up to ten characters in length with
no validation. It is possible that this
rule may change in the future. The
UNIX script uses all of the other
parameters.

The UNIX Shell Program
Design

What we have seen up to this point
is the cosmetic portion of the inter-
face. Now comes the guts: the back-
ground process. The data flow of the
background process is illustrated in
Figure 8. The first part of the process
is simple: pull over the invoice batch
data file from the NT server to UNIX.
This is accomplished via a FTP ses-
sion. Because the interface must be
able to process multiple batches at
the same time, the file name of each
batch contains the batch number.

Pulling the Data File to
UNIX

In our deployment, UNIX was used
to drive the entire interface. The con-
current program initiates a call to
a UNIX shell program. UNIX shell
programs for Oracle Applications
can be set up in many ways. One
way is by using a UNIX link. This is
beneficial to the developer in terms
of future enhancements. We did use
this deployment method because at
the time of development, we did not
have any knowledge that UNIX shell
programs could be setup in that fash-
ion. Instead we used AWK to parse
the parameter string sent from the
concurrent program. The code for
executing the FTP in this fashion is
shown in Figure 9.

4On Financials - Payables

Figure 7: Value Set

 Figure 8: Background Data Flow

Execute the Oracle provide
concurrent program "Payables

Open Interface Import"

ap.ap_batches_all ap.ap_invoices_all ap.ap_invoice_distributions_all

Load data into
Payables Open
Interface Tables

Process data and
validate against
Business Rules

Pull Invoice Batch CSV
File from NT Server to

UNIX

Invoice batch CSV file

ap.ap_invoice_lines_interfaceap.ap_invoices_interface

Exit in Error

Batch Header
Staging Table

Invoice Lines
Staging Table

All Validations
Met?

Load Invoice Batch
data into custom
Staging Tables

FTP

SQLSQL

Yes

No

InsertInsert

SQLSQL

SQL

SQL *Loader SQL *Loader

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4On Financials - Payables

#***
#*** Retrieve Parameters from Concurrent Program ***
#***
REQUESTID=`echo $1 | awk ‘{print $2}’ | sed ‘s;FCP_REQID=;;’`
USERPASS=`echo $1 | awk ‘{print $3}’ | sed ‘s;FCP_LOGIN=;;’ | sed ‘s;”;;g’`
USERID=`echo $1 | awk ‘{print $4}’ | sed ‘s;FCP_USERID=;;’`
ORGID=`echo $1 | awk ‘{print $9}’ | sed ‘s;”;;g’`
RESPID=`echo $1 | awk ‘{print $10}’ - | sed ‘s;”;;g’`
RESPAPPLID=`echo $1 | awk ‘{print $11}’ - | sed ‘s;”;;g’`
SECGRPID=`echo $1 | awk ‘{print $12}’ - | sed ‘s;”;;g’`
BATCH_NUMBER=`echo $1 | awk ‘{print $13}’ - | sed ‘s;”;;g’`
LOGINID=`echo $1 | awk ‘{print $14}’ - | sed ‘s;”;;g’`

#*************************
#*** Setup Constants ***
#*************************
FILENAME_BASE=”empap_humvp”
DIRECTORY_XFER=”/staging”
DIRECTORY_DATA=”${EMPCUST_TOP}/inbound”

#**
#*** Retrieve E*Mail Address for Caller ***
#**
EMAILADDR1=`echo “set heading off
 set echo off
 select email_address
 from apps.fnd_user
 where user_id = ${USERID};” | sqlplus -s ${USERPASS}`
EMAILADDR1=`echo ${EMAILADDR1} | sed ‘s;^ ;;g’`

echo “Batch Name :”${BATCH_NUMBER}

#***
#*** Attempt to retrieve Invoice Batch Data File ***
#*** from NT Server ***
#***
echo “Retrieving batch data file ${FILENAME_BASE}${BATCH_NUMBER}.csv”

ftp -inv ‘humana.ap.invoices.batch_upload’ <<EOFTP1
user ‘oracle_upload’ ‘password’
cd “/ap/oracle/csv”
get ${FILENAME_BASE}${BATCH_NUMBER}.csv ${DIRECTORY_XFER}/${FILENAME_BASE}${BATCH_NUMBER}.csv
del ${FILENAME_BASE}${BATCH_NUMBER}.csv
quit
EOFTP1

#***
#*** If Data File does not exist, then send e*mail ***
#*** to caller about the problem. However, if it ***
#*** does exist, put data file in data processing ***
#*** directory. ***

Figure 9: FTP - continued on next page

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4On Financials - Payables

All parameters set up in the concur-
rent program, plus some that Oracle
sends automatically (like the request
ID, APPS/password connection to
the Oracle Database, the user ID exe-
cuting the concurrent program, the
user name, selected printer, etc.), can
be referenced by the first parameter
($1) in a UNIX shell program. In this
example, we are only going to look at
those that are pertinent to perform-
ing the FTP.

In the example, I have listed all of
the parameters that have been set
up by the design of the concurrent
program. I wanted to point out that
custom parameters are referenced
in a UNIX shell program starting at
the 9 position of parameter $1. In
other words, to get the Org ID you
must parse through to the 9 string in
parameter $1 in order to obtain its
value. Likewise, the 10th string in
parameter $1 represents the Respon-
sibility ID, and so forth. The first 8
strings in parameter $1 are reserved
and are passed to a UNIX shell pro-
gram automatically. We will use
some of these to perform the logic
above. Also important to note is that
the batch number will be saved in a
UNIX variable ${BATCH_NUMBER}
and is the 13 string in parameter $1.

Once the parameters have been
received from the concurrent pro-
gram, constants are set up. In this
case, the constants serve as place-
holders for the base name for the
data file that is to be pulled over, the
directory that the data file will initial-
ly be placed in, and the final staging
area that the data file will be placed
in, provided that we were successful
in pulling it over in the first place. All
data files have a base name. In this
case, it is “empap_humvp”, stand-
ing for Emphesys Account Payable
for Humana Vendor Payments. This
string is stored in the constant vari-
able ${FILENAME_BASE}. That is
basically what our invoice upload
process is for: processing invoices for
services provided by external ven-
dors. What follows that file name
is the batch number. Since the end
user saves the invoice batch as an
comma-delimited file, on the remote
server the file can be referenced by
the concatenation of UNIX variables
“${FILENAME_BASE}${BATCH_
NUMBER}.csv”.

Up to this point, I have demon-
strated how we retrieve the concur-
rent program parameters and how
we determine what file to pull. Now
let us actually try finding it. This

is performed via an FTP session. I
have placed some dummy names to
reference a server I call “humana.
ap.invoices.batch_upload”. Like-
wise, I assume there is an account set
up for us called “oracle_upload” and
that the password to this account is
“password”. This would not be very
secure by any means, but I wanted to
keep this part of the demonstration
simple. I also assume that the asso-
ciates save their comma-delimited
invoice batch file under a directory
called “/ap/oracle/csv”.

Given these assumptions, I have
configured the UNIX script to con-
nect to the remote server at that point
and attempt to find and pull a file
that is equivalent to the value stored
from referencing “${FILENAME_
BASE}${BATCH_NUMBER}.csv”.
Assuming that the file exists, it is
pulled from the remote server and
placed on a directory in UNIX called
“/staging”. My next step is to deter-
mine if a file was received. If no file
is received, I must notify the caller of
the concurrent program of the prob-
lem and terminate the UNIX shell
program. To terminate a UNIX shell
program abnormally is accomplished
using the “exit” command. This will
cause the concurrent program that

#***
ls ${DIRECTORY_XFER}/${FILENAME_BASE}${BATCH_NUMBER}.csv
if [$? -ne 0];
then
 echo “Error: data file ${FILENAME_BASE}${BATCH_NUMBER}.csv does not exist. Please download invoice batch file and
re-run concurrent program EMPAP: Invoice Upload Interface.”
 (echo “Data file ${FILENAME_BASE}${BATCH_NUMBER}.csv does not exist. Please download invoice batch file and re-
run concurrent program EMPAP: Invoice Upload Interface.”)|mailx -s “EMPAP: Invoice Upload; Error, Request ID ${REQUESTID}”
${EMAILADDR1}
 exit 1
else
 echo “Data file downloaded to transfer directory.”
 echo “Moving data file to data directory.”
 mv ${DIRECTORY_XFER}/${FILENAME_BASE}${BATCH_NUMBER}.csv
${DIRECTORY_DATA}/${FILENAME_BASE}${BATCH_NUMBER}.csv
fi

Figure 9: FTP - continued from previous page

ORAtips

Pa
ge

 �

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

executed it to immediately complete
in error. As part of this process, I send
an e-mail to the caller, stating that the
concurrent program has completed
in error. I also send them the request
ID so that they can quickly find and
review the report for the problem in
question via the concurrent manager.
If the file was found, then I simply
move the invoice batch file to a data
processing directory.

At this point you might ask me,
how do you know which person to
send the e-mail to. Using the 3rd and
4th strings in parameter $1, you can
identify the Oracle APPS/password
connection string of the User ID of
the caller that executed the concur-
rent program. Again, I assume that
the e-mail address has been set up in
Oracle Applications and can be found
in the AOL table called FND_USER.
Starting a SQL*Plus session, I make
a simple SQL select statement pull-
ing the e-mail address for the user ID.
Once the e-mail address is returned,
trim it for unnecessary characters.

Load the Data into Custom
Staging

Assuming that the comma-delim-
ited file was retrieved successfully
from the remote server onto UNIX,
the next step can commence. The step
is loading the data to custom stag-
ing tables. The design splits the data
into 2 separate tables: one for header
information (batch level) and the
other containing the actual invoice
distributions (or lines). SQL*Loader
is used to accomplish this task. The
control files developed for this task
are shown in Figures 10 and 11.

The header control file (Figure 10)
would process the header information
of the invoice batch. For each batch,
a single record is retrieved from the
comma-delimited file. It is the second
physical line in the file. Note, the first
physical line contains the labels for
each field associated with the batch

level header information. The batch
level record is loaded into a table
called empap_humvp_header_tl that
exists in a custom schema called
empcustom. Additionally, data load-
ed into this table is appended. The
reason is that there are custom Dis-
coverer reports (not discussed in this
article) that have been provided to
the end users for reporting on current
and previous invoice batch uploads.

The lines control file (Figure 11)
loads all of the invoice lines for the
batch in question. All invoice lines
start at the physical fourth line of
the comma-delimited file. The third

physical line of the file contains the
labels for the invoice lines that fol-
low. The only limitations for entering
invoice lines in a batch are depen-
dent on how many rows of data Excel
can handle. The invoice line records
are loaded into a custom table called
empap_humvp_lines_tl, which is
stored in a custom schema called
empcustom. Just to note, we allow
for no errors to occur during load.
Any errors encountered will result in
the interface terminating in error.

Let’s say, for instance, that the
invoice batch being processed is for
batch 12351. The associate respon-

Figure 10: Header Control File

Figure 11: Line Control File

4On Financials - Payables

ORAtips

Pa
ge

 �
0

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

sible for this batch would have pro-
duced a comma-delimited file called
“empap_humvp12351.csv”. For
simplicity, let’s say that the batch
contains two invoices: one with three
distributions and the other with two.
The batch would consist of a total of
five invoice lines to populate, at the
minimum. It is possible (given our
business design) that other invoice
lines may be created. This concept
will be discussed later under the
topic of loading data to the Payables
Open Interface tables. Figure 12 is an
example of what the comma-delim-
ited file would look like.

This is the same comma-delimited
file that will be processed by both
SQL*Loader control files. The head-
er control file will process a single
record: that which exists on the sec-
ond physical line for the file. The line
control file will process all invoice

lines starting at the fourth physical
line forward.

Let us now review how this would
be executed via the UNIX shell pro-
gram. Figures 13 and 14 are samples
of the UNIX scripting code that exe-

Figure 12: Comma-Delimited File

/***********************************/
/*** Set SQL*Loader Parameters ***/
/***********************************/
P_CTL=”${DIRECTORY_SQLLDR}/empap_humvp_header_tl.ctl”
P_DATA=”${DIRECTORY_DATA}/${FILENAME_BASE}${BATCH_NUMBER}.ctl”
P_BAD=”${DIRECTORY_BAD}/${REQUESTID}h.bad”
P_LOG=”${DIRECTORY_BAD}/${REQUESTID}h.log”
P_DSC=”${DIRECTORY_BAD}/${REQUESTID}h.dsc”

/***************************************/
/*** Display SQL*Loader Parameters ***/
/***************************************/
echo “Control file : ${P_CTL}”
echo “Log file : ${P_LOG}”
echo “Data file : ${P_DATA}”
echo “Bad file : ${P_BAD}”
echo “Discard file : ${P_DSC}”

/************************************/
/*** Execute SQL*Loader Session ***/
/************************************/
sqlldr ${USERPASS} control=${P_CTL} data=${P_DATA} bad=${P_BAD} log=${P_LOG} discard=${P_DSC}

/**/
/*** Determine if there were problems ***/
/**/
ls ${P_BAD}
if [$? -ne 0];
then
 echo “Data file loaded successfully into table empap_humvp_header_tl.”
else
 echo “ERROR: Problems occurred during data load into table empap_humvp_header_tl.”
 (cat ${P_BAD})|mailx -s “EMPAP: Invoice Upload Interface, Error with Concurrent Request ${REQUESTID}”
${EMAILADDR1}
 exit 2
fi

Figure 13: UNIX Code for Header Control File

4On Financials - Payables

ORAtips

Pa
ge

 �
�

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

cutes SQL*Loader to accomplish the
data load for each custom table.

For simplicity, the first thing I do
is set up SQL*Loader parameters.
In the event I would have to change
the settings, all I would need to do
is change the values set against the
parameter. The parameters are used
to display results to the concurrent
program executing the SQL*Loader.
They can be returned to the caller
(via e-mail) for review in the event
an error occurs. One important note
about the listing above, all of the
output files that are generated after
executing SQL*Loader are denoted

by the concurrent request ID fol-
lowed by the letter “h”. This signifies
that the file is related to SQL*Loader
header results for the given Concur-
rent Request ID. If a problem occurs
during the data load, a bad file is
generated. If that file exists, an error
message e-mail is sent to the caller
and the concurrent program is termi-
nated in error.

The lines SQL*Loader process is
very similar in most respects. The
major difference is the control file
being executed along with the names
of the potential files that are gener-
ated from executing SQL*Loader.

All files generated are denoted by the
concurrent request ID plus the letter
“l” representing line information.

Validations and Loading
into the Open Interface
Tables

The next step in the interface is to
determine if there are any problems
with the data and, if there are none,
loading the data into the Payables
Open Interface Tables. This is accom-
plished by executing a SQL*Plus ses-
sion embedded in the UNIX shell
program, which in turn calls a PL/
SQL script. The core of the code
is compiled in a custom package,

/***********************************/
/*** Set SQL*Loader Parameters ***/
/***********************************/
P_CTL=”${DIRECTORY_SQLLDR}/empap_humvp_lines_tl.ctl”
P_DATA=”${DIRECTORY_DATA}/${FILENAME_BASE}${BATCH_NUMBER}.ctl”
P_BAD=”${DIRECTORY_BAD}/${REQUESTID}l.bad”
P_LOG=”${DIRECTORY_BAD}/${REQUESTID}l.log”
P_DSC=”${DIRECTORY_BAD}/${REQUESTID}l.dsc”

/***************************************/
/*** Display SQL*Loader Parameters ***/
/***************************************/
echo “Control file : ${P_CTL}”
echo “Log file : ${P_LOG}”
echo “Data file : ${P_DATA}”
echo “Bad file : ${P_BAD}”
echo “Discard file : ${P_DSC}”

/************************************/
/*** Execute SQL*Loader Session ***/
/************************************/
sqlldr ${USERPASS} control=${P_CTL} data=${P_DATA} bad=${P_BAD} log=${P_LOG} discard=${P_DSC}

/**/
/*** Determine if there were problems ***/
/**/
ls ${P_BAD}
if [$? -ne 0];
then
 echo “Data file loaded successfully into table empap_humvp_lines_tl.”
else
 echo “ERROR: Problems occurred during data load into table empap_humvp_lines_tl.”
 (cat ${P_BAD})|mailx -s “EMPAP: Invoice Upload Interface, Error with Concurrent
Request ${REQUESTID}” ${EMAILADDR1}
 exit 3
fi

Figure 14: UNIX Code for Lines Control File

4On Financials - Payables

ORAtips

Pa
ge

 �
�

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

which is executed from the PL/SQL
program. The package validates the
data, including the translation of the
corporate COA combination into the
spin-off COA combination, previous-
ly discussed. Figure 15 demonstrates
how a PL/SQL program is executed
from within a UNIX shell program.

The UNIX script not only exe-
cutes the PL/SQL program, but also
checks the status as to the success of
data validation, loading the data into
the Payables Open Interface tables,
and the execution of Payables Open
Interface Import. If all of these events
were successful, UNIX sends a suc-
cess e-mail to the caller, reporting

the success along with the request ID
for the concurrent request the caller
submitted plus the request ID for the
spawned concurrent request execut-
ed within PL/SQL code for Payables
Open Interface Import. Simply put, a
successful run of the Invoice Upload
Interface will produce two concur-
rent requests: one for the interface

P_PROGRAM=”${EMPCUST_TOP}/sql/empap_humvp_import.sql”

/********************************/
/*** Execute PL/SQL Program ***/
/********************************/
sqlplus -s ${USERPASS} @${P_PROGRAM} ${USERNAME} ${ORGID} ${LOGINID}
${BATCH_NUMBER} ${RESPID} ${RESPAPPLID} ${SECGRPID}
ret_code=$?

/***/
/*** Send Error Message if PL/SQL Program terminated ***/
/*** in error. ***/
/***/
if test ${ret_code} -eq 1
then
 (echo “Exception error has occurred with request ${REQUESTID}, program EMPAP:
Invoice Upload Interface.”)|mailx -s “EMPAP: Invoice Upload; Error, Request ID ${REQUESTID}”
${EMAILADDR1}
 exit 4

/***/
/*** Send Error Message if there was a problem ***/
/*** in loading the data to the Payables Open ***/
/*** Interface tables. ***/
/***/
elif test ${ret_code} -eq 2
then
 (echo “Problem with loading data into Payables Open Interface tables. Please read
output for request ${REQUESTID}, program EMPAP: Invoice Upload Interface.”)|mailx -s
“EMPAP: Invoice Upload; Error, Request ID ${REQUESTID}” ${EMAILADDR1}
 exit 5

/***/
/*** Send Error Message if there was a problem in ***/
/*** executing Payable Open Interface Import. ***/
/***/

elif test ${ret_code} -eq 3
then
 (echo “Unable to submit Payables Open Interface Import from request ${REQUESTID},
program EMPAP: Invoice Upload Interface.”)|mailx -s “EMPAP: Invoice Upload; Error, Request ID

Figure 15: Executing PL/SQL Program - continued on next page

4On Financials - Payables

ORAtips

Pa
ge

 �
�

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

and another for the Payable Open
Interface Import, a child process of
the interface.

So far I have only shown the exe-
cution of a concurrent program from
within a UNIX shell program and
discussed what general tasks are
performed. Let us now look at the
tasks more in-depth. The process-
ing of data is too broad in scope to
discuss in this article. Rather, I will
list some highlights. Here are some of
the validations, all performed within
a PL/SQL package compiled on the
database:

• Asset processing

• Validation of invoice number
based on vendor

• Validation of vendor and site

• Determine if PO # (if provided)
exists

• Validation of Humana COA com-
bination

• Investigate accrued state tax, if
provided

• Investigate accrued county tax, if
provided

• Investigate accrued local tax, if
provided

• Validation of payment term
name

• Validation of invoice received
date

• Validation of pay alone flag
value

• Validation of special handle Flag

${REQUESTID}” ${EMAILADDR1}
 exit 6

/***/
/*** Send Error Message if there was a problem in ***/
/*** there was a data issue discovered during the ***/
/*** execution of Payables Open Interface Import. ***/
/***/
elif test ${ret_code} -eq 4
then
 (echo “Problem with Payables Open Interface Import, program EMPAP: Invoice Upload
Interface.”)|mailx -s “EMPAP: Invoice Upload; Error, Request ID ${REQUESTID}”
${EMAILADDR1}
 exit 7

/***/
/*** Send Success Message if data validation was ***/
/*** met and Payables Open Interface Import ***/
/*** completed successfully. ***/
/***/
else
 REQUESTID02=`echo “set heading off
 set echo off
 select request_id
 from empcustom.empap_humvp_header_tl
 where batch_number = ‘${BATCH_NUMBER}’ and rownum = 1;” | sqlplus -s
${USERPASS}`
 REQUESTID02=`echo ${REQUESTID02} | sed ‘s;^ ;;g’`

 (echo “Payables Open Interface Import has been executed, request ${REQUESTID02},
program EMPAP: Invoice Upload Interface, request ${REQUESTID}.”)|mailx -s “EMPAP: Invoice
Upload; Completed, Request ID ${REQUESTID}” ${EMAILADDR1}

fi

Figure 15: Executing PL/SQL Program - continued from previous page

4On Financials - Payables

ORAtips

Pa
ge

 �
�

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

• Determine if payment method has
been set up for vendor or site

• Asset location validation, if
invoice is for an asset

• Asset major/minor category vali-
dation, if invoice is for an asset

• Asset tag # validation, if invoice
is for an asset

• Asset expense account validation,
if invoice is for an asset

• Determine if period is either open
or future

• Determine if the line count is
consistent with the control count

• Determine if the line amount
is consistent with the control
amount

Likewise, there are several tasks
that must be performed before add-
ing an invoice to the Open Interface
tables. Invoices (not the Distribu-
tions) are added to a table called AP_

INVOICES_INTERFACE. The data
setup task required before records
are added to this table, are the
following:

• Retrieval of the respective vendor
ID

• Retrieval of the respective vendor
site ID

• Retrieval of the respective pay
group Code

• Generation of a new invoice ID

• Retrieval of the terms ID

• Retrieval of the payment method
for either the vendor or site

For each invoice there must be at
least one distribution added to the
Open Interface Tables. Invoice Dis-
tributions are added to a table called
AP_INVOICE_LINES_INTERFACE.
According to our business design, a
distribution amount has to be entered
into the Excel template. That value
will be used alone for one distribu-

tion. The following is required before
adding a distribution to the Open
Interface Table:

• Translate the Humana COA
combination to Emphesys COA
combination

• Generate a new invoice line ID

• Determine the real line (distribu-
tion) count

A special note was made previously
about the end users wanting to retain
their original method for accounting
(the Humana COA combination).
This is the point where we take the
original method of accounting and
translate to the accounting method
setup for Oracle Applications (Emph-
esys COA combination).

The final step is the actual execu-
tion of the concurrent program Pay-
ables Open Interface Import. Figure
16 gives a sample of the PL/SQL
code that accomplishes this task.

4On Financials - Payables

/*********************************/
/*** Define Return Parameter ***/
/*********************************/
variable ret_val number

/*********************************/
/*** Define Input Parameters ***/
/*********************************/
define in_user_name = ‘&1’
define in_org_id = ‘&2’
define in_login_id = ‘&3’
define in_batch_num = ‘&4’
define in_resp_id = ‘&5’
define in_resp_appl_id = ‘&6’
define in_sec_grp_id = ‘&7’

/**********************************/
/*** Define Program Variables ***/
/**********************************/
declare
 v_retcode number;
 v_user_id apps.fnd_user.user_id%type;
 v_login_id number;

Figure 16: Payables Open Interface Execution - Continued on next page

ORAtips

Pa
ge

 �
�

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4On Financials - Payables

 v_batch_num empcustom.empap_humvp_header_tl.batch_number%type;
 v_user_name apps.fnd_user.user_name%type;
 v_org_id ap.ap_invoices_interface.org_id%type;
 v_req_id number;
 v_import boolean;
 v_period empcustom.empap_humvp_header_tl.accounting_period%type;

begin
 :ret_val := 0;

/***/
/*** Store Input Parameters into Program Variables ***/
/***/
 v_user_name := ‘&in_user_name’;
 v_org_id := ‘&in_org_id’;
 v_login_id := ‘&in_login_id’;
 v_batch_num := ‘&in_batch_num’;
 v_resp_id := ‘&in_resp_id’;
 v_resp_appl_id := ‘&in_resp_appl_id’;
 v_sec_grp_id := ‘&in_sec_grp_id’;

/*********************************/
/*** Perform Data Validation ***/
/*********************************/
 empcustom.empap_humvp_pk.process_excel_transactions_pr (
 v_user_id
 ,v_login_id
 ,v_org_id
 ,v_batch_num
 ,v_resp_name
 ,v_import
);

/**/
/*** Execute Payables Open Interface Import ***/
/*** data passes validation. ***/
/**/
 if v_import = true then
 v_period := empcustom.empap_humvp_pk.get_period_fn(v_batch_num);
 v_req_id := fnd_request.submit_request (
 ‘SQLAP’,
 ‘APXIIMPT’,
 ‘Payables Open Interface Import’,
 null,
 false,
 ‘EMPAP_HUMVP’,
 v_batch_num,
 v_batch_num,
 null,
 null,
 to_date(‘01-’||v_period, ‘DD-MON-YY’),
 ‘Y’,
 ‘N’,
 ‘N’,
 ‘N’,
 1000,

Figure 16: Payables Open Interface Execution - Continued on next page

ORAtips

Pa
ge

 �
�

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

This PL/SQL script is slightly busy.
First, the input parameters (from
the UNIX shell script) are defined
along with a return parameter that
indicates the status for executing
the PL/SQL script. All parameters
are assigned to program variables.
Validation is performed by a call to
a custom package procedure: emp-
custom.empap_humvp_pk.process_
excel_transactions_pr.

If the validation process has any
errors, the return status indicator is

set and returned to the UNIX shell
program where, in turn, the concur-
rent program will be terminated in
error. However, if all validation was
successful, Payables Open Interface
Import is executed. First, the period
for the batch is retrieved via a call to
the custom package function: emp-
custom.empap_humvp_pk.get_peri-
od_fn.

Next, Payables Open Interface
Import is executed using the Oracle
provided utility fnd_request.submit_

request. If a request ID other than
0 is returned, the concurrent pro-
gram was submitted successful. The
program, in turn, records the child
request ID for reporting purposes.

Let’s take a closer look at the exe-
cution of Payables Open Interface
Import. A normal way of executing
this job from Oracle Applications is
demonstrated in Figure 17.

You may notice that the source in
Figure 17 differs from that in the

4On Financials - Payables

Figure 16: Payables Open Interface Execution - continued from previous pages

 v_user_id,
 v_login_id
);

/**/
/*** If the Request ID is 0, then there was ***/
/*** a problem in submitting the request. ***/
/**/
 if v_req_id = 0 then
 dbms_output.put_line (
 ‘Unable to submit Payables Open Interface Import.’
);
 :ret_val := 3;

/**/
/*** Else, the request was submitted successfully ***/
/*** so record the Request ID for reporting. ***/
/**/
 else

 dbms_output.put_line (
 ‘Update batch for request id...’
);
 update empcustom.empap_humvp_header_tl
 set request_id = v_req_id
 where batch_number = v_batch_num
 ;
 :ret_val := 0;
 end if;

/***/
/*** Send back Validation Error Status ***/
/***/
 else
 :ret_val := 2;
 end if;
end;
/
exit :ret_val;

ORAtips

Pa
ge

 �
�

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

4On Financials - Payables

source code in Figure 16. The source
in Figure 16 is listed as “EMPAP_
HUMVP”, where in Figure 17, it is
“Humana Upload”. The reason is
that the program in Oracle Applica-
tions accepts the user-friendly refer-
ence or “meaning” of the source. The
“code” is used with fnd_request.sub-
mit_request. Since this is an inter-
face, the source differs from those
that are standard with Oracle Appli-
cations. Hence, the source must be
set up. The source for loading invoic-
es outside of Oracle Payables (such
as through SQL*Loader) must be set
up. This is accomplished by using the
Oracle Payables Lookups window in
Oracle Applications. Figure 18 dem-
onstrates the source setup for this
interface.

View of the Final Product
We have finally arrived at the final

product of the interface. This is the
easy part: demonstrating the execu-
tion of the interface. Depending on
the responsibility, go into Oracle
Applications and submit a concur-
rent request. In this case, our request
will be a concurrent program called
“EMPAP: Invoice Interface Upload”.
It requires only one parameter from
the caller: the batch number. Provid-
ed that you have populated the Excel
template and saved it as a comma-
delimited file with proper naming
convention, you will have a successful
run of uploading an invoice batch to
Oracle Payables. Figure 19 demon-
strates submitting “EMPAP: Invoice
Interface Upload”.

Figure 17: Payable Open Interface Import

Figure 18: Oracle Payables Lookups Window

ORAtips

Pa
ge

 �
�

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

Conclusion
As stated at the beginning, this is

probably the busiest interface that
has been deployed at Humana as
part of Finance implementation of
Oracle Payables. The interface has
been a great success in processing.
Given its power and performance,
our associates are constantly review-
ing the interface for enhancements.
Stated briefly, it has been adapted to
incorporate the process of mass addi-
tions via automation. Additionally,
Humana incorporated the process
of doing invoices for temporary ven-
dors; or better stated, vendors that are
invoiced only once. This incorporates
the creation of vendors and sites prior
to the creation of the invoices; a com-
plicated process, yet extremely pow-
erful tool. Also, enhancements have
been provided for PO matching. The
enhancements continue to this day.
Given its success, I believe it provides
other company benefits as well.

Figure 19: EMPAP: Invoice Upload Interface

Kevin Ellis, Humana – Kevin has
served as Technology / Applica-
tions Engineer for Humana at their
headquarters in Louisville, KY since
June 2000. His primary responsibil-
ity is to provide on-going support
of Humana’s Finance ERP (Oracle
Applications 11.5.9). Additionally,
he serves as the turn release man-
ager for all enhancements released
to the QA/Production environments.
Kevin shares direct technical support
with his staff for General Ledger,
Payables, Fixed Assets, Purchas-
ing, and Cash Management modules
and writes SQL scripts for Discov-
erer workbooks, custom library, and
forms. Additionally, Kevin (adjunct
professor) teaches a graduate course
in database theory at Bellarmine
University (a private Catholic insti-
tution located in Louisville, KY).
Kevin also teaches computer courses
at Jefferson Community & Technical
College. Kevin may be contacted at
Kevin.Ellis@ERPtips.com. ≈

4On Financials - Payables

ORAtips

Pa
ge

 �
�

O
R

A
ti

p
s J

ou
rn

al
Ja

nu
ar

y 2
00

6
Vo

lum
e I

I I
ssu

e 1

ORAtips.com ORAtips © 2006 Klee Associates, Inc.

The information on our website and in our publications is the copyrighted work of Klee Associates, Inc. and is owned by Klee Associates, Inc. NO WARRANTY: This
documentation is delivered as is, and Klee Associates, Inc. makes no warranty as to its accuracy or use. Any use of this documentation is at the risk of the user. Although
we make every good faith effort to ensure accuracy, this document may include technical or other inaccuracies or typographical errors. Klee Associates, Inc. reserves
the right to make changes without prior notice. NO AFFILIATION: Klee Associates, Inc. and this publication are not affiliated with or endorsed by Oracle Corporation.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Klee Associates, Inc. is a member of the Oracle Partner Network

Journal

This article was originally published by Klee Associates, Inc., publishers of JDEtips and SAPtips.
For training, consulting, and articles on JD Edwards or SAP, please visit our websites:
www.JDEtips.com and www.SAPtips.com.

