
Using Regular Expressions in Oracle

Everyday most of us deal with multiple string functions in Sql. May it be for truncating a
string, searching for a substring or locating the presence of special characters.

The regexp functions available in Oracle 10g can help us achieve the above tasks in a
simpler and faster way.

I have tried to illustrate the behavior of the regexp functions with common patterns and
description of each. This document mainly focuses on the usage of patterns. The
patterns can be used with any of the regular expression functions. But before we start
let me include little oracle documentation.

I hope the documentation is good enough to start with. Okay let’s start with our first
case.

1. Validate a string for alphabets only

select case when
 regexp_like('Google' ,'^[[:alpha:]]{6}$')
 then 'Match Found'
 else 'No Match Found'
 end
as output from dual;

Output: Match Found

In the above example we tried to check if the source string contains only 6 alphabets
and hence we got a match for “Google”.

Now let’s try to understand the pattern '^[[:alpha:]]{6}$'

^ marks the start of the string
[[:alpha:]] specifies alphabet class
{6} specifies the number of alphabets
$ marks the end of the string

2. Validate a string for lower case alphabets only

select case when
 regexp_like('Terminator' ,'^([[:lower:]]{3,12})$')
 then 'Match Found'
 else 'No Match Found'
 end
as output from dual;

Output: No Match Found

If we change the input to “terminator”, we get a match.

In the above example we tried to check if the source string contains only lower case
alphabets with a string length varying from minimum of 3 to max of 12.

The pattern is similar as above but {3,12}.

{3,12} specifies at least 3 alphabets but not more than 12

3. Case Sensitive Search

select case when
 regexp_like('Republic Of India' ,'of', 'c')
 then 'Match Found'
 else 'No Match Found'
 end
as output from dual;

Output: No Match Found

“c” stands for case sensitive

In the above example we tried to search for the pattern “of” exactly matching the
case and hence we didn’t find a match

Let’s now try a search for “of” in the source string irrespective of the case in the
below example:

select case when
 regexp_like('Republic Of India' ,'of','i')
 then 'Match Found'
 else 'No Match Found'
 end
as output from dual;

Output: Match Found

“i” stands for case insensitive

4. Match nth character

select case when
 regexp_like('ter*minator' ,'^...[^[:alnum:]]')
 then 'Match Found'
 else 'No Match Found'
 end
as output from dual;

Output: Match Found

In the above example we tried to search for a special character at the 4th position of
the input string “ter*minator”

Let’s now try to understand the pattern '^...[^[:alnum:]]'

^ marks the start of the string
. a dot signifies any character (… 3 dots specify any three characters)
[^[:alnum:]] Non alpha-numeric characters (^ inside brackets specifies negation)

Note: The $ is missing in the pattern. It’s because we are not concerned beyond the
4th character and hence we need not mark the end of the string. (...[^[:alnum:]]$
would mean any three characters followed by a special character and no characters
beyond the special character)

5. Search and replace white spaces

select regexp_replace('Help Earth Stay Green','[[:blank:]]{2,8}',' ')
from dual;

Output: Help Earth Stay Green

In the above example we have replaced multiple white spaces (2 to 8) in the source
string with single space.

Let’s now try to understand the pattern [[:blank:]]{2,8}

Now that you are familiar with the patterns you may be wondering about the missing
(^$) anchors in the pattern. These have been skipped purposefully. In the source
string we wanted to search for multiple spaces anywhere in the string. So we need
not specify the start (^) and end ($) anchors.

Note: ^[[:blank:]]{2,8}$ would mean a pattern consisting of min of 2 spaces to a
max of 8 and no other characters and we won’t find a match for the above input.

6. Search for control characters

select case when
 regexp_like('Super' || chr(13) || 'Star' ,'[[:cntrl:]]')
 then 'Match Found'
 else 'No Match Found'
 end
as output from dual;

Output: Match Found

In the above example we tried to search for presence of carriage return in our source
string (13 is the ASCII value for carriage return).

7. Extract sub strings from source string

i) select regexp_substr('1PSN/231_3253/ABc','[[:alnum:]]+') from dual;

 Output: 1PSN

[[:alnum:]]+ One or more number of alphanumeric characters (The “+” sign stands
for one or more occurrences)

Note: I didn’t include the “^” and “$” anchors as I wanted to search for the matching
pattern anywhere in the source string. By default the first matching pattern is
returned.

ii) select regexp_substr('1PSN/231_3253/ABc','[[:alnum:]]+',1,2) from dual;

Output: 231

Note the extra parameters in the expression compared to the first example.

“1” specifies that the search needs to start from the first character in the source
string
“2” specifies the second occurrence of the matching pattern which is 231 in the
source string “1PSN/231_3253/ABc”

iii) select regexp_substr('@@/231_3253/ABc','@*[[:alnum:]]+') from dual;

Output: 231

@* Search for zero or more occurrences of @ (“*” stands for zero or more
occurrences)
[[:alnum:]]+ followed by one or more occurrences of alphanumeric characters

Note: In the above example oracle looks for @ (zero times or more) immediately
followed by alphanumeric characters.
Since a '/' comes between @ and 231 the output is: 0 occurrences of @ + one or
more occurrences of alphanumeric characters.

iv) select regexp_substr('1@/231_3253/ABc','@+[[:alnum:]]*') from dual;

Output: @

@+ one or more occurrences of @
[[:alnum:]]* followed by 0 or more occurrences of alphanumeric characters

v) select regexp_substr('1@/231_3253/ABc','@+[[:alnum:]]+') from dual;

Output: Null

@+ one or more occurrences of @
[[:alnum:]]+ followed by one or more occurrences of alphanumeric characters

In the above example, there is no matching pattern in the source string and hence
the output is null.

vi) select regexp_substr('@1PSN/231_3253/ABc125','[[:digit:]]+$') from dual;

Output: 125

[[:digit:]]+ one or more occurrences of digits only
$ at the end of the string

In the above example we tried to extract the digits at the end of the source string.

vii) select regexp_substr('@1PSN/231_3253/ABc','[^[:digit:]]+$') from dual;

Output: /ABc

[^[:digit:]]+$ one or more occurrences of non-digit literals at the end of the string
Note: “^” inside square brackets marks the negation of the class

viii) select regexp_substr('Tom_Kyte@oracle.com','[^@]+') from dual;

Output: Tom_Kyte

[^@]+ one or more occurrences of characters which are not “@”

The above example extracts the name part from email address.

ix) select regexp_substr('1PSN/231_3253/ABc','[[:alnum:]]*',1,2) from dual;

 Output: Null

[[:alnum:]]* zero or more number of alphanumeric characters

We looked for the second occurrence of alpha numeric characters in the source string
which is 231. Don’t we find the output misleading here? In fact it isn’t.

If you carefully look at the pattern, it says; second occurrence of zero or more
number of alphanumeric characters. The word “or” is stressed here. We have a “/”
followed by 1PSN. This accounts for zero occurrence of alphanumeric characters and
hence the output “Null”.

Now let’s move to our next case.

8. Validate email

select case when
 REGEXP_LIKE('tom_kyte@oracle.com',

'^([[:alnum:]]+(_?|\.))[[:alnum:]]*@[[:alnum:]]+(\.([[:alnum:]]+)){1,2}$') then
'Match Found'
 else 'No Match Found'
 end
as output from dual;

Output: Match Found

Let’s try to understand the pattern
^([[:alnum:]]+(_?|\.))[[:alnum:]]*@[[:alnum:]]+(\.([[:alnum:]]+)){1,2}$
in parts.

You are aware that the “^” marks the start of the string. Now let’s break
([[:alnum:]]+(_?|\.)) into two parts: [[:alnum:]]+ and (_?|\.)

[[:alnum:]]+ represents one or more occurrences of alphanumeric characters
(_?|\.) represents zero or one occurrence of underscore or dot. The “?” symbol here
stands for zero or one occurrence; and “|” symbol represents OR. The expression
(_?|\.) represents for a sub expression as a whole representing an optional
underscore or dot. The parentheses help in grouping expressions together to
represent one sub expression.

So now, ([[:alnum:]]+(_?|\.)) as a whole represents one or more occurrences of
alphanumeric characters optionally followed by an underscore or dot.

Now that we have understood sub expressions we can move ahead with the rest of
the pattern.

[[:alnum:]]* followed by zero or more occurrences of alphanumeric characters
@ followed by @
[[:alnum:]]+ followed by one or more occurrences of alphanumeric characters
(\.([[:alnum:]]+)){1,2} followed by the sub expression: dot followed by one or more
occurrences of alphanumeric characters; from one to a max of two occurrences of the
sub expression (Example: .com or .co.in)

Input: tom.kyte@oracle.com
Output: Match Found

Input: tom-kyte@oracle.co.uk
Output: No Match Found

Note: Did you notice the backslash before the dot? The backslash here is used as
escape sequence for dot. Take extra care while testing patterns that include dot
literals, as a Dot (.) alone stands for any character

9. Validate SSN

select case when
 regexp_like('987-65-4321' ,'^[0-9]{3}-[0-9]{2}-[0-9]{4}$')
 then 'Match Found'
 else 'No Match Found'
 end
as output from dual;

Output: Match Found

Input: 987-654-3210
Output: No match found

^ start of the string
[0-9]{3} three occurrences of digits from 0-9
- followed by hyphen
[0-9]{2} two occurrences of digits from 0-9
- followed by hyphen
[0-9]{4} four occurrences of digits from 0-9
$ end of the string

The above pattern can also be used to validate phone numbers with little
customization.

10. Consecutive Occurrences

i) Let’s try to search for two consecutive occurrences of letters from a-z in the
following example.

select regexp_substr('Republicc Of Africaa' ,'([a-z])\1', 1,1,'i') from dual;

Output: cc

([a-z]) character set a-z
\1 consecutive occurrence of any character in the class [a-z]
1 starting from 1st character in the string
1 First occurrence
i stands for case insensitive

ii) Now let’s try to search for three consecutive occurrences digits from 6 to 9 in the
following example.

select case when
 regexp_like('Patch 10888 applied' ,'([6-9])\1\1')
 then 'Match Found'
 else 'No Match Found'
 end
as output from dual;

Output: Match Found

Note: I didn’t specify the position or occurrence in the above sql query. By default,
oracle will search for the first occurrence of the matching pattern from the start of
the string and will stop when it encounters appropriate match. If no match is found it
stops at the end of the string

11. Formatting Strings

SELECT REGEXP_REPLACE('04099661234',
 '([[:digit:]]{3})([[:digit:]]{4})([[:digit:]]{4})',
 '(\1) \2-\3') as Formatted_Phone
FROM dual;

Output: (040) 9966-1234

We tried to format a phone number in the above example. Let’s understand the
match pattern and replacing string.

Our match pattern is ^([[:digit:]]{3})([[:digit:]]{4})([[:digit:]]{4})$

([[:digit:]]{3}) 3 digits
([[:digit:]]{4}) followed by 4 digits
([[:digit:]]{4}) followed by 4 digits

Why did I group the digits into sub expressions using the parentheses? I could have
simply searched for [[:digit:]]{11} as my input string comprises of 11 digits only. To
understand the reason, let’s look at the replacing string (\1) \2-\3

(includes a opening parenthesis
\1 represents the first sub group expression in our match pattern i.e. 040
) includes a closing parenthesis
\2 represents the second sub group i.e. 9966
- includes a hyphen
\3 represents the third sub group i.e. 1234

We’ll see some more formatting in our next example.

SELECT REGEXP_REPLACE('04099661234',
 '^([[:digit:]]{1})([[:digit:]]{2})([[:digit:]]{4})([[:digit:]]{4})$',
 '+91-\2-\3-\4') as Formatted_Phone
FROM dual;

Output: +91-40-9966-1234

In the next example, we shall include a space between every character.

SELECT REGEXP_REPLACE('YAHOO', '(.)', '\1 ') as Output
FROM dual;

Output: Y A H O O

12. Some more patterns

In the below example let’s look for http:// followed by a substring of one or more
alphanumeric characters and optionally, a period (.)

SELECT REGEXP_SUBSTR('Go to http://www.oracle.com/products and click on
database','http://([[:alnum:]]+\.?){3,4}/?') RESULT

FROM dual;

Output: http://www.oracle.com

Input: Go to http://www.oracle.co.uk/products and click on database
Output: http://www.oracle.co.uk

http:// The characters http://
([[:alnum:]]+\.?) represents the sub expression: one or more occurrences of
alphanumeric characters followed by a dot optionally
{3,4} minimum 3 occurrences of the above sub expression to a max of 4
/? followed by forward slash optionally

Let’s now try to extract the third value from a csv string.

select regexp_substr('1101,Yokohama,Japan,1.5.105','[^,]+',1,3)as Output from
dual;

Output: Japan

[^,]+ one or more occurrences of non comma characters
1 specifies the starting position
3 Third match

Let us assume we have a source string as “Why does a kid enjoy kidding with
kids only?” and we want to search for either kid or kids or kidding in the source
string.

select case when
 regexp_like('Why does a kid enjoy kidding with kids only?','kid(s|ding)*', 'i')
 then 'Match Found'
 else 'No Match Found'
 end
as output from dual;

Output: Match Found

kid characters kid
(s|ding)* followed by zero or more occurrences of s or ding (| stands for OR)
i represents case insensitive

I have tried to accommodate few common and regular patterns which we may find
useful for our work. For more examples and information on regular expressions you may
visit the following links.

1. http://www.oracle.com/technology/obe/obe10gdb/develop/regexp/regexp.htm
2. http://www.psoug.org/reference/regexp.html

Oracle Documentation

Available regular Expression Functions:

Function Name Description

REGEXP_LIKE Similar to the LIKE operator, but performs regular expression

http://www.oracle.com/technology/obe/obe10gdb/develop/regexp/regexp.htm
http://www.psoug.org/reference/regexp.html

matching instead of simple pattern matching

REGEXP_INSTR
Searches for a given string for a regular expression pattern and
returns the position were the match is found

REGEXP_REPLACE
Searches for a regular expression pattern and replaces it with a
replacement string

REGEXP_SUBSTR
Searches for a regular expression pattern within a given string
and returns the matched substring

Syntax

REGEXP_LIKE(srcstr, pattern [,match_option])

REGEXP_INSTR(srcstr, pattern [, position [, occurrence [, return_option [,
match_option]]]])

REGEXP_SUBSTR(srcstr, pattern [, position [, occurrence [, match_option]]])

REGEXP_REPLACE(srcstr, pattern [,replacestr [, position [, occurrence [,
match_option]]]])

Metacharacters

You can use several predefined metacharacter symbols in the pattern matching with the
functions.

Symbol Description

* Matches zero or more occurrences

| Alternation operator for specifying alternative matches

^/$

Matches the start of line and the end of line

[]
Bracket expression for a matching list matching any one of the
expressions represented in the list

[^exp] If the caret is inside the bracket, it negates the expression.

{m} Matches exactly m times

{m,n} Matches at least m times but no more than n times

[: :] Specifies a character class and matches any character in that class

\
Can have four different meanings: (1) stand for itself; (2) quote the
next character; (3) introduce an operator; (4) do nothing

+ Matches one or more occurrences

? Matches zero or one occurrence

. Matches any character in the supported character set (except NULL)

() Grouping expression (treated as a single subexpression)

\n Backreference expression

[==]

Specifies equivalence classes

[..]

Specifies one collation element (such as a multicharacter element)

Match Options

Option Description

c Case sensitive matching

i Case insensitive matching

Character Classes

Option Description

[:alnum:] Alphanumeric characters

[:alpha:] Alphabetic characters

[:blank:] Blank Space Characters

[:cntrl:] Control characters (nonprinting)

[:digit:] Numeric digits

[:lower:] Lowercase alphabetic characters

[:space:]
Space characters (nonprinting), such as carriage return, newline,
vertical tab, and form feed

[:upper:] Uppercase alphabetic characters

	Oracle Documentation
	Available regular Expression Functions:

	Validate a string for alphabets only
	Validate a string for lower case alphabets
	Case Sensitive Search
	Match nth character
	Search and replace white spaces
	Search for control characters
	Extract sub strings
	Validate email
	Validate SSN
	Consecutive Occurrences
	Formatting Strings
	Some more patterns

