Skip navigation.

Jonathan Lewis

Syndicate content Oracle Scratchpad
Just another Oracle weblog
Updated: 2 hours 2 min ago

Philosophy 22

Thu, 2014-07-03 02:59

Make sure you agree on the meaning of the jargon.

If you had to vote would you say that the expressions “more selective” and “higher selectivity” are different ways of expressing the same idea, or are they exact opposites of each other ? I think I can safely say that I have seen people waste a ludicrous amount of time arguing past each other and confusing each other because they didn’t clarify their terms (and one, or both, parties actually misunderstood the terms anyway).

Selectivity is a value between 0 and 1 that represents the fraction of data that will be selected – the higher the selectivity the more data you select.

If a test is “more selective” then it is a harsher, more stringent, test and returns less data  (e.g. Oxford University is more selective than Rutland College of Further Education): more selective means lower selectivity.

If there’s any doubt when you’re in the middle of a discussion – drop the jargon and explain the intention.

Footnote

If I ask:  “When you say ‘more selective’ do you mean ….”

The one answer which is absolutely, definitely, unquestionably the wrong reply is: “No, I mean it’s more selective.”

 


Comparisons

Wed, 2014-07-02 10:09

Catching up (still) from the Trivadis CBO days, here’s a little detail which had never crossed my mind before.


where   (col1, col2) < (const1, const2)

This isn’t a legal construct in Oracle SQL, even though it’s legal in other dialects of SQL. The logic is simple (allowing for the usual anomaly with NULL): the predicate should evaluate to true if (col1 < const1), or if (col1 = const1 and col2 < const2). The thought that popped into my mind when Markus Winand showed a slide with this predicate on it – and then pointed out that equality was the only option that Oracle allowed for multi-column operators – was that, despite not enabling the syntax, Oracle does implement the mechanism.

If you’re struggling to think where, it’s in multi-column range partitioning: (value1, value2) belongs in the partition with high value (k1, k2) if (value1 < k1) or if (value1 = k1 and value2 < k2).


Oracle Meetup

Sat, 2014-06-28 06:29

This is just a temporary note to remind London-based Oracle technical folks that the first free evening event arranged by e-DBA will take place this coming Thursday (3rd July), 6:30 – 9:00 pm.

The event is free and includes breaks for beer and food, but you do have to sign up in advance – places are limited. July

The theme for the evening is “Upgrades”: covering general principles (Jonathan Lewis), 12c specifics (Jason Arneil), and tools (Dominic Giles and James Anthony)

Even if you’re not interested in upgrades, you might want to attend if you haven’t heard about Swingbench and SLOB (Silly Little Oracle Benchmark).

Details and registration at this url.

 


AWR thoughts

Wed, 2014-06-25 08:35

It’s been a week since my last posting – so I thought I’d better contribute something to the community before my name gets lost in the mists of time.

I don’t have an article ready for publication, but some extracts from an AWR report appeared on the OTN database forum a few days ago, and I’ve made a few comments on what we’ve been given so far (with a warning that I might not have time to follow up on any further feedback). I tried to write my comments in a way that modelled the way I scanned (or would have scanned) through the reporting – noting things that caught my attention, listing some of the guesses and assumptions I made as I went along.  I hope it gives some indication of a pattern of thinking when dealing with a previously unseen AWR report.

 

 


Delete Costs

Thu, 2014-06-19 11:18

One of the quirky little anomalies of the optimizer is that it’s not allowed to select rows from a table after doing an index fast full scan (index_ffs) even if it is obviously the most efficient (or, perhaps, least inefficient) strategy. For example:


create table t1
as
with generator as (
	select	--+ materialize
		rownum id
	from dual
	connect by
		level <= 1e4
)
select
	rownum			id,
	mod(rownum,100)		n1,
	rpad('x',100)		padding
from
	generator	v1,
	generator	v2
where
	rownum <= 1e5
;

create index t1_i1 on t1(id, n1);
alter table t1 modify id not null;

begin
	dbms_stats.gather_table_stats(
		ownname		 => user,
		tabname		 =>'T1',
		method_opt	 => 'for all columns size 1'
	);
end;
/

explain plan for
select /*+ index_ffs(t1) */ max(padding) from t1 where n1 = 0;

select * from table(dbms_xplan.display(null,null,'outline -note'));

In this case we can see that there are going to be 1,000 rows where n1 = 0 spread evenly across the whole table so a full tablescan is likely to be the most efficient strategy for the query, but we can tell the optimizer to do an index fast full scan with the hint that I’ve shown, and if the hint is legal (which means there has to be at least one column in it declared as not null) the optimizer should obey it. So here’s the plan my hinted query produced:


---------------------------------------------------------------------------
| Id  | Operation          | Name | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------
|   0 | SELECT STATEMENT   |      |     1 |   104 |   207   (4)| 00:00:02 |
|   1 |  SORT AGGREGATE    |      |     1 |   104 |            |          |
|*  2 |   TABLE ACCESS FULL| T1   |  1000 |   101K|   207   (4)| 00:00:02 |
---------------------------------------------------------------------------

We’d have to examine the 10053 trace file to be certain, but it seems the optimizer won’t consider doing an index fast full scan followed by a trip to the table for a select statement (in passing, Oracle would have obeyed the skip scan – index_ss() – hint). It’s a little surprising then that the optimizer will obey the hint for a delete:


explain plan for
delete /*+ index_ffs(t1) cluster_by_rowid(t1) */ from t1 where n1 = 0;

select * from table(dbms_xplan.display(null,null,'outline -note'));

-------------------------------------------------------------------------------
| Id  | Operation             | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
-------------------------------------------------------------------------------
|   0 | DELETE STATEMENT      |       |  1000 |  8000 |    38  (11)| 00:00:01 |
|   1 |  DELETE               | T1    |       |       |            |          |
|*  2 |   INDEX FAST FULL SCAN| T1_I1 |  1000 |  8000 |    38  (11)| 00:00:01 |
-------------------------------------------------------------------------------

You might note three things from this plan. First, the optimizer can consider a fast full scan followed by a table visit (so why can’t we do that for a select); secondly that the cost of the delete statement is only 38 whereas the cost of the full tablescan in the earlier query was much larger at 207 – surprisingly Oracle had to be hinted to consider this fast full scan path, despite the fact that the cost was cheaper than the cost of the tablescan path it would have taken if I hadn’t included the hint; finally you might note the cluster_by_rowid() hint in the SQL – there’s no matching “Sort cluster by rowid” operation in the plan, even though this plan came from 11.2.0.4 where the mechanism and hint are available.

The most interesting of the three points is this: there is a bug recorded for the second one (17908541: CBO DOES NOT CONSIDER INDEX_FFS) reported as fixed in 12.2 – I wonder if this means that an index fast full scan followed by table access by rowid will also be considered for select statements in 12.2.

Of course, there is a trap – and something to be tested when the version (or patch) becomes available. Why is the cost of the delete so low (only 38, the cost of the index fast full scan) when the number of rows to be deleted is 1,000 and they’re spread evenly through the table ? It’s because the cost of a delete is actually calculated as the cost of the query: “select the rowids of the rows I want to delete but don’t worry about the cost of going to the rows to delete them (or the cost of updating the indexes that will have to be maintained, but that’s a bit irrelevant to the choice anyway)”.

So when Oracle does do a delete following an index fast full scan in 12.2, will it be doing it because it’s the right thing to do, or because it’s the wrong thing ?

To be continued … (after the next release/patch).

 


Cluster Nulls

Tue, 2014-06-17 00:39

Yesterday’s posting was a reminder that bitmap indexes, unlike B-tree indexes in Oracle,  do store entries where every column in the index is null. The same is true for cluster indexes – which are implemented as basic B-tree indexes. Here’s a test case I wrote to demonstrate the point.

drop table tc1;
drop cluster c including tables;

purge recyclebin;

create cluster c(val number);
create index c_idx on cluster c;
create table tc1 (val number, n1 number, padding varchar2(100)) cluster c(val);

insert into tc1
select
	decode(rownum,1,to_number(null),rownum), rownum, rpad('x',100)
from
	all_objects
where
	rownum <= 100
;

insert into tc1 select * from tc1;
insert into tc1 select * from tc1;
insert into tc1 select * from tc1;
insert into tc1 select * from tc1;
insert into tc1 select * from tc1;
commit;

analyze cluster c compute statistics;
execute dbms_stats.gather_table_stats(user,'tc1');

set autotrace traceonly explain

select * from tc1 where val = 2;
select * from tc1 where val is null;

set autotrace off

Here are the two execution plans from the above queries:


------------------------------------------------------------------------------
| Id  | Operation            | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
------------------------------------------------------------------------------
|   0 | SELECT STATEMENT     |       |    32 |  3424 |     1   (0)| 00:00:01 |
|   1 |  TABLE ACCESS CLUSTER| TC1   |    32 |  3424 |     1   (0)| 00:00:01 |
|*  2 |   INDEX UNIQUE SCAN  | C_IDX |     1 |       |     0   (0)| 00:00:01 |
------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
   2 - access("VAL"=2)

--------------------------------------------------------------------------
| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |      |    32 |  3424 |    14   (0)| 00:00:01 |
|*  1 |  TABLE ACCESS FULL| TC1  |    32 |  3424 |    14   (0)| 00:00:01 |
--------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
   1 - filter("VAL" IS NULL)

Spot the problem: the second query doesn’t use the index. So, despite the fact that I said that fully null index entries are stored in cluster indexes you might (as the first obvious question) wonder whether or not I was right. So here’s a piece of the symbolic dump of the index.


kdxconro 100                -- Ed: 100 entries (rows) in the leaf block

row#0[8012] flag: -----, lock: 0, data:(8):  02 00 02 0b 00 00 01 00
col 0; len 2; (2):  c1 03

row#1[7999] flag: -----, lock: 0, data:(8):  02 00 02 0c 00 00 01 00
col 0; len 2; (2):  c1 04

...

row#98[6738] flag: -----, lock: 2, data:(8):  02 00 02 6d 00 00 01 00
col 0; len 2; (2):  c2 02

row#99[8025] flag: -----, lock: 0, data:(8):  02 00 02 0a 00 00 01 00
col 0; NULL

The NULL entry is right there – sorted as the high value – just as it is in a bitmap index. But the optimizer won’t use it, even if you hint it.

Of course, Oracle uses it internally when inserting rows (how else, otherwise, would it rapidly find which the heap block needed for the next NULL insertion) – but it won’ use it to retrieve the data, it always uses a full table (cluster) scan. That’s really a little annoying if you’ve made the mistake of allowing nulls into your cluster.

There is a workaround, of course – in this case (depending on version) you could create a virtual column with index or a function-based index that (for example) uses the nvl2() function to convert nulls to a know value and all non-null entries to null; this would give you an index on just the original nulls which would be as small as possible and also have a very good clustering_factor. You’d have to change the code from “column is not null” to a predicate that matched the index, though. For example:


create index tc1_null on tc1(nvl2(val,null,0));

execute dbms_stats.gather_table_stats(user,'tc1', method_opt=>'for all hidden columns size 1');

select * from tc1 where nvl2(val,null,0) = 0;

----------------------------------------------------------------------------------------
| Id  | Operation                   | Name     | Rows  | Bytes | Cost (%CPU)| Time     |
----------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT            |          |    32 |  3456 |     2   (0)| 00:00:01 |
|   1 |  TABLE ACCESS BY INDEX ROWID| TC1      |    32 |  3456 |     2   (0)| 00:00:01 |
|*  2 |   INDEX RANGE SCAN          | TC1_NULL |    32 |       |     1   (0)| 00:00:01 |
----------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
   2 - access(NVL2("VAL",NULL,0)=0)

I’ve included the compress keyword (which implicitly means “all columns” for a non-unique index) in the definition since you only need 4 repetitions of the single-byte entry that is the internal representation of zero before you start to win on the storage trade-off – but since it’s likely to be a small index anyway that’s not particularly important. (Reminder: although Oracle collects index stats on index creation, you still need to collect column stats on the hidden column underlying the function-based columns on the index to give the optimizer full information.)


Bitmap Nulls

Mon, 2014-06-16 02:08

It’s fairly well known that in Oracle B-tree indexes on heap tables don’t hold entries where all the indexed columns are all null, but that bitmap indexes will hold such entries and execution plans can for predicates like “column is null” can use bitmap indexes. Here’s a little test case to demonstrate the point (I ran this last on 12.1.0.1):


create table t1 (val number, n1 number, padding varchar2(100));

insert into t1
select
	decode(rownum,1,to_number(null),rownum), rownum, rpad('x',100)
from
	all_objects
where
	rownum <= 1000
;

insert into t1 select * from t1;
insert into t1 select * from t1;
insert into t1 select * from t1;
insert into t1 select * from t1;
insert into t1 select * from t1;

commit;

create bitmap index t1_b1 on t1(val);

execute dbms_stats.gather_table_stats(user,'t1');

set autotrace traceonly explain

select * from t1 where val is null;

set autotrace off

The execution plan for this query, in the system I happened to be using, looked like this:


Execution Plan
----------------------------------------------------------
Plan hash value: 1201576309

---------------------------------------------------------------------------------------------
| Id  | Operation                           | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                    |       |    32 |  3488 |     8   (0)| 00:00:01 |
|   1 |  TABLE ACCESS BY INDEX ROWID BATCHED| T1    |    32 |  3488 |     8   (0)| 00:00:01 |
|   2 |   BITMAP CONVERSION TO ROWIDS       |       |       |       |            |          |
|*  3 |    BITMAP INDEX SINGLE VALUE        | T1_B1 |       |       |            |          |
---------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
   3 - access("VAL" IS NULL)

Note that the predicate section shows us that we used the “column is null” predicate as an access predicate into the index.

Of course, this is a silly little example – I’ve only published it to make a point and to act as a reference case if you ever need to support a claim. Normally we don’t expect a single bitmap index to be a useful way to access a table, we tend to use combinations of bitmap indexes to combine a number of predicates so that we can minimise the trips to a table as efficiently as possible. (And we certainly DON’T create a bitmap index on an OLTP system because it lets us access NULLs by index — OLTP and bitmaps don’t get on well together.)

If you do a symbolic block dump, by the way, you’ll find that the NULL is represented by the special “length byte” of 0xFF with no following data.