
PL/SQL Coding Style Guidelines
Introducing Error Handling, Tracing

and Coding Standards

Author: Vishal Gupta

2

Introduction

Presenter:

� Vishal Gupta

Topics:

� Reasons for guidelines

� Standards for error handling

� Standards for trace handling

� Header comments and versions

� Questions and answers

3

Reasons for guidelines

Advantages of using coding guidelines:

n Uniform look and feel of all of the source code

n Framework can be used for implementing new modules

n Faster ramp-up time for new developers

n Proven methods and structures are reused which leads
to more stable code

4

Standards for Error Handling

All PL/SQL code has to conform to the error handling
standards

� Error handler in each procedure/function.

� In large procedures multiple error handlers should be defined

� Secondary error handlers should be defined in case an error can occur

inside of an error handler

� Procedures should forward errors to the calling procedure

� Standard error_struct (structure) should be used for error handling

� Each error that is raised in code should be documented in configuration

table

� Documentation and example

5

Categorization of Error Handling

All Defined errors should be categorized as follows:

� I = Info (These are just for information level Process continues in regular

flow)

� W = Warning (Warning Exceptions/Logs should work like to handle certain
situations of processing steps these are not Business Critical and process

continues)

� E = Error (Any Exception that reports Application Error Should Terminate

processing)

� F = Fatal error (Any Undefined Exception, that is trapped and handled
external to application using WHEN OTHERS should be recorded as
FATAL error and should terminate the execution of process)

6

Error Handling Cont…

Error Handling Configuration will look like as:

Date time record created12/12/2008
20.12.00PM

CREATE_DAT
E

ID of the application user who created this record should
references to user tables

123USER_CREAT
TED

Where “No data found in” is generic text and %s1 will be
replaced by parameters in generic error handling package
passed from the code.

No data found in
<%s1>!

ERROR_TEXT

I = Info, W = Warning, E = Error, F = Fatal errorI, W, E, FERROR_TYPE

This is the unique identifier of Error Code referenced in code
exception

DROP-000001ERROR_CODE

DESCRIPTIONEXAMPLEFIELD_NAME

7

Error Dependencies:

These are errors that should be just passed through

the exception handlers on the way up to the caller

(in most of the cases the application).

•Forwarded errors

(F)

These are errors that happen in any kind of cleanup

or exception handling of a primary error. This error

should reference to the 'Master-ID'.

•Secondary errors

(S)

This is the error that should occurs at first. It gets a

'Master-ID'.

•Primary errors

(P)

F510

F59

F58

S57

S56

P55

F24

F23

P22

P11

Kind of ErrorMaster-IDID

Example

8

Key information recorded for Error Log:

CONTEXT

PARAMETER_LIST

ERROR_CODE

ORIGINATION_TYPE

FUNCTION

MODULE

DATE

SESSION_USER

OS_USER

MACHINE

9

Avoid hard-coding of -20,NNN Errors

Should give numbers
names and associate
them with named
exceptions.

PACKAGE errnums PACKAGE errnums PACKAGE errnums PACKAGE errnums
ISISISIS

en_general_error CONSTANT NUMBER := en_general_error CONSTANT NUMBER := en_general_error CONSTANT NUMBER := en_general_error CONSTANT NUMBER := ----20000;20000;20000;20000;
exc_general_error EXCEPTION;exc_general_error EXCEPTION;exc_general_error EXCEPTION;exc_general_error EXCEPTION;
PRAGMA EXCEPTION_INIT PRAGMA EXCEPTION_INIT PRAGMA EXCEPTION_INIT PRAGMA EXCEPTION_INIT
(exc_general_error, (exc_general_error, (exc_general_error, (exc_general_error, ----20000);20000);20000);20000);

en_must_be_18 CONSTANT NUMBER := en_must_be_18 CONSTANT NUMBER := en_must_be_18 CONSTANT NUMBER := en_must_be_18 CONSTANT NUMBER := ----20001;20001;20001;20001;
exc_must_be_18 EXCEPTION;exc_must_be_18 EXCEPTION;exc_must_be_18 EXCEPTION;exc_must_be_18 EXCEPTION;
PRAGMA EXCEPTION_INIT PRAGMA EXCEPTION_INIT PRAGMA EXCEPTION_INIT PRAGMA EXCEPTION_INIT
(exc_must_be_18, (exc_must_be_18, (exc_must_be_18, (exc_must_be_18, ----20001);20001);20001);20001);

en_sal_too_low CONSTANT NUMBER := en_sal_too_low CONSTANT NUMBER := en_sal_too_low CONSTANT NUMBER := en_sal_too_low CONSTANT NUMBER := ----20002;20002;20002;20002;
exc_sal_too_low EXCEPTION;exc_sal_too_low EXCEPTION;exc_sal_too_low EXCEPTION;exc_sal_too_low EXCEPTION;
PRAGMA EXCEPTION_INIT PRAGMA EXCEPTION_INIT PRAGMA EXCEPTION_INIT PRAGMA EXCEPTION_INIT
(exc_sal_too_low , (exc_sal_too_low , (exc_sal_too_low , (exc_sal_too_low , ----20002);20002);20002);20002);

max_error_used CONSTANT NUMBER := max_error_used CONSTANT NUMBER := max_error_used CONSTANT NUMBER := max_error_used CONSTANT NUMBER := ----20002;20002;20002;20002;

END errnums;END errnums;END errnums;END errnums;

10

Using the standard raise program

Rather than have individual programmers call
RAISE_APPLICATION_ERROR, simply call the standard raise program.
Benefits:

� Easier to avoid hard-coding of numbers.

� Support positive error numbers!

11

Raising errors by name

Use an error name (literal value).

� The code compiles now.

� Later, define that error in the repository.

� No central point of failure.

Downsides: risk of typos, runtime
notification of "undefined error."

12

Summary: an Exception Handling Architecture

Make sure it is understood how it all works

� Exception handling is tricky stuff

Set standards before start coding

� It's not the kind of thing can easily added in later stages

Use standard infrastructure components

� Everyone and all programs need to handle errors the same way

Take full advantage of error management features.

� SAVE EXCEPTIONS, DBMS_ERRLOG,
DBMS_UTILITY.FORMAT_ERROR_BACKTRACE...

Don't accept the limitations of Oracle's current implementation.

� lots can be done to improve the situation.

13

Trace Handling

Tracing should be used for tracking error situations and process
analysis during development (But can be activated in production on
need from configuration tables). It should be implemented with in
PL/SQL packages and has to be used in a strong defined way in
every other PL/SQL package/function or procedure. Hence It should
be highly configurable and easy to use.

All objects belonging to the tracing module need to be placed in a
common schema

14

Standards for Trace Handling

All PL/SQL code has to conform to the trace handling
standards

� Trace handling using the Tracing package

� As a minimum trace of procedure entry/exit

� Use appropriate trace level for the trace statement being implemented

� Configuring the trace setup (What, When, & Module piece of code need to

be traced, at what level and from which machine/host)

� Reviewing the trace output (Table, File)

� Documentation and example

15

Levels of Trace Handling

� Level 1: has to be set in any case of an error, this goes hand in hand with the call of the error handling functions

� Level 2: at the beginning and end of every procedure or function

— trace2('Entering procedure my_proc');

— trace2('Leaving procedure my_proc');

� Level 3: list of procedure parameters

— trace3('p_param1: '||p_param1);

— trace3('p_param2: '||p_param2);

� Level 4: any local variables

— trace4('v_start_seq: '||v_start_seq);

— trace4('v_datestamp: '||to_char(v_datestamp,

— 'mm.dd.yyyy hh24:mi'));

� Level 5: before and after calling a sub-procedure

— trace5('calling my_proc');

— my_proc(4711, sysdate, p_error_rec);

— trace5('return from my_proc');

Definition of Trace Levels:

Trace levels can be defined in a range from 0 to 8, where 0 is the same as "No Trace“

Trace should be used using pre-defined trace levels for the following parts of the application.

16

Levels of Trace Handling

� Level 6: variables inside loops with depth 1

— loop

— trace6('loop nr. '||to_char(v_loop_counter));

— <do something>

— v_loop_counter := v_loop_counter+1;

— if (v_loop_counter > 100)

— then

— trace6('loop finished');

— end if;

— end loop;

� Level 7: variables inside loops with depth 2

� Level 8: variables inside loops with depth 3

17

Header comments and versions

All PL/SQL packages, functions and procedures have to
contain a standard header

� Package header with copyright information

� Function and procedure header contains:

— Description and parameter list definition

— Revision history including author, date, CR, change description

� Documentation and examples

18

Bottleneck of traditional Exception Handling

19

Hard to avoid code repetition in handlers

If every developer writes exception handler code on their own, you end up with

an unmanageable situation.

� Different logging mechanisms, no standards for error message text, inconsistent handling

of the same errors, etc.

WHEN NO_DATA_FOUND THENWHEN NO_DATA_FOUND THENWHEN NO_DATA_FOUND THENWHEN NO_DATA_FOUND THEN
INSERT INTO INSERT INTO INSERT INTO INSERT INTO errlogerrlogerrlogerrlog
VALUES (SQLCODEVALUES (SQLCODEVALUES (SQLCODEVALUES (SQLCODE

, 'No company for id ' || TO_CHAR (, 'No company for id ' || TO_CHAR (, 'No company for id ' || TO_CHAR (, 'No company for id ' || TO_CHAR (v_idv_idv_idv_id))))
, ', ', ', 'fixdebtfixdebtfixdebtfixdebt', SYSDATE, USER);', SYSDATE, USER);', SYSDATE, USER);', SYSDATE, USER);

WHEN OTHERS THENWHEN OTHERS THENWHEN OTHERS THENWHEN OTHERS THEN
INSERT INTO INSERT INTO INSERT INTO INSERT INTO errlogerrlogerrlogerrlog
VALUES (SQLCODE, SQLERRM, 'VALUES (SQLCODE, SQLERRM, 'VALUES (SQLCODE, SQLERRM, 'VALUES (SQLCODE, SQLERRM, 'fixdebtfixdebtfixdebtfixdebt', SYSDATE, USER);', SYSDATE, USER);', SYSDATE, USER);', SYSDATE, USER);

RAISE;RAISE;RAISE;RAISE;
END;END;END;END;

20

Questions?Questions?

21

Authors

This presentation was prepared by:

Vishal Gupta,
10200 Park Meadows

Dr. Lone Tree CO, 80124
Tel: +1.646.203.3520
E-mail: gupt.vishal@gmail.com

22

Recommendations

n Introduce PL/SQL Coding Guidelines

23

